#include "NSVGUtils.hpp" #include "ClipperUtils.hpp" namespace { using namespace Slic3r; // Polygon + Vec2f /// /// Convert cubic curve to lines /// Inspired by nanosvgrast.h function nsvgRasterize->nsvg__flattenShape /// /// Result points /// Tesselation tolerance /// Curve point /// Curve point /// Curve point /// Curve point /// Actual depth of recursion /// Scale of point - multiplicator /// NOTE: increase preccission by number greater than 1. void flatten_cubic_bez(Polygon &polygon, float tessTol, const Vec2f& p1, const Vec2f& p2, const Vec2f& p3, const Vec2f& p4, int level, float scale); Point::coord_type to_coor(float val, float scale) { return static_cast(std::round(val * scale)); } } // namespace namespace Slic3r { Polygons to_polygons(const NSVGimage &image, float tessTol, int max_level, float scale, bool is_y_negative) { Polygons polygons; for (NSVGshape *shape = image.shapes; shape != NULL; shape = shape->next) { if (!(shape->flags & NSVG_FLAGS_VISIBLE)) continue; if (shape->fill.type == NSVG_PAINT_NONE) continue; Polygon polygon; for (NSVGpath *path = shape->paths; path != NULL; path = path->next) { // Flatten path Point::coord_type x = to_coor(path->pts[0], scale); Point::coord_type y = to_coor(path->pts[1], scale); polygon.points.emplace_back(x, y); size_t path_size = (path->npts > 1) ? static_cast(path->npts - 1) : 0; for (size_t i = 0; i < path_size; i += 3) { const float *p = &path->pts[i * 2]; Vec2f p1(p[0], p[1]); Vec2f p2(p[2], p[3]); Vec2f p3(p[4], p[5]); Vec2f p4(p[6], p[7]); flatten_cubic_bez(polygon, tessTol, p1, p2, p3, p4, max_level, scale); } if (path->closed && !polygon.empty()) { polygons.push_back(polygon); polygon = Polygon(); } } if (!polygon.empty()) polygons.push_back(polygon); } if (is_y_negative) for (Polygon &polygon : polygons) for (Point &p : polygon.points) p.y() = -p.y(); return polygons; } ExPolygons to_expolygons(const NSVGimage &image, float tessTol, int max_level, float scale, bool is_y_negative){ return union_ex(to_polygons(image, tessTol, max_level, scale, is_y_negative)); } NSVGimage_ptr nsvgParseFromFile(const std::string &filename, const char *units, float dpi) { NSVGimage *image = ::nsvgParseFromFile(filename.c_str(), units, dpi); return {image, ::nsvgDelete}; } } // namespace Slic3r namespace { // inspired by nanosvgrast.h function nsvgRasterize -> nsvg__flattenShape -> nsvg__flattenCubicBez // https://github.com/memononen/nanosvg/blob/f0a3e1034dd22e2e87e5db22401e44998383124e/src/nanosvgrast.h#L335 void flatten_cubic_bez(Polygon &polygon, float tessTol, const Vec2f& p1, const Vec2f& p2, const Vec2f& p3, const Vec2f& p4, int level, float scale) { // f .. first // s .. second auto det = [](const Vec2f &f, const Vec2f &s) { return std::fabs(f.x() * s.y() - f.y() * s.x()); }; Vec2f pd = p4 - p1; Vec2f pd2 = p2 - p4; float d2 = det(pd2, pd); Vec2f pd3 = p3 - p4; float d3 = det(pd3, pd); float d23 = d2 + d3; if ((d23 * d23) < tessTol * pd.squaredNorm()) { Point::coord_type x = to_coor(p4.x(), scale); Point::coord_type y = to_coor(p4.y(), scale); polygon.points.emplace_back(x, y); return; } --level; if (level == 0) return; Vec2f p12 = (p1 + p2) * 0.5f; Vec2f p23 = (p2 + p3) * 0.5f; Vec2f p34 = (p3 + p4) * 0.5f; Vec2f p123 = (p12 + p23) * 0.5f; Vec2f p234 = (p23 + p34) * 0.5f; Vec2f p1234 = (p123 + p234) * 0.5f; flatten_cubic_bez(polygon, tessTol, p1, p12, p123, p1234, level, scale); flatten_cubic_bez(polygon, tessTol, p1234, p234, p34, p4, level, scale); } } // namespace