#include "SeamPlacer.hpp" #include "libslic3r/ExtrusionEntity.hpp" #include "libslic3r/Print.hpp" #include "libslic3r/BoundingBox.hpp" #include "libslic3r/EdgeGrid.hpp" #include "libslic3r/ClipperUtils.hpp" namespace Slic3r { static float extrudate_overlap_penalty(float nozzle_r, float weight_zero, float overlap_distance) { // The extrudate is not fully supported by the lower layer. Fit a polynomial penalty curve. // Solved by sympy package: /* from sympy import * (x,a,b,c,d,r,z)=symbols('x a b c d r z') p = a + b*x + c*x*x + d*x*x*x p2 = p.subs(solve([p.subs(x, -r), p.diff(x).subs(x, -r), p.diff(x,x).subs(x, -r), p.subs(x, 0)-z], [a, b, c, d])) from sympy.plotting import plot plot(p2.subs(r,0.2).subs(z,1.), (x, -1, 3), adaptive=False, nb_of_points=400) */ if (overlap_distance < - nozzle_r) { // The extrudate is fully supported by the lower layer. This is the ideal case, therefore zero penalty. return 0.f; } else { float x = overlap_distance / nozzle_r; float x2 = x * x; float x3 = x2 * x; return weight_zero * (1.f + 3.f * x + 3.f * x2 + x3); } } // Return a value in <0, 1> of a cubic B-spline kernel centered around zero. // The B-spline is re-scaled so it has value 1 at zero. static inline float bspline_kernel(float x) { x = std::abs(x); if (x < 1.f) { return 1.f - (3.f / 2.f) * x * x + (3.f / 4.f) * x * x * x; } else if (x < 2.f) { x -= 1.f; float x2 = x * x; float x3 = x2 * x; return (1.f / 4.f) - (3.f / 4.f) * x + (3.f / 4.f) * x2 - (1.f / 4.f) * x3; } else return 0; } static Points::const_iterator project_point_to_polygon_and_insert(Polygon &polygon, const Point &pt, double eps) { assert(polygon.points.size() >= 2); if (polygon.points.size() <= 1) if (polygon.points.size() == 1) return polygon.points.begin(); Point pt_min; double d_min = std::numeric_limits::max(); size_t i_min = size_t(-1); for (size_t i = 0; i < polygon.points.size(); ++ i) { size_t j = i + 1; if (j == polygon.points.size()) j = 0; const Point &p1 = polygon.points[i]; const Point &p2 = polygon.points[j]; const Slic3r::Point v_seg = p2 - p1; const Slic3r::Point v_pt = pt - p1; const int64_t l2_seg = int64_t(v_seg(0)) * int64_t(v_seg(0)) + int64_t(v_seg(1)) * int64_t(v_seg(1)); int64_t t_pt = int64_t(v_seg(0)) * int64_t(v_pt(0)) + int64_t(v_seg(1)) * int64_t(v_pt(1)); if (t_pt < 0) { // Closest to p1. double dabs = sqrt(int64_t(v_pt(0)) * int64_t(v_pt(0)) + int64_t(v_pt(1)) * int64_t(v_pt(1))); if (dabs < d_min) { d_min = dabs; i_min = i; pt_min = p1; } } else if (t_pt > l2_seg) { // Closest to p2. Then p2 is the starting point of another segment, which shall be discovered in the next step. continue; } else { // Closest to the segment. assert(t_pt >= 0 && t_pt <= l2_seg); int64_t d_seg = int64_t(v_seg(1)) * int64_t(v_pt(0)) - int64_t(v_seg(0)) * int64_t(v_pt(1)); double d = double(d_seg) / sqrt(double(l2_seg)); double dabs = std::abs(d); if (dabs < d_min) { d_min = dabs; i_min = i; // Evaluate the foot point. pt_min = p1; double linv = double(d_seg) / double(l2_seg); pt_min(0) = pt(0) - coord_t(floor(double(v_seg(1)) * linv + 0.5)); pt_min(1) = pt(1) + coord_t(floor(double(v_seg(0)) * linv + 0.5)); assert(Line(p1, p2).distance_to(pt_min) < scale_(1e-5)); } } } assert(i_min != size_t(-1)); if ((pt_min - polygon.points[i_min]).cast().norm() > eps) { // Insert a new point on the segment i_min, i_min+1. return polygon.points.insert(polygon.points.begin() + (i_min + 1), pt_min); } return polygon.points.begin() + i_min; } static std::vector polygon_angles_at_vertices(const Polygon &polygon, const std::vector &lengths, float min_arm_length) { assert(polygon.points.size() + 1 == lengths.size()); if (min_arm_length > 0.25f * lengths.back()) min_arm_length = 0.25f * lengths.back(); // Find the initial prev / next point span. size_t idx_prev = polygon.points.size(); size_t idx_curr = 0; size_t idx_next = 1; while (idx_prev > idx_curr && lengths.back() - lengths[idx_prev] < min_arm_length) -- idx_prev; while (idx_next < idx_prev && lengths[idx_next] < min_arm_length) ++ idx_next; std::vector angles(polygon.points.size(), 0.f); for (; idx_curr < polygon.points.size(); ++ idx_curr) { // Move idx_prev up until the distance between idx_prev and idx_curr is lower than min_arm_length. if (idx_prev >= idx_curr) { while (idx_prev < polygon.points.size() && lengths.back() - lengths[idx_prev] + lengths[idx_curr] > min_arm_length) ++ idx_prev; if (idx_prev == polygon.points.size()) idx_prev = 0; } while (idx_prev < idx_curr && lengths[idx_curr] - lengths[idx_prev] > min_arm_length) ++ idx_prev; // Move idx_prev one step back. if (idx_prev == 0) idx_prev = polygon.points.size() - 1; else -- idx_prev; // Move idx_next up until the distance between idx_curr and idx_next is greater than min_arm_length. if (idx_curr <= idx_next) { while (idx_next < polygon.points.size() && lengths[idx_next] - lengths[idx_curr] < min_arm_length) ++ idx_next; if (idx_next == polygon.points.size()) idx_next = 0; } while (idx_next < idx_curr && lengths.back() - lengths[idx_curr] + lengths[idx_next] < min_arm_length) ++ idx_next; // Calculate angle between idx_prev, idx_curr, idx_next. const Point &p0 = polygon.points[idx_prev]; const Point &p1 = polygon.points[idx_curr]; const Point &p2 = polygon.points[idx_next]; const Point v1 = p1 - p0; const Point v2 = p2 - p1; int64_t dot = int64_t(v1(0))*int64_t(v2(0)) + int64_t(v1(1))*int64_t(v2(1)); int64_t cross = int64_t(v1(0))*int64_t(v2(1)) - int64_t(v1(1))*int64_t(v2(0)); float angle = float(atan2(double(cross), double(dot))); angles[idx_curr] = angle; } return angles; } void SeamPlacer::init(const Print& print) { m_enforcers.clear(); m_blockers.clear(); m_last_seam_position.clear(); for (const PrintObject* po : print.objects()) { po->project_and_append_custom_facets(true, EnforcerBlockerType::ENFORCER, m_enforcers); po->project_and_append_custom_facets(true, EnforcerBlockerType::BLOCKER, m_blockers); } const std::vector& nozzle_dmrs = print.config().nozzle_diameter.values; float max_nozzle_dmr = *std::max_element(nozzle_dmrs.begin(), nozzle_dmrs.end()); for (ExPolygons& explgs : m_enforcers) explgs = Slic3r::offset_ex(explgs, scale_(max_nozzle_dmr)); for (ExPolygons& explgs : m_blockers) explgs = Slic3r::offset_ex(explgs, scale_(max_nozzle_dmr)); } Point SeamPlacer::get_seam(const size_t layer_idx, const SeamPosition seam_position, const ExtrusionLoop& loop, Point last_pos, coordf_t nozzle_dmr, const PrintObject* po, bool was_clockwise, const EdgeGrid::Grid* lower_layer_edge_grid) { if (seam_position == spNearest || seam_position == spAligned || seam_position == spRear) { Polygon polygon = loop.polygon(); const coord_t nozzle_r = coord_t(scale_(0.5 * nozzle_dmr) + 0.5); if (this->is_custom(layer_idx)) { // Seam enf/blockers can begin and end in between the original vertices. // Let add extra points in between and update the leghths. polygon.densify(scale_(0.2f)); } // Retrieve the last start position for this object. float last_pos_weight = 1.f; if (seam_position == spAligned) { // Seam is aligned to the seam at the preceding layer. if (po != nullptr && m_last_seam_position.count(po) > 0) { last_pos = m_last_seam_position[po]; last_pos_weight = 1.f; } } else if (seam_position == spRear) { // Object is centered around (0,0) in its current coordinate system. last_pos.x() = 0; last_pos.y() += coord_t(3. * po->bounding_box().radius()); last_pos_weight = 5.f; } // Insert a projection of last_pos into the polygon. size_t last_pos_proj_idx; { auto it = project_point_to_polygon_and_insert(polygon, last_pos, 0.1 * nozzle_r); last_pos_proj_idx = it - polygon.points.begin(); } // Parametrize the polygon by its length. std::vector lengths = polygon.parameter_by_length(); // For each polygon point, store a penalty. // First calculate the angles, store them as penalties. The angles are caluculated over a minimum arm length of nozzle_r. std::vector penalties = polygon_angles_at_vertices(polygon, lengths, float(nozzle_r)); // No penalty for reflex points, slight penalty for convex points, high penalty for flat surfaces. const float penaltyConvexVertex = 1.f; const float penaltyFlatSurface = 5.f; const float penaltyOverhangHalf = 10.f; // Penalty for visible seams. for (size_t i = 0; i < polygon.points.size(); ++ i) { float ccwAngle = penalties[i]; if (was_clockwise) ccwAngle = - ccwAngle; float penalty = 0; if (ccwAngle <- float(0.6 * PI)) // Sharp reflex vertex. We love that, it hides the seam perfectly. penalty = 0.f; else if (ccwAngle > float(0.6 * PI)) // Seams on sharp convex vertices are more visible than on reflex vertices. penalty = penaltyConvexVertex; else if (ccwAngle < 0.f) { // Interpolate penalty between maximum and zero. penalty = penaltyFlatSurface * bspline_kernel(ccwAngle * float(PI * 2. / 3.)); } else { assert(ccwAngle >= 0.f); // Interpolate penalty between maximum and the penalty for a convex vertex. penalty = penaltyConvexVertex + (penaltyFlatSurface - penaltyConvexVertex) * bspline_kernel(ccwAngle * float(PI * 2. / 3.)); } // Give a negative penalty for points close to the last point or the prefered seam location. float dist_to_last_pos_proj = (i < last_pos_proj_idx) ? std::min(lengths[last_pos_proj_idx] - lengths[i], lengths.back() - lengths[last_pos_proj_idx] + lengths[i]) : std::min(lengths[i] - lengths[last_pos_proj_idx], lengths.back() - lengths[i] + lengths[last_pos_proj_idx]); float dist_max = 0.1f * lengths.back(); // 5.f * nozzle_dmr penalty -= last_pos_weight * bspline_kernel(dist_to_last_pos_proj / dist_max); penalties[i] = std::max(0.f, penalty); } // Penalty for overhangs. if (lower_layer_edge_grid) { // Use the edge grid distance field structure over the lower layer to calculate overhangs. coord_t nozzle_r = coord_t(std::floor(scale_(0.5 * nozzle_dmr) + 0.5)); coord_t search_r = coord_t(std::floor(scale_(0.8 * nozzle_dmr) + 0.5)); for (size_t i = 0; i < polygon.points.size(); ++ i) { const Point &p = polygon.points[i]; coordf_t dist; // Signed distance is positive outside the object, negative inside the object. // The point is considered at an overhang, if it is more than nozzle radius // outside of the lower layer contour. [[maybe_unused]] bool found = lower_layer_edge_grid->signed_distance(p, search_r, dist); // If the approximate Signed Distance Field was initialized over lower_layer_edge_grid, // then the signed distnace shall always be known. assert(found); penalties[i] += extrudate_overlap_penalty(float(nozzle_r), penaltyOverhangHalf, float(dist)); } } // Penalty according to custom seam selection. This one is huge compared to // the others so that points outside enforcers/inside blockers never win. this->penalize_polygon(polygon, penalties, lengths, layer_idx); // Find a point with a minimum penalty. size_t idx_min = std::min_element(penalties.begin(), penalties.end()) - penalties.begin(); // For all (aligned, nearest, rear) seams: { // Very likely the weight of idx_min is very close to the weight of last_pos_proj_idx. // In that case use last_pos_proj_idx instead. float penalty_aligned = penalties[last_pos_proj_idx]; float penalty_min = penalties[idx_min]; float penalty_diff_abs = std::abs(penalty_min - penalty_aligned); float penalty_max = std::max(penalty_min, penalty_aligned); float penalty_diff_rel = (penalty_max == 0.f) ? 0.f : penalty_diff_abs / penalty_max; // printf("Align seams, penalty aligned: %f, min: %f, diff abs: %f, diff rel: %f\n", penalty_aligned, penalty_min, penalty_diff_abs, penalty_diff_rel); if (std::abs(penalty_diff_rel) < 0.05) { // Penalty of the aligned point is very close to the minimum penalty. // Align the seams as accurately as possible. idx_min = last_pos_proj_idx; } m_last_seam_position[po] = polygon.points[idx_min]; } // Export the contour into a SVG file. #if 0 { static int iRun = 0; SVG svg(debug_out_path("GCode_extrude_loop-%d.svg", iRun ++)); if (m_layer->lower_layer != NULL) svg.draw(m_layer->lower_layer->slices); for (size_t i = 0; i < loop.paths.size(); ++ i) svg.draw(loop.paths[i].as_polyline(), "red"); Polylines polylines; for (size_t i = 0; i < loop.paths.size(); ++ i) polylines.push_back(loop.paths[i].as_polyline()); Slic3r::Polygons polygons; coordf_t nozzle_dmr = EXTRUDER_CONFIG(nozzle_diameter); coord_t delta = scale_(0.5*nozzle_dmr); Slic3r::offset(polylines, &polygons, delta); // for (size_t i = 0; i < polygons.size(); ++ i) svg.draw((Polyline)polygons[i], "blue"); svg.draw(last_pos, "green", 3); svg.draw(polygon.points[idx_min], "yellow", 3); svg.Close(); } #endif return polygon.points[idx_min]; } else { // spRandom if (loop.loop_role() == elrContourInternalPerimeter) { // This loop does not contain any other loop. Set a random position. // The other loops will get a seam close to the random point chosen // on the inner most contour. //FIXME This works correctly for inner contours first only. //FIXME Better parametrize the loop by its length. Polygon polygon = loop.polygon(); Point centroid = polygon.centroid(); last_pos = Point(polygon.bounding_box().max(0), centroid(1)); last_pos.rotate(fmod((float)rand()/16.0, 2.0*PI), centroid); } return last_pos; } } void SeamPlacer::get_indices(size_t layer_id, const Polygon& polygon, std::vector& enforcers_idxs, std::vector& blockers_idxs) const { enforcers_idxs.clear(); blockers_idxs.clear(); // FIXME: This is quadratic and it should be improved, maybe by building // an AABB tree (or at least utilize bounding boxes). for (size_t i=0; i find_enforcer_centers(const Polygon& polygon, const std::vector& lengths, const std::vector& enforcers_idxs) { std::vector out; assert(polygon.points.size()+1 == lengths.size()); assert(std::is_sorted(enforcers_idxs.begin(), enforcers_idxs.end())); if (polygon.size() < 2 || enforcers_idxs.empty()) return out; auto get_center_idx = [&polygon, &lengths](size_t start_idx, size_t end_idx) -> size_t { assert(end_idx >= start_idx); if (start_idx == end_idx) return start_idx; float t_c = lengths[start_idx] + 0.5f * (lengths[end_idx] - lengths[start_idx]); auto it = std::lower_bound(lengths.begin() + start_idx, lengths.begin() + end_idx, t_c); int ret = it - lengths.begin(); return ret; }; int last_enforcer_start_idx = enforcers_idxs.front(); bool last_pt_in_list = enforcers_idxs.back() == polygon.points.size() - 1; for (size_t i=0; i t_e) ? t_s + half_dist : t_e - half_dist; auto it = std::lower_bound(lengths.begin(), lengths.end(), t_c); out[0] = it - lengths.begin(); if (out[0] == lengths.size() - 1) --out[0]; assert(out[0] < lengths.size() - 1); } } return out; } void SeamPlacer::penalize_polygon(const Polygon& polygon, std::vector& penalties, const std::vector& lengths, int layer_id) const { std::vector enforcers_idxs; std::vector blockers_idxs; this->get_indices(layer_id, polygon, enforcers_idxs, blockers_idxs); for (size_t i : enforcers_idxs) { assert(i < penalties.size()); penalties[i] -= float(ENFORCER_BLOCKER_PENALTY); } for (size_t i : blockers_idxs) { assert(i < penalties.size()); penalties[i] += float(ENFORCER_BLOCKER_PENALTY); } std::vector enf_centers = find_enforcer_centers(polygon, lengths, enforcers_idxs); for (size_t idx : enf_centers) { assert(idx < penalties.size()); penalties[idx] -= 1000.f; } // ////////////////////// // std::ostringstream os; // os << std::setw(3) << std::setfill('0') << layer_id; // int a = scale_(20.); // SVG svg("custom_seam" + os.str() + ".svg", BoundingBox(Point(-a, -a), Point(a, a))); // /*if (! m_enforcers.empty()) // svg.draw(m_enforcers[layer_id], "blue"); // if (! m_blockers.empty()) // svg.draw(m_blockers[layer_id], "red");*/ // size_t min_idx = std::min_element(penalties.begin(), penalties.end()) - penalties.begin(); // //svg.draw(polygon.points[idx_min], "red", 6e5); // for (size_t i=0; i