///|/ Copyright (c) Prusa Research 2022 - 2023 Pavel Mikuš @Godrak, Vojtěch Bubník @bubnikv ///|/ Copyright (c) SuperSlicer 2023 Remi Durand @supermerill ///|/ ///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher ///|/ #include "SupportSpotsGenerator.hpp" #include "BoundingBox.hpp" #include "ExPolygon.hpp" #include "ExtrusionEntity.hpp" #include "ExtrusionEntityCollection.hpp" #include "GCode/ExtrusionProcessor.hpp" #include "Line.hpp" #include "Point.hpp" #include "Polygon.hpp" #include "PrincipalComponents2D.hpp" #include "Print.hpp" #include "PrintBase.hpp" #include "PrintConfig.hpp" #include "Tesselate.hpp" #include "Utils.hpp" #include "libslic3r.h" #include "tbb/parallel_for.h" #include "tbb/blocked_range.h" #include "tbb/blocked_range2d.h" #include "tbb/parallel_reduce.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "AABBTreeLines.hpp" #include "KDTreeIndirect.hpp" #include "libslic3r/Layer.hpp" #include "libslic3r/ClipperUtils.hpp" #include "Geometry/ConvexHull.hpp" // #define DETAILED_DEBUG_LOGS // #define DEBUG_FILES #ifdef DEBUG_FILES #include #include "libslic3r/Color.hpp" constexpr bool debug_files = true; #else constexpr bool debug_files = false; #endif namespace Slic3r::SupportSpotsGenerator { ExtrusionLine::ExtrusionLine() : a(Vec2f::Zero()), b(Vec2f::Zero()), len(0.0), origin_entity(nullptr) {} ExtrusionLine::ExtrusionLine(const Vec2f &a, const Vec2f &b, float len, const ExtrusionEntity *origin_entity) : a(a), b(b), len(len), origin_entity(origin_entity) {} ExtrusionLine::ExtrusionLine(const Vec2f &a, const Vec2f &b) : a(a), b(b), len((a-b).norm()), origin_entity(nullptr) {} bool ExtrusionLine::is_external_perimeter() const { assert(origin_entity != nullptr); return origin_entity->role().is_external_perimeter(); } using LD = AABBTreeLines::LinesDistancer; struct SupportGridFilter { private: Vec3f cell_size; Vec3f origin; Vec3f size; Vec3i cell_count; std::unordered_set taken_cells{}; public: SupportGridFilter(const PrintObject *po, float voxel_size) { cell_size = Vec3f(voxel_size, voxel_size, voxel_size); Vec2crd size_half = po->size().head<2>().cwiseQuotient(Vec2crd(2, 2)) + Vec2crd::Ones(); Vec3f min = unscale(Vec3crd(-size_half.x(), -size_half.y(), 0)).cast() - cell_size; Vec3f max = unscale(Vec3crd(size_half.x(), size_half.y(), po->height())).cast() + cell_size; origin = min; size = max - min; cell_count = size.cwiseQuotient(cell_size).cast() + Vec3i::Ones(); } Vec3i to_cell_coords(const Vec3f &position) const { Vec3i cell_coords = (position - this->origin).cwiseQuotient(this->cell_size).cast(); return cell_coords; } size_t to_cell_index(const Vec3i &cell_coords) const { #ifdef DETAILED_DEBUG_LOGS assert(cell_coords.x() >= 0); assert(cell_coords.x() < cell_count.x()); assert(cell_coords.y() >= 0); assert(cell_coords.y() < cell_count.y()); assert(cell_coords.z() >= 0); assert(cell_coords.z() < cell_count.z()); #endif return cell_coords.z() * cell_count.x() * cell_count.y() + cell_coords.y() * cell_count.x() + cell_coords.x(); } Vec3f get_cell_center(const Vec3i &cell_coords) const { return origin + cell_coords.cast().cwiseProduct(this->cell_size) + this->cell_size.cwiseQuotient(Vec3f(2.0f, 2.0f, 2.0f)); } void take_position(const Vec3f &position) { taken_cells.insert(to_cell_index(to_cell_coords(position))); } bool position_taken(const Vec3f &position) const { return taken_cells.find(to_cell_index(to_cell_coords(position))) != taken_cells.end(); } }; void SliceConnection::add(const SliceConnection &other) { this->area += other.area; this->centroid_accumulator += other.centroid_accumulator; this->second_moment_of_area_accumulator += other.second_moment_of_area_accumulator; this->second_moment_of_area_covariance_accumulator += other.second_moment_of_area_covariance_accumulator; } void SliceConnection::print_info(const std::string &tag) const { Vec3f centroid = centroid_accumulator / area; Vec2f variance = (second_moment_of_area_accumulator / area - centroid.head<2>().cwiseProduct(centroid.head<2>())); float covariance = second_moment_of_area_covariance_accumulator / area - centroid.x() * centroid.y(); std::cout << tag << std::endl; std::cout << "area: " << area << std::endl; std::cout << "centroid: " << centroid.x() << " " << centroid.y() << " " << centroid.z() << std::endl; std::cout << "variance: " << variance.x() << " " << variance.y() << std::endl; std::cout << "covariance: " << covariance << std::endl; } Integrals::Integrals(const Polygon &polygon) { if (polygon.points.size() < 3) { assert(false && "Polygon is expected to have non-zero area!"); *this = Integrals{}; return; } Vec2f p0 = unscaled(polygon.first_point()).cast(); for (size_t i = 2; i < polygon.points.size(); i++) { Vec2f p1 = unscaled(polygon.points[i - 1]).cast(); Vec2f p2 = unscaled(polygon.points[i]).cast(); float sign = cross2(p1 - p0, p2 - p1) > 0 ? 1.0f : -1.0f; auto [area, first_moment_of_area, second_moment_area, second_moment_of_area_covariance] = compute_moments_of_area_of_triangle(p0, p1, p2); this->area += sign * area; this->x_i += sign * first_moment_of_area; this->x_i_squared += sign * second_moment_area; this->xy += sign * second_moment_of_area_covariance; } } Integrals::Integrals(const Polygons &polygons) { for (const Polygon &polygon : polygons) { *this = *this + Integrals{polygon}; } } Integrals::Integrals(const Polylines& polylines, const std::vector& widths) { assert(polylines.size() == widths.size()); for (size_t i = 0; i < polylines.size(); ++i) { Lines polyline{polylines[i].lines()}; float width{widths[i]}; for (const Line& line : polyline) { Vec2f line_direction = unscaled(line.vector()).cast(); Vec2f normal{line_direction.y(), -line_direction.x()}; normal.normalize(); Vec2f line_a = unscaled(line.a).cast(); Vec2f line_b = unscaled(line.b).cast(); Vec2crd a = scaled(Vec2f{line_a + normal * width/2}); Vec2crd b = scaled(Vec2f{line_b + normal * width/2}); Vec2crd c = scaled(Vec2f{line_b - normal * width/2}); Vec2crd d = scaled(Vec2f{line_a - normal * width/2}); const Polygon ractangle({a, b, c, d}); Integrals integrals{ractangle}; *this = *this + integrals; } } } Integrals::Integrals(float area, Vec2f x_i, Vec2f x_i_squared, float xy) : area(area), x_i(std::move(x_i)), x_i_squared(std::move(x_i_squared)), xy(xy) {} Integrals operator+(const Integrals &a, const Integrals &b) { return Integrals{a.area + b.area, a.x_i + b.x_i, a.x_i_squared + b.x_i_squared, a.xy + b.xy}; } SliceConnection estimate_slice_connection(size_t slice_idx, const Layer *layer) { SliceConnection connection; const LayerSlice &slice = layer->lslices_ex[slice_idx]; Polygons slice_polys = to_polygons(layer->lslices[slice_idx]); BoundingBox slice_bb = get_extents(slice_polys); const Layer *lower_layer = layer->lower_layer; std::unordered_set linked_slices_below; for (const auto &link : slice.overlaps_below) { linked_slices_below.insert(link.slice_idx); } ExPolygons below{}; for (const auto &linked_slice_idx_below : linked_slices_below) { below.push_back(lower_layer->lslices[linked_slice_idx_below]); } Polygons below_polys = to_polygons(below); BoundingBox below_bb = get_extents(below_polys); Polygons overlap = intersection(ClipperUtils::clip_clipper_polygons_with_subject_bbox(slice_polys, below_bb), ClipperUtils::clip_clipper_polygons_with_subject_bbox(below_polys, slice_bb)); const Integrals integrals{overlap}; connection.area += integrals.area; connection.centroid_accumulator += Vec3f(integrals.x_i.x(), integrals.x_i.y(), layer->print_z * integrals.area); connection.second_moment_of_area_accumulator += integrals.x_i_squared; connection.second_moment_of_area_covariance_accumulator += integrals.xy; return connection; }; using PrecomputedSliceConnections = std::vector>; PrecomputedSliceConnections precompute_slices_connections(const PrintObject *po) { PrecomputedSliceConnections result{}; for (size_t lidx = 0; lidx < po->layer_count(); lidx++) { result.emplace_back(std::vector{}); for (size_t slice_idx = 0; slice_idx < po->get_layer(lidx)->lslices_ex.size(); slice_idx++) { result[lidx].push_back(SliceConnection{}); } } tbb::parallel_for(tbb::blocked_range(0, po->layers().size()), [po, &result](tbb::blocked_range r) { for (size_t lidx = r.begin(); lidx < r.end(); lidx++) { const Layer *l = po->get_layer(lidx); tbb::parallel_for(tbb::blocked_range(0, l->lslices_ex.size()), [lidx, l, &result](tbb::blocked_range r2) { for (size_t slice_idx = r2.begin(); slice_idx < r2.end(); slice_idx++) { result[lidx][slice_idx] = estimate_slice_connection(slice_idx, l); } }); } }); return result; }; float get_flow_width(const LayerRegion *region, ExtrusionRole role) { if (role == ExtrusionRole::BridgeInfill) return region->flow(FlowRole::frExternalPerimeter).width(); if (role == ExtrusionRole::ExternalPerimeter) return region->flow(FlowRole::frExternalPerimeter).width(); if (role == ExtrusionRole::GapFill) return region->flow(FlowRole::frInfill).width(); if (role == ExtrusionRole::Perimeter) return region->flow(FlowRole::frPerimeter).width(); if (role == ExtrusionRole::SolidInfill) return region->flow(FlowRole::frSolidInfill).width(); if (role == ExtrusionRole::InternalInfill) return region->flow(FlowRole::frInfill).width(); if (role == ExtrusionRole::TopSolidInfill) return region->flow(FlowRole::frTopSolidInfill).width(); // default return region->flow(FlowRole::frPerimeter).width(); } float estimate_curled_up_height( float distance, float curvature, float layer_height, float flow_width, float prev_line_curled_height, Params params) { float curled_up_height = 0; if (fabs(distance) < 3.0 * flow_width) { curled_up_height = std::max(prev_line_curled_height - layer_height * 0.75f, 0.0f); } if (distance > params.malformation_distance_factors.first * flow_width && distance < params.malformation_distance_factors.second * flow_width) { // imagine the extrusion profile. The part that has been glued (melted) with the previous layer will be called anchored section // and the rest will be called curling section // float anchored_section = flow_width - point.distance; float curling_section = distance; // after extruding, the curling (floating) part of the extrusion starts to shrink back to the rounded shape of the nozzle // The anchored part not, because the melted material holds to the previous layer well. // We can assume for simplicity perfect equalization of layer height and raising part width, from which: float swelling_radius = (layer_height + curling_section) / 2.0f; curled_up_height += std::max(0.f, (swelling_radius - layer_height) / 2.0f); // On convex turns, there is larger tension on the floating edge of the extrusion then on the middle section. // The tension is caused by the shrinking tendency of the filament, and on outer edge of convex trun, the expansion is greater and // thus shrinking force is greater. This tension will cause the curling section to curle up if (curvature > 0.01) { float radius = (1.0 / curvature); float curling_t = sqrt(radius / 100); float b = curling_t * flow_width; float a = curling_section; float c = sqrt(std::max(0.0f, a * a - b * b)); curled_up_height += c; } curled_up_height = std::min(curled_up_height, params.max_curled_height_factor * layer_height); } return curled_up_height; } std::vector check_extrusion_entity_stability(const ExtrusionEntity *entity, const LayerRegion *layer_region, const LD &prev_layer_lines, const AABBTreeLines::LinesDistancer &prev_layer_boundary, const Params ¶ms) { assert(!entity->is_collection()); if (entity->role().is_bridge() && !entity->role().is_perimeter()) { // pure bridges are handled separately, beacuse we need to align the forward and backward direction support points if (entity->length() < scale_(params.min_distance_to_allow_local_supports)) { return {}; } const float flow_width = get_flow_width(layer_region, entity->role()); std::vector annotated_points = ExtrusionProcessor::estimate_points_properties(entity->as_polyline().points, prev_layer_boundary, flow_width, params.bridge_distance); std::vector lines_out; lines_out.reserve(annotated_points.size()); float bridged_distance = 0.0f; std::optional bridging_dir{}; for (size_t i = 0; i < annotated_points.size(); ++i) { ExtrusionProcessor::ExtendedPoint &curr_point = annotated_points[i]; const ExtrusionProcessor::ExtendedPoint &prev_point = i > 0 ? annotated_points[i - 1] : annotated_points[i]; SupportPointCause potential_cause = std::abs(curr_point.curvature) > 0.1 ? SupportPointCause::FloatingBridgeAnchor : SupportPointCause::LongBridge; float line_len = (prev_point.position - curr_point.position).norm(); Vec2d line_dir = line_len > EPSILON ? Vec2d((curr_point.position - prev_point.position) / double(line_len)) : Vec2d::Zero(); ExtrusionLine line_out{prev_point.position.cast(), curr_point.position.cast(), line_len, entity}; float max_bridge_len = std::max(params.support_points_interface_radius * 2.0f, params.bridge_distance / ((1.0f + std::abs(curr_point.curvature)) * (1.0f + std::abs(curr_point.curvature)) * (1.0f + std::abs(curr_point.curvature)))); if (!bridging_dir.has_value() && curr_point.distance > flow_width && line_len > params.bridge_distance * 0.6) { bridging_dir = line_dir; } if (curr_point.distance > flow_width && potential_cause == SupportPointCause::LongBridge && bridging_dir.has_value() && bridging_dir->dot(line_dir) < 0.8) { // skip backward direction of bridge - supported by forward points enough bridged_distance += line_len; } else if (curr_point.distance > flow_width) { bridged_distance += line_len; if (bridged_distance > max_bridge_len) { bridged_distance = 0.0f; line_out.support_point_generated = potential_cause; } } else { bridged_distance = 0.0f; } lines_out.push_back(line_out); } return lines_out; } else { // single extrusion path, with possible varying parameters if (entity->length() < scale_(params.min_distance_to_allow_local_supports)) { return {}; } const float flow_width = get_flow_width(layer_region, entity->role()); // Compute only unsigned distance - prev_layer_lines can contain unconnected paths, thus the sign of the distance is unreliable std::vector annotated_points = ExtrusionProcessor::estimate_points_properties(entity->as_polyline().points, prev_layer_lines, flow_width, params.bridge_distance); std::vector lines_out; lines_out.reserve(annotated_points.size()); float bridged_distance = annotated_points.front().position != annotated_points.back().position ? (params.bridge_distance + 1.0f) : 0.0f; for (size_t i = 0; i < annotated_points.size(); ++i) { ExtrusionProcessor::ExtendedPoint &curr_point = annotated_points[i]; const ExtrusionProcessor::ExtendedPoint &prev_point = i > 0 ? annotated_points[i - 1] : annotated_points[i]; float line_len = (prev_point.position - curr_point.position).norm(); ExtrusionLine line_out{prev_point.position.cast(), curr_point.position.cast(), line_len, entity}; Vec2f middle = 0.5 * (line_out.a + line_out.b); auto [middle_distance, bottom_line_idx, x] = prev_layer_lines.distance_from_lines_extra(middle); ExtrusionLine bottom_line = prev_layer_lines.get_lines().empty() ? ExtrusionLine{} : prev_layer_lines.get_line(bottom_line_idx); // correctify the distance sign using slice polygons float sign = (prev_layer_boundary.distance_from_lines(curr_point.position) + 0.5f * flow_width) < 0.0f ? -1.0f : 1.0f; curr_point.distance *= sign; SupportPointCause potential_cause = SupportPointCause::FloatingExtrusion; // Bridges are now separated. While long overhang perimeter is technically bridge, it would confuse the users // if (bridged_distance + line_len > params.bridge_distance * 0.8 && std::abs(curr_point.curvature) < 0.1) { // potential_cause = SupportPointCause::FloatingExtrusion; // } float max_bridge_len = std::max(params.support_points_interface_radius * 2.0f, params.bridge_distance / ((1.0f + std::abs(curr_point.curvature)) * (1.0f + std::abs(curr_point.curvature)) * (1.0f + std::abs(curr_point.curvature)))); if (curr_point.distance > 1.2f * flow_width) { line_out.form_quality = 0.8f; bridged_distance += line_len; if (bridged_distance > max_bridge_len) { line_out.support_point_generated = potential_cause; bridged_distance = 0.0f; } } else if (curr_point.distance > flow_width * 0.8f) { bridged_distance += line_len; line_out.form_quality = bottom_line.form_quality - 0.3f; if (line_out.form_quality < 0 && bridged_distance > max_bridge_len) { line_out.support_point_generated = potential_cause; line_out.form_quality = 0.5f; bridged_distance = 0.0f; } } else { bridged_distance = 0.0f; } line_out.curled_up_height = estimate_curled_up_height(middle_distance, 0.5 * (prev_point.curvature + curr_point.curvature), layer_region->layer()->height, flow_width, bottom_line.curled_up_height, params); lines_out.push_back(line_out); } return lines_out; } } /** * Calculates the second moment of area over an arbitrary polygon. * * Important note: The calculated moment is for an axis with origin at * the polygon centroid! * * @param integrals Integrals over the polygon area. * @param axis_direction Direction of the rotation axis going through centroid. */ float compute_second_moment( const Integrals& integrals, const Vec2f& axis_direction ) { // Second moment of area for any axis intersecting coordinate system origin // can be evaluated using the second moments of area calculated for the coordinate // system axis and the moment product (int xy). // The equation is derived appling known formulas for the moment of inertia // to a plannar problem. One can reason about second moment // of area by by setting density to 1 in the moment of inertia formulas. const auto area = integrals.area; const auto I_xx = integrals.x_i_squared.y(); const auto I_yy = integrals.x_i_squared.x(); const auto I_xy = -integrals.xy; const Vec2f centroid = integrals.x_i / area; Matrix2f moment_tensor{}; moment_tensor << I_xx, I_xy, I_xy, I_yy; const float moment_at_0_0 = axis_direction.transpose() * moment_tensor * axis_direction; // Apply parallel axis theorem to move the moment to centroid using line_alg::distance_to_infinite_squared; const Linef axis_at_0_0 = {{0, 0}, axis_direction.cast()}; const double distance = distance_to_infinite_squared(axis_at_0_0, centroid.cast()); return moment_at_0_0 - area * distance; } ObjectPart::ObjectPart( const std::vector& extrusion_collections, const bool connected_to_bed, const coordf_t print_head_z, const coordf_t layer_height, const std::optional& brim ) { if (connected_to_bed) { this->connected_to_bed = true; } const auto bottom_z = print_head_z - layer_height; const auto center_z = print_head_z - layer_height / 2; for (const ExtrusionEntityCollection* collection : extrusion_collections) { if (collection->empty()) { continue; } for (const ExtrusionEntity* entity: collection->flatten()) { Polylines polylines; std::vector widths; if ( const auto* path = dynamic_cast(entity); path != nullptr ) { polylines.push_back(path->as_polyline()); widths.push_back(path->width()); } else if ( const auto* loop = dynamic_cast(entity); loop != nullptr ) { for (const ExtrusionPath& path : loop->paths) { polylines.push_back(path.as_polyline()); widths.push_back(path.width()); } } else if ( const auto* multi_path = dynamic_cast(entity); multi_path != nullptr ) { for (const ExtrusionPath& path : multi_path->paths) { polylines.push_back(path.as_polyline()); widths.push_back(path.width()); } } else { throw std::runtime_error( "Failed to construct object part from extrusions!" " Unknown extrusion type." ); } const Integrals integrals{polylines, widths}; const float volume = integrals.area * layer_height; this->volume += volume; this->volume_centroid_accumulator += to_3d(integrals.x_i, center_z * integrals.area) / integrals.area * volume; if (this->connected_to_bed) { this->sticking_area += integrals.area; this->sticking_centroid_accumulator += to_3d(integrals.x_i, bottom_z * integrals.area); this->sticking_second_moment_of_area_accumulator += integrals.x_i_squared; this->sticking_second_moment_of_area_covariance_accumulator += integrals.xy; } } } if (brim) { Integrals integrals{*brim}; this->sticking_area += integrals.area; this->sticking_centroid_accumulator += to_3d(integrals.x_i, bottom_z * integrals.area); this->sticking_second_moment_of_area_accumulator += integrals.x_i_squared; this->sticking_second_moment_of_area_covariance_accumulator += integrals.xy; } } void ObjectPart::add(const ObjectPart &other) { this->connected_to_bed = this->connected_to_bed || other.connected_to_bed; this->volume_centroid_accumulator += other.volume_centroid_accumulator; this->volume += other.volume; this->sticking_area += other.sticking_area; this->sticking_centroid_accumulator += other.sticking_centroid_accumulator; this->sticking_second_moment_of_area_accumulator += other.sticking_second_moment_of_area_accumulator; this->sticking_second_moment_of_area_covariance_accumulator += other.sticking_second_moment_of_area_covariance_accumulator; } void ObjectPart::add_support_point(const Vec3f &position, float sticking_area) { this->sticking_area += sticking_area; this->sticking_centroid_accumulator += sticking_area * position; this->sticking_second_moment_of_area_accumulator += sticking_area * position.head<2>().cwiseProduct(position.head<2>()); this->sticking_second_moment_of_area_covariance_accumulator += sticking_area * position.x() * position.y(); } float ObjectPart::compute_elastic_section_modulus( const Vec2f &line_dir, const Vec3f &extreme_point, const Integrals& integrals ) const { float second_moment_of_area = compute_second_moment(integrals, Vec2f{-line_dir.y(), line_dir.x()}); if (second_moment_of_area < EPSILON) { return 0.0f; } Vec2f centroid = integrals.x_i / integrals.area; float extreme_fiber_dist = line_alg::distance_to(Linef(centroid.head<2>().cast(), (centroid.head<2>() + Vec2f(line_dir.y(), -line_dir.x())).cast()), extreme_point.head<2>().cast()); float elastic_section_modulus = second_moment_of_area / extreme_fiber_dist; #ifdef DETAILED_DEBUG_LOGS BOOST_LOG_TRIVIAL(debug) << "extreme_fiber_dist: " << extreme_fiber_dist; BOOST_LOG_TRIVIAL(debug) << "elastic_section_modulus: " << elastic_section_modulus; #endif return elastic_section_modulus; } std::tuple ObjectPart::is_stable_while_extruding(const SliceConnection &connection, const ExtrusionLine &extruded_line, const Vec3f &extreme_point, float layer_z, const Params ¶ms) const { // Note that exteme point is calculated for the current layer, while it should // be computed for the first layer. The shape of the first layer however changes a lot, // during support points additions (for organic supports it is not even clear how) // and during merging. Using the current layer is heuristics and also small optimization, // as the AABB tree for it is calculated anyways. This heuristic should usually be // on the safe side. Vec2f line_dir = (extruded_line.b - extruded_line.a).normalized(); const Vec3f &mass_centroid = this->volume_centroid_accumulator / this->volume; float mass = this->volume * params.filament_density; float weight = mass * params.gravity_constant; float movement_force = params.max_acceleration * mass; float extruder_conflict_force = params.standard_extruder_conflict_force + std::min(extruded_line.curled_up_height, 1.0f) * params.malformations_additive_conflict_extruder_force; // section for bed calculations { if (this->sticking_area < EPSILON) return {1.0f, SupportPointCause::UnstableFloatingPart}; Integrals integrals; integrals.area = this->sticking_area; integrals.x_i = this->sticking_centroid_accumulator.head<2>(); integrals.x_i_squared = this->sticking_second_moment_of_area_accumulator; integrals.xy = this->sticking_second_moment_of_area_covariance_accumulator; Vec3f bed_centroid = this->sticking_centroid_accumulator / this->sticking_area; float bed_yield_torque = -compute_elastic_section_modulus(line_dir, extreme_point, integrals) * params.get_bed_adhesion_yield_strength(); Vec2f bed_weight_arm = (mass_centroid.head<2>() - bed_centroid.head<2>()); float bed_weight_arm_len = bed_weight_arm.norm(); float bed_weight_dir_xy_variance = compute_second_moment(integrals, {-bed_weight_arm.y(), bed_weight_arm.x()}) / this->sticking_area; float bed_weight_sign = bed_weight_arm_len < 2.0f * sqrt(bed_weight_dir_xy_variance) ? -1.0f : 1.0f; float bed_weight_torque = bed_weight_sign * bed_weight_arm_len * weight; float bed_movement_arm = std::max(0.0f, mass_centroid.z() - bed_centroid.z()); float bed_movement_torque = movement_force * bed_movement_arm; float bed_conflict_torque_arm = layer_z - bed_centroid.z(); float bed_extruder_conflict_torque = extruder_conflict_force * bed_conflict_torque_arm; float bed_total_torque = bed_movement_torque + bed_extruder_conflict_torque + bed_weight_torque + bed_yield_torque; #ifdef DETAILED_DEBUG_LOGS BOOST_LOG_TRIVIAL(debug) << "bed_centroid: " << bed_centroid.x() << " " << bed_centroid.y() << " " << bed_centroid.z(); BOOST_LOG_TRIVIAL(debug) << "SSG: bed_yield_torque: " << bed_yield_torque; BOOST_LOG_TRIVIAL(debug) << "SSG: bed_weight_arm: " << bed_weight_arm_len; BOOST_LOG_TRIVIAL(debug) << "SSG: bed_weight_torque: " << bed_weight_torque; BOOST_LOG_TRIVIAL(debug) << "SSG: bed_movement_arm: " << bed_movement_arm; BOOST_LOG_TRIVIAL(debug) << "SSG: bed_movement_torque: " << bed_movement_torque; BOOST_LOG_TRIVIAL(debug) << "SSG: bed_conflict_torque_arm: " << bed_conflict_torque_arm; BOOST_LOG_TRIVIAL(debug) << "SSG: extruded_line.curled_up_height: " << extruded_line.curled_up_height; BOOST_LOG_TRIVIAL(debug) << "SSG: extruded_line.form_quality: " << extruded_line.form_quality; BOOST_LOG_TRIVIAL(debug) << "SSG: extruder_conflict_force: " << extruder_conflict_force; BOOST_LOG_TRIVIAL(debug) << "SSG: bed_extruder_conflict_torque: " << bed_extruder_conflict_torque; BOOST_LOG_TRIVIAL(debug) << "SSG: total_torque: " << bed_total_torque << " layer_z: " << layer_z; #endif if (bed_total_torque > 0) { return {bed_total_torque / bed_conflict_torque_arm, (this->connected_to_bed ? SupportPointCause::SeparationFromBed : SupportPointCause::UnstableFloatingPart)}; } } // section for weak connection calculations { if (connection.area < EPSILON) return {1.0f, SupportPointCause::UnstableFloatingPart}; Vec3f conn_centroid = connection.centroid_accumulator / connection.area; if (layer_z - conn_centroid.z() < 3.0f) { return {-1.0f, SupportPointCause::WeakObjectPart}; } Integrals integrals; integrals.area = connection.area; integrals.x_i = connection.centroid_accumulator.head<2>(); integrals.x_i_squared = connection.second_moment_of_area_accumulator; integrals.xy = connection.second_moment_of_area_covariance_accumulator; float conn_yield_torque = compute_elastic_section_modulus(line_dir, extreme_point, integrals) * params.material_yield_strength; float conn_weight_arm = (conn_centroid.head<2>() - mass_centroid.head<2>()).norm(); if (layer_z - conn_centroid.z() < 30.0) { conn_weight_arm = 0.0f; // Given that we do not have very good info about the weight distribution between the connection and current layer, // do not consider the weight until quite far away from the weak connection segment } float conn_weight_torque = conn_weight_arm * weight * (1.0f - conn_centroid.z() / layer_z) * (1.0f - conn_centroid.z() / layer_z); float conn_movement_arm = std::max(0.0f, mass_centroid.z() - conn_centroid.z()); float conn_movement_torque = movement_force * conn_movement_arm; float conn_conflict_torque_arm = layer_z - conn_centroid.z(); float conn_extruder_conflict_torque = extruder_conflict_force * conn_conflict_torque_arm; float conn_total_torque = conn_movement_torque + conn_extruder_conflict_torque + conn_weight_torque - conn_yield_torque; #ifdef DETAILED_DEBUG_LOGS BOOST_LOG_TRIVIAL(debug) << "conn_centroid: " << conn_centroid.x() << " " << conn_centroid.y() << " " << conn_centroid.z(); BOOST_LOG_TRIVIAL(debug) << "SSG: conn_yield_torque: " << conn_yield_torque; BOOST_LOG_TRIVIAL(debug) << "SSG: conn_weight_arm: " << conn_weight_arm; BOOST_LOG_TRIVIAL(debug) << "SSG: conn_weight_torque: " << conn_weight_torque; BOOST_LOG_TRIVIAL(debug) << "SSG: conn_movement_arm: " << conn_movement_arm; BOOST_LOG_TRIVIAL(debug) << "SSG: conn_movement_torque: " << conn_movement_torque; BOOST_LOG_TRIVIAL(debug) << "SSG: conn_conflict_torque_arm: " << conn_conflict_torque_arm; BOOST_LOG_TRIVIAL(debug) << "SSG: conn_extruder_conflict_torque: " << conn_extruder_conflict_torque; BOOST_LOG_TRIVIAL(debug) << "SSG: total_torque: " << conn_total_torque << " layer_z: " << layer_z; #endif return {conn_total_torque / conn_conflict_torque_arm, SupportPointCause::WeakObjectPart}; } } std::vector gather_extrusions(const LayerSlice& slice, const Layer* layer) { // TODO reserve might be good, benchmark std::vector result; for (const auto &island : slice.islands) { const LayerRegion *perimeter_region = layer->get_region(island.perimeters.region()); for (size_t perimeter_idx : island.perimeters) { auto collection = static_cast( perimeter_region->perimeters().entities[perimeter_idx] ); result.push_back(collection); } for (const LayerExtrusionRange &fill_range : island.fills) { const LayerRegion *fill_region = layer->get_region(fill_range.region()); for (size_t fill_idx : fill_range) { auto collection = static_cast( fill_region->fills().entities[fill_idx] ); result.push_back(collection); } } const ExtrusionEntityCollection& collection = perimeter_region->thin_fills(); result.push_back(&collection); } return result; } bool has_brim(const Layer* layer, const Params& params){ return int(layer->id()) == params.raft_layers_count && params.raft_layers_count == 0 && params.brim_type != BrimType::btNoBrim && params.brim_width > 0.0; } Polygons get_brim(const ExPolygon& slice_polygon, const BrimType brim_type, const float brim_width) { // TODO: The algorithm here should take into account that multiple slices may // have coliding Brim areas and the final brim area is smaller, // thus has lower adhesion. For now this effect will be neglected. ExPolygons brim; if (brim_type == BrimType::btOuterAndInner || brim_type == BrimType::btOuterOnly) { Polygon brim_hole = slice_polygon.contour; brim_hole.reverse(); Polygons c = expand(slice_polygon.contour, scale_(brim_width)); // For very small polygons, the expand may result in empty vector, even thought the input is correct. if (!c.empty()) { brim.push_back(ExPolygon{c.front(), brim_hole}); } } if (brim_type == BrimType::btOuterAndInner || brim_type == BrimType::btInnerOnly) { Polygons brim_contours = slice_polygon.holes; polygons_reverse(brim_contours); for (const Polygon &brim_contour : brim_contours) { Polygons brim_holes = shrink({brim_contour}, scale_(brim_width)); polygons_reverse(brim_holes); ExPolygon inner_brim{brim_contour}; inner_brim.holes = brim_holes; brim.push_back(inner_brim); } } return to_polygons(brim); } class ActiveObjectParts { size_t next_part_idx = 0; std::unordered_map active_object_parts; std::unordered_map active_object_parts_id_mapping; public: size_t get_flat_id(size_t id) { size_t index = active_object_parts_id_mapping.at(id); while (index != active_object_parts_id_mapping.at(index)) { index = active_object_parts_id_mapping.at(index); } size_t i = id; while (index != active_object_parts_id_mapping.at(i)) { size_t next = active_object_parts_id_mapping[i]; active_object_parts_id_mapping[i] = index; i = next; } return index; } ObjectPart &access(size_t id) { return this->active_object_parts.at(this->get_flat_id(id)); } size_t insert(const ObjectPart &new_part) { this->active_object_parts.emplace(next_part_idx, new_part); this->active_object_parts_id_mapping.emplace(next_part_idx, next_part_idx); return next_part_idx++; } void merge(size_t from, size_t to) { size_t to_flat = this->get_flat_id(to); size_t from_flat = this->get_flat_id(from); active_object_parts.at(to_flat).add(active_object_parts.at(from_flat)); active_object_parts.erase(from_flat); active_object_parts_id_mapping[from] = to_flat; } }; // Function that is used when new support point is generated. It will update the ObjectPart stability, weakest conneciton info, // and the support presence grid and add the point to the issues. void reckon_new_support_point(ObjectPart &part, SliceConnection &weakest_conn, SupportPoints &supp_points, SupportGridFilter &supports_presence_grid, const SupportPoint& support_point, bool is_global = false) { // if position is taken and point is for global stability (force > 0) or we are too close to the bed, do not add // This allows local support points (e.g. bridging) to be generated densely if ((supports_presence_grid.position_taken(support_point.position) && is_global)) { return; } float area = support_point.spot_radius * support_point.spot_radius * float(PI); // add the stability effect of the point only if the spot is not taken, so that the densely created local support points do // not add unrealistic amount of stability to the object (due to overlaping of local support points) if (!(supports_presence_grid.position_taken(support_point.position))) { part.add_support_point(support_point.position, area); } supp_points.push_back(support_point); supports_presence_grid.take_position(support_point.position); // The support point also increases the stability of the weakest connection of the object, which should be reflected if (weakest_conn.area > EPSILON) { // Do not add it to the weakest connection if it is not valid - does not exist weakest_conn.area += area; weakest_conn.centroid_accumulator += support_point.position * area; weakest_conn.second_moment_of_area_accumulator += area * support_point.position.head<2>().cwiseProduct(support_point.position.head<2>()); weakest_conn.second_moment_of_area_covariance_accumulator += area * support_point.position.x() * support_point.position.y(); } } struct LocalSupports { std::vector> unstable_lines_per_slice; std::vector> ext_perim_lines_per_slice; }; struct EnitityToCheck { const ExtrusionEntity *e; const LayerRegion *region; size_t slice_idx; }; // TODO DRY: Very similar to gather extrusions. std::vector gather_entities_to_check(const Layer* layer) { auto get_flat_entities = [](const ExtrusionEntity *e) { std::vector entities; std::vector queue{e}; while (!queue.empty()) { const ExtrusionEntity *next = queue.back(); queue.pop_back(); if (next->is_collection()) { for (const ExtrusionEntity *e : static_cast(next)->entities) { queue.push_back(e); } } else { entities.push_back(next); } } return entities; }; std::vector entities_to_check; for (size_t slice_idx = 0; slice_idx < layer->lslices_ex.size(); ++slice_idx) { const LayerSlice &slice = layer->lslices_ex.at(slice_idx); for (const auto &island : slice.islands) { for (const LayerExtrusionRange &fill_range : island.fills) { const LayerRegion *fill_region = layer->get_region(fill_range.region()); for (size_t fill_idx : fill_range) { for (const ExtrusionEntity *e : get_flat_entities(fill_region->fills().entities[fill_idx])) { if (e->role() == ExtrusionRole::BridgeInfill) { entities_to_check.push_back({e, fill_region, slice_idx}); } } } } const LayerRegion *perimeter_region = layer->get_region(island.perimeters.region()); for (size_t perimeter_idx : island.perimeters) { for (const ExtrusionEntity *e : get_flat_entities(perimeter_region->perimeters().entities[perimeter_idx])) { entities_to_check.push_back({e, perimeter_region, slice_idx}); } } } } return entities_to_check; } LocalSupports compute_local_supports( const std::vector& entities_to_check, const std::optional& previous_layer_boundary, const LD& prev_layer_ext_perim_lines, size_t slices_count, const Params& params ) { std::vector> unstable_lines_per_slice(slices_count); std::vector> ext_perim_lines_per_slice(slices_count); AABBTreeLines::LinesDistancer prev_layer_boundary_distancer = (previous_layer_boundary ? AABBTreeLines::LinesDistancer{*previous_layer_boundary} : AABBTreeLines::LinesDistancer{}); if constexpr (debug_files) { for (const auto &e_to_check : entities_to_check) { for (const auto &line : check_extrusion_entity_stability(e_to_check.e, e_to_check.region, prev_layer_ext_perim_lines, prev_layer_boundary_distancer, params)) { if (line.support_point_generated.has_value()) { unstable_lines_per_slice[e_to_check.slice_idx].push_back(line); } if (line.is_external_perimeter()) { ext_perim_lines_per_slice[e_to_check.slice_idx].push_back(line); } } } } else { tbb::parallel_for(tbb::blocked_range(0, entities_to_check.size()), [&entities_to_check, &prev_layer_ext_perim_lines, &prev_layer_boundary_distancer, &unstable_lines_per_slice, &ext_perim_lines_per_slice, ¶ms](tbb::blocked_range r) { for (size_t entity_idx = r.begin(); entity_idx < r.end(); ++entity_idx) { const auto &e_to_check = entities_to_check[entity_idx]; for (const auto &line : check_extrusion_entity_stability(e_to_check.e, e_to_check.region, prev_layer_ext_perim_lines, prev_layer_boundary_distancer, params)) { if (line.support_point_generated.has_value()) { unstable_lines_per_slice[e_to_check.slice_idx].push_back(line); } if (line.is_external_perimeter()) { ext_perim_lines_per_slice[e_to_check.slice_idx].push_back(line); } } } }); } return {unstable_lines_per_slice, ext_perim_lines_per_slice}; } struct SliceMappings { std::unordered_map index_to_object_part_mapping; std::unordered_map index_to_weakest_connection; }; std::optional to_partial_object(const ObjectPart& part) { if (part.volume > EPSILON) { return PartialObject{part.volume_centroid_accumulator / part.volume, part.volume, part.connected_to_bed}; } return {}; } SliceMappings update_active_object_parts(const Layer *layer, const Params ¶ms, const std::vector &precomputed_slice_connections, const SliceMappings &previous_slice_mappings, ActiveObjectParts &active_object_parts, PartialObjects &partial_objects) { SliceMappings new_slice_mappings; for (size_t slice_idx = 0; slice_idx < layer->lslices_ex.size(); ++slice_idx) { const LayerSlice &slice = layer->lslices_ex.at(slice_idx); const std::vector extrusion_collections{gather_extrusions(slice, layer)}; const bool connected_to_bed = int(layer->id()) == params.raft_layers_count; const std::optional brim{ has_brim(layer, params) ? std::optional{get_brim(layer->lslices[slice_idx], params.brim_type, params.brim_width)} : std::nullopt }; ObjectPart new_part{ extrusion_collections, connected_to_bed, layer->print_z, layer->height, brim }; const SliceConnection &connection_to_below = precomputed_slice_connections[slice_idx]; #ifdef DETAILED_DEBUG_LOGS std::cout << "SLICE IDX: " << slice_idx << std::endl; for (const auto &link : slice.overlaps_below) { std::cout << "connected to slice below: " << link.slice_idx << " by area : " << link.area << std::endl; } connection_to_below.print_info("CONNECTION TO BELOW"); #endif if (connection_to_below.area < EPSILON) { // new object part emerging size_t part_id = active_object_parts.insert(new_part); new_slice_mappings.index_to_object_part_mapping.emplace(slice_idx, part_id); new_slice_mappings.index_to_weakest_connection.emplace(slice_idx, connection_to_below); } else { size_t final_part_id{}; SliceConnection transfered_weakest_connection{}; // MERGE parts { std::unordered_set parts_ids; for (const auto &link : slice.overlaps_below) { size_t part_id = active_object_parts.get_flat_id(previous_slice_mappings.index_to_object_part_mapping.at(link.slice_idx)); parts_ids.insert(part_id); transfered_weakest_connection.add(previous_slice_mappings.index_to_weakest_connection.at(link.slice_idx)); } final_part_id = *parts_ids.begin(); for (size_t part_id : parts_ids) { if (final_part_id != part_id) { auto object_part = active_object_parts.access(part_id); if (auto object = to_partial_object(object_part)) { partial_objects.push_back(std::move(*object)); } active_object_parts.merge(part_id, final_part_id); } } } const float bottom_z = layer->bottom_z(); auto estimate_conn_strength = [bottom_z](const SliceConnection &conn) { if (conn.area < EPSILON) { // connection is empty, does not exists. Return max strength so that it is not picked as the // weakest connection. return INFINITY; } Vec3f centroid = conn.centroid_accumulator / conn.area; Vec2f variance = (conn.second_moment_of_area_accumulator / conn.area - centroid.head<2>().cwiseProduct(centroid.head<2>())); float xy_variance = variance.x() + variance.y(); float arm_len_estimate = std::max(1.0f, bottom_z - (conn.centroid_accumulator.z() / conn.area)); return conn.area * sqrt(xy_variance) / arm_len_estimate; }; #ifdef DETAILED_DEBUG_LOGS connection_to_below.print_info("new_weakest_connection"); transfered_weakest_connection.print_info("transfered_weakest_connection"); #endif if (estimate_conn_strength(transfered_weakest_connection) > estimate_conn_strength(connection_to_below)) { transfered_weakest_connection = connection_to_below; } new_slice_mappings.index_to_weakest_connection.emplace(slice_idx, transfered_weakest_connection); new_slice_mappings.index_to_object_part_mapping.emplace(slice_idx, final_part_id); ObjectPart &part = active_object_parts.access(final_part_id); part.add(new_part); } } return new_slice_mappings; } void reckon_global_supports(const tbb::concurrent_vector &external_perimeter_lines, const coordf_t layer_bottom_z, const Params ¶ms, ObjectPart &part, SliceConnection &weakest_connection, SupportPoints &supp_points, SupportGridFilter &supports_presence_grid) { LD current_slice_lines_distancer({external_perimeter_lines.begin(), external_perimeter_lines.end()}); float unchecked_dist = params.min_distance_between_support_points + 1.0f; for (const ExtrusionLine &line : external_perimeter_lines) { if ((unchecked_dist + line.len < params.min_distance_between_support_points && line.curled_up_height < params.curling_tolerance_limit) || line.len < EPSILON) { unchecked_dist += line.len; } else { unchecked_dist = line.len; Vec2f pivot_site_search_point = Vec2f(line.b + (line.b - line.a).normalized() * 300.0f); auto [dist, nidx, nearest_point] = current_slice_lines_distancer.distance_from_lines_extra(pivot_site_search_point); Vec3f position = to_3d(nearest_point, layer_bottom_z); auto [force, cause] = part.is_stable_while_extruding(weakest_connection, line, position, layer_bottom_z, params); if (force > 0) { SupportPoint support_point{cause, position, params.support_points_interface_radius}; reckon_new_support_point(part, weakest_connection, supp_points, supports_presence_grid, support_point, true); } } } } std::tuple check_stability(const PrintObject *po, const PrecomputedSliceConnections &precomputed_slices_connections, const PrintTryCancel &cancel_func, const Params ¶ms) { SupportPoints supp_points{}; SupportGridFilter supports_presence_grid(po, params.min_distance_between_support_points); ActiveObjectParts active_object_parts{}; PartialObjects partial_objects{}; LD prev_layer_ext_perim_lines; SliceMappings slice_mappings; for (size_t layer_idx = 0; layer_idx < po->layer_count(); ++layer_idx) { cancel_func(); const Layer *layer = po->get_layer(layer_idx); float bottom_z = layer->bottom_z(); slice_mappings = update_active_object_parts(layer, params, precomputed_slices_connections[layer_idx], slice_mappings, active_object_parts, partial_objects); std::optional prev_layer_boundary = layer->lower_layer != nullptr ? std::optional{to_unscaled_linesf(layer->lower_layer->lslices)} : std::nullopt; LocalSupports local_supports{ compute_local_supports(gather_entities_to_check(layer), prev_layer_boundary, prev_layer_ext_perim_lines, layer->lslices_ex.size(), params)}; std::vector current_layer_ext_perims_lines{}; current_layer_ext_perims_lines.reserve(prev_layer_ext_perim_lines.get_lines().size()); // All object parts updated, and for each slice we have coresponding weakest connection. // We can now check each slice and its corresponding weakest connection and object part for stability. for (size_t slice_idx = 0; slice_idx < layer->lslices_ex.size(); ++slice_idx) { ObjectPart &part = active_object_parts.access(slice_mappings.index_to_object_part_mapping[slice_idx]); SliceConnection &weakest_conn = slice_mappings.index_to_weakest_connection[slice_idx]; if (layer_idx > 1) { for (const auto &l : local_supports.unstable_lines_per_slice[slice_idx]) { assert(l.support_point_generated.has_value()); SupportPoint support_point{*l.support_point_generated, to_3d(l.b, bottom_z), params.support_points_interface_radius}; reckon_new_support_point(part, weakest_conn, supp_points, supports_presence_grid, support_point); } } const tbb::concurrent_vector &external_perimeter_lines = local_supports.ext_perim_lines_per_slice[slice_idx]; if (layer_idx > 1) { reckon_global_supports(external_perimeter_lines, bottom_z, params, part, weakest_conn, supp_points, supports_presence_grid); } current_layer_ext_perims_lines.insert(current_layer_ext_perims_lines.end(), external_perimeter_lines.begin(), external_perimeter_lines.end()); } // slice iterations prev_layer_ext_perim_lines = LD(current_layer_ext_perims_lines); } // layer iterations for (const auto& active_obj_pair : slice_mappings.index_to_object_part_mapping) { auto object_part = active_object_parts.access(active_obj_pair.second); if (auto object = to_partial_object(object_part)) { partial_objects.push_back(std::move(*object)); } } return {supp_points, partial_objects}; } #ifdef DEBUG_FILES void debug_export(const SupportPoints& support_points,const PartialObjects& objects, std::string file_name) { Slic3r::CNumericLocalesSetter locales_setter; { FILE *fp = boost::nowide::fopen(debug_out_path((file_name + "_supports.obj").c_str()).c_str(), "w"); if (fp == nullptr) { BOOST_LOG_TRIVIAL(error) << "Debug files: Couldn't open " << file_name << " for writing"; return; } for (size_t i = 0; i < support_points.size(); ++i) { Vec3f color{1.0f, 1.0f, 1.0f}; switch (support_points[i].cause) { case SupportPointCause::FloatingBridgeAnchor: color = {0.863281f, 0.109375f, 0.113281f}; break; //RED case SupportPointCause::LongBridge: color = {0.960938f, 0.90625f, 0.0625f}; break; // YELLOW case SupportPointCause::FloatingExtrusion: color = {0.921875f, 0.515625f, 0.101563f}; break; // ORANGE case SupportPointCause::SeparationFromBed: color = {0.0f, 1.0f, 0.0}; break; // GREEN case SupportPointCause::UnstableFloatingPart: color = {0.105469f, 0.699219f, 0.84375f}; break; // BLUE case SupportPointCause::WeakObjectPart: color = {0.609375f, 0.210938f, 0.621094f}; break; // PURPLE } fprintf(fp, "v %f %f %f %f %f %f\n", support_points[i].position(0), support_points[i].position(1), support_points[i].position(2), color[0], color[1], color[2]); } for (size_t i = 0; i < objects.size(); ++i) { Vec3f color{1.0f, 0.0f, 1.0f}; if (objects[i].connected_to_bed) { color = {1.0f, 0.0f, 0.0f}; } fprintf(fp, "v %f %f %f %f %f %f\n", objects[i].centroid(0), objects[i].centroid(1), objects[i].centroid(2), color[0], color[1], color[2]); } fclose(fp); } } #endif std::tuple full_search(const PrintObject *po, const PrintTryCancel& cancel_func, const Params ¶ms) { auto precomputed_slices_connections = precompute_slices_connections(po); auto results = check_stability(po, precomputed_slices_connections, cancel_func, params); #ifdef DEBUG_FILES auto [supp_points, objects] = results; debug_export(supp_points, objects, "issues"); #endif return results; } void estimate_supports_malformations(SupportLayerPtrs &layers, float flow_width, const Params ¶ms) { #ifdef DEBUG_FILES FILE *debug_file = boost::nowide::fopen(debug_out_path("supports_malformations.obj").c_str(), "w"); FILE *full_file = boost::nowide::fopen(debug_out_path("supports_full.obj").c_str(), "w"); #endif AABBTreeLines::LinesDistancer prev_layer_lines{}; for (SupportLayer *l : layers) { l->curled_lines.clear(); std::vector current_layer_lines; for (const ExtrusionEntity *extrusion : l->support_fills.flatten().entities) { Polyline pl = extrusion->as_polyline(); Polygon pol(pl.points); pol.make_counter_clockwise(); auto annotated_points = ExtrusionProcessor::estimate_points_properties(pol.points, prev_layer_lines, flow_width); for (size_t i = 0; i < annotated_points.size(); ++i) { const ExtrusionProcessor::ExtendedPoint &a = i > 0 ? annotated_points[i - 1] : annotated_points[i]; const ExtrusionProcessor::ExtendedPoint &b = annotated_points[i]; ExtrusionLine line_out{a.position.cast(), b.position.cast(), float((a.position - b.position).norm()), extrusion}; Vec2f middle = 0.5 * (line_out.a + line_out.b); auto [middle_distance, bottom_line_idx, x] = prev_layer_lines.distance_from_lines_extra(middle); ExtrusionLine bottom_line = prev_layer_lines.get_lines().empty() ? ExtrusionLine{} : prev_layer_lines.get_line(bottom_line_idx); Vec2f v1 = (bottom_line.b - bottom_line.a); Vec2f v2 = (a.position.cast() - bottom_line.a); auto d = (v1.x() * v2.y()) - (v1.y() * v2.x()); float sign = (d > 0) ? -1.0f : 1.0f; line_out.curled_up_height = estimate_curled_up_height(middle_distance * sign, 0.5 * (a.curvature + b.curvature), l->height, flow_width, bottom_line.curled_up_height, params); current_layer_lines.push_back(line_out); } } for (const ExtrusionLine &line : current_layer_lines) { if (line.curled_up_height > params.curling_tolerance_limit) { l->curled_lines.push_back(CurledLine{Point::new_scale(line.a), Point::new_scale(line.b), line.curled_up_height}); } } #ifdef DEBUG_FILES for (const ExtrusionLine &line : current_layer_lines) { if (line.curled_up_height > params.curling_tolerance_limit) { Vec3f color = value_to_rgbf(-EPSILON, l->height * params.max_curled_height_factor, line.curled_up_height); fprintf(debug_file, "v %f %f %f %f %f %f\n", line.b[0], line.b[1], l->print_z, color[0], color[1], color[2]); } } for (const ExtrusionLine &line : current_layer_lines) { Vec3f color = value_to_rgbf(-EPSILON, l->height * params.max_curled_height_factor, line.curled_up_height); fprintf(full_file, "v %f %f %f %f %f %f\n", line.b[0], line.b[1], l->print_z, color[0], color[1], color[2]); } #endif prev_layer_lines = LD{current_layer_lines}; } #ifdef DEBUG_FILES fclose(debug_file); fclose(full_file); #endif } void estimate_malformations(LayerPtrs &layers, const Params ¶ms) { #ifdef DEBUG_FILES FILE *debug_file = boost::nowide::fopen(debug_out_path("object_malformations.obj").c_str(), "w"); FILE *full_file = boost::nowide::fopen(debug_out_path("object_full.obj").c_str(), "w"); #endif LD prev_layer_lines{}; for (Layer *l : layers) { l->curled_lines.clear(); std::vector boundary_lines = l->lower_layer != nullptr ? to_unscaled_linesf(l->lower_layer->lslices) : std::vector(); AABBTreeLines::LinesDistancer prev_layer_boundary{std::move(boundary_lines)}; std::vector current_layer_lines; for (const LayerRegion *layer_region : l->regions()) { for (const ExtrusionEntity *extrusion : layer_region->perimeters().flatten().entities) { if (!extrusion->role().is_external_perimeter()) continue; Points extrusion_pts; extrusion->collect_points(extrusion_pts); float flow_width = get_flow_width(layer_region, extrusion->role()); auto annotated_points = ExtrusionProcessor::estimate_points_properties(extrusion_pts, prev_layer_lines, flow_width, params.bridge_distance); for (size_t i = 0; i < annotated_points.size(); ++i) { const ExtrusionProcessor::ExtendedPoint &a = i > 0 ? annotated_points[i - 1] : annotated_points[i]; const ExtrusionProcessor::ExtendedPoint &b = annotated_points[i]; ExtrusionLine line_out{a.position.cast(), b.position.cast(), float((a.position - b.position).norm()), extrusion}; Vec2f middle = 0.5 * (line_out.a + line_out.b); auto [middle_distance, bottom_line_idx, x] = prev_layer_lines.distance_from_lines_extra(middle); ExtrusionLine bottom_line = prev_layer_lines.get_lines().empty() ? ExtrusionLine{} : prev_layer_lines.get_line(bottom_line_idx); // correctify the distance sign using slice polygons float sign = (prev_layer_boundary.distance_from_lines(middle.cast()) + 0.5f * flow_width) < 0.0f ? -1.0f : 1.0f; line_out.curled_up_height = estimate_curled_up_height(middle_distance * sign, 0.5 * (a.curvature + b.curvature), l->height, flow_width, bottom_line.curled_up_height, params); current_layer_lines.push_back(line_out); } } } for (const ExtrusionLine &line : current_layer_lines) { if (line.curled_up_height > params.curling_tolerance_limit) { l->curled_lines.push_back(CurledLine{Point::new_scale(line.a), Point::new_scale(line.b), line.curled_up_height}); } } #ifdef DEBUG_FILES for (const ExtrusionLine &line : current_layer_lines) { if (line.curled_up_height > params.curling_tolerance_limit) { Vec3f color = value_to_rgbf(-EPSILON, l->height * params.max_curled_height_factor, line.curled_up_height); fprintf(debug_file, "v %f %f %f %f %f %f\n", line.b[0], line.b[1], l->print_z, color[0], color[1], color[2]); } } for (const ExtrusionLine &line : current_layer_lines) { Vec3f color = value_to_rgbf(-EPSILON, l->height * params.max_curled_height_factor, line.curled_up_height); fprintf(full_file, "v %f %f %f %f %f %f\n", line.b[0], line.b[1], l->print_z, color[0], color[1], color[2]); } #endif prev_layer_lines = LD{current_layer_lines}; } #ifdef DEBUG_FILES fclose(debug_file); fclose(full_file); #endif } std::vector> gather_issues(const SupportPoints &support_points, PartialObjects &partial_objects) { std::vector> result; // The partial object are most likely sorted from smaller to larger as the print continues, so this should save some sorting time std::reverse(partial_objects.begin(), partial_objects.end()); std::sort(partial_objects.begin(), partial_objects.end(), [](const PartialObject &left, const PartialObject &right) { return left.volume > right.volume; }); // Object may have zero extrusions and thus no partial objects. (e.g. very tiny object) float max_volume_part = partial_objects.empty() ? 0.0f : partial_objects.front().volume; for (const PartialObject &p : partial_objects) { if (p.volume > max_volume_part / 200.0f && !p.connected_to_bed) { result.emplace_back(SupportPointCause::UnstableFloatingPart, true); break; } } // should be detected in previous step // if (!unstable_floating_part_added) { // for (const SupportPoint &sp : support_points) { // if (sp.cause == SupportPointCause::UnstableFloatingPart) { // result.emplace_back(SupportPointCause::UnstableFloatingPart, true); // break; // } // } // } std::vector ext_supp_points{}; ext_supp_points.reserve(support_points.size()); for (const SupportPoint &sp : support_points) { switch (sp.cause) { case SupportPointCause::FloatingBridgeAnchor: case SupportPointCause::FloatingExtrusion: ext_supp_points.push_back(sp); break; default: break; } } auto coord_fn = [&ext_supp_points](size_t idx, size_t dim) { return ext_supp_points[idx].position[dim]; }; KDTreeIndirect<3, float, decltype(coord_fn)> ext_points_tree{coord_fn, ext_supp_points.size()}; for (const SupportPoint &sp : ext_supp_points) { auto cluster = find_nearby_points(ext_points_tree, sp.position, 3.0); int score = 0; bool floating_bridge = false; for (size_t idx : cluster) { score += ext_supp_points[idx].cause == SupportPointCause::FloatingBridgeAnchor ? 3 : 1; floating_bridge = floating_bridge || ext_supp_points[idx].cause == SupportPointCause::FloatingBridgeAnchor; } if (score > 5) { if (floating_bridge) { result.emplace_back(SupportPointCause::FloatingBridgeAnchor, true); } else { result.emplace_back(SupportPointCause::FloatingExtrusion, true); } break; } } for (const SupportPoint &sp : support_points) { if (sp.cause == SupportPointCause::SeparationFromBed) { result.emplace_back(SupportPointCause::SeparationFromBed, true); break; } } for (const SupportPoint &sp : support_points) { if (sp.cause == SupportPointCause::WeakObjectPart) { result.emplace_back(SupportPointCause::WeakObjectPart, true); break; } } if (ext_supp_points.size() > max_volume_part / 200.0f) { result.emplace_back(SupportPointCause::FloatingExtrusion, false); } for (const SupportPoint &sp : support_points) { if (sp.cause == SupportPointCause::LongBridge) { result.emplace_back(SupportPointCause::LongBridge, false); break; } } return result; } } // namespace SupportSpotsGenerator