PrusaSlicer/tests/libslic3r/test_support_spots_generator.cpp
2025-02-06 15:55:09 +01:00

187 lines
6.8 KiB
C++

#include "libslic3r/Point.hpp"
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_approx.hpp>
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <libslic3r/SupportSpotsGenerator.hpp>
using namespace Slic3r;
using namespace SupportSpotsGenerator;
using namespace Catch;
namespace Rectangle {
const float width = 10;
const float height = 20;
const Polygon polygon = {
scaled(Vec2f{-width / 2, -height / 2}),
scaled(Vec2f{width / 2, -height / 2}),
scaled(Vec2f{width / 2, height / 2}),
scaled(Vec2f{-width / 2, height / 2})
};
}
TEST_CASE("Numerical integral over polygon calculation compared with exact solution.", "[SupportSpotsGenerator]") {
const Integrals integrals{Rectangle::polygon};
CHECK(integrals.area == Approx(Rectangle::width * Rectangle::height));
CHECK(integrals.x_i.x() == Approx(0));
CHECK(integrals.x_i.y() == Approx(0));
CHECK(integrals.x_i_squared.x() == Approx(std::pow(Rectangle::width, 3) * Rectangle::height / 12));
CHECK(integrals.x_i_squared.y() == Approx(Rectangle::width * std::pow(Rectangle::height, 3) / 12));
}
TEST_CASE("Integrals over multiple polygons", "[SupportSpotsGenerator]") {
const Integrals integrals{{Rectangle::polygon, Rectangle::polygon}};
CHECK(integrals.area == Approx(2 * Rectangle::width * Rectangle::height));
}
TEST_CASE("Numerical integral over line calculation compared with exact solution.", "[SupportSpotsGenerator]") {
const float length = 10;
const float width = 20;
const Polyline polyline{scaled(Vec2f{-length/2.0f, 0.0f}), scaled(Vec2f{length/2.0f, 0.0f})};
const Integrals integrals{{polyline}, {width}};
CHECK(integrals.area == Approx(length * width));
CHECK(integrals.x_i.x() == Approx(0));
CHECK(integrals.x_i.y() == Approx(0));
CHECK(integrals.x_i_squared.x() == Approx(std::pow(length, 3) * width / 12));
CHECK(integrals.x_i_squared.y() == Approx(length * std::pow(width, 3) / 12));
}
TEST_CASE("Moment values and ratio check.", "[SupportSpotsGenerator]") {
const float width = 40;
const float height = 2;
// Moments are calculated at centroid.
// Polygon centroid must not be (0, 0).
const Polygon polygon = {
scaled(Vec2f{0, 0}),
scaled(Vec2f{width, 0}),
scaled(Vec2f{width, height}),
scaled(Vec2f{0, height})
};
const Integrals integrals{polygon};
const Vec2f x_axis{1, 0};
const float x_axis_moment = compute_second_moment(integrals, x_axis);
const Vec2f y_axis{0, 1};
const float y_axis_moment = compute_second_moment(integrals, y_axis);
const float moment_ratio = std::pow(width / height, 2);
// Ensure the object transaltion has no effect.
CHECK(x_axis_moment == Approx(width * std::pow(height, 3) / 12));
CHECK(y_axis_moment == Approx(std::pow(width, 3) * height / 12));
// If the object is "wide" the y axis moments should be large compared to x axis moment.
CHECK(y_axis_moment / x_axis_moment == Approx(moment_ratio));
}
TEST_CASE("Moments calculation for rotated axis.", "[SupportSpotsGenerator]") {
Polygon polygon = {
scaled(Vec2f{6.362284076172198, 138.9674202217155}),
scaled(Vec2f{97.48779843751677, 106.08136606617076}),
scaled(Vec2f{135.75221821532384, 66.84428834668765}),
scaled(Vec2f{191.5308049852741, 45.77905628725614}),
scaled(Vec2f{182.7525148049201, 74.01799041087513}),
scaled(Vec2f{296.83210979283473, 196.80022572637228}),
scaled(Vec2f{215.16434429179148, 187.45715418834143}),
scaled(Vec2f{64.64574271229334, 284.293883209721}),
scaled(Vec2f{110.76507036894843, 174.35633141113783}),
scaled(Vec2f{77.56229640885199, 189.33057746591336})
};
Integrals integrals{polygon};
// Meassured counterclockwise from (1, 0)
const float angle = 1.432f;
Vec2f axis{std::cos(angle), std::sin(angle)};
float moment_calculated_then_rotated = compute_second_moment(
integrals,
axis
);
// We want to rotate the object clockwise by angle to align the axis with (1, 0)
// Method .rotate is counterclockwise for positive angle
polygon.rotate(-angle);
Integrals integrals_rotated{{polygon}};
float moment_rotated_polygon = compute_second_moment(
integrals_rotated,
Vec2f{1, 0}
);
// Up to 0.1% accuracy
CHECK_THAT(moment_calculated_then_rotated, Catch::Matchers::WithinRel(moment_rotated_polygon, 0.001f));
}
struct ObjectPartFixture {
const Polyline polyline{
Point{scaled(Vec2f{0, 0})},
Point{scaled(Vec2f{1, 0})},
};
const float width = 0.1f;
bool connected_to_bed = true;
coordf_t print_head_z = 0.2;
coordf_t layer_height = 0.2;
ExtrusionAttributes attributes;
ExtrusionEntityCollection collection;
std::vector<const ExtrusionEntityCollection*> extrusions{};
Polygon expected_polygon{
Point{scaled(Vec2f{0, -width / 2})},
Point{scaled(Vec2f{1, -width / 2})},
Point{scaled(Vec2f{1, width / 2})},
Point{scaled(Vec2f{0, width / 2})}
};
ObjectPartFixture() {
attributes.width = width;
const ExtrusionPath path{polyline, attributes};
collection.append(path);
extrusions.push_back(&collection);
}
};
TEST_CASE_METHOD(ObjectPartFixture, "Constructing ObjectPart using extrusion collections", "[SupportSpotsGenerator]") {
ObjectPart part{
extrusions,
connected_to_bed,
print_head_z,
layer_height,
std::nullopt
};
Integrals expected{expected_polygon};
CHECK(part.connected_to_bed == true);
Vec3f volume_centroid{part.volume_centroid_accumulator / part.volume};
CHECK(volume_centroid.x() == Approx(0.5));
CHECK(volume_centroid.y() == Approx(0));
CHECK(volume_centroid.z() == Approx(layer_height / 2));
CHECK(part.sticking_area == Approx(expected.area));
CHECK(part.sticking_centroid_accumulator.x() == Approx(expected.x_i.x()));
CHECK(part.sticking_centroid_accumulator.y() == Approx(expected.x_i.y()));
CHECK(part.sticking_second_moment_of_area_accumulator.x() == Approx(expected.x_i_squared.x()));
CHECK(part.sticking_second_moment_of_area_accumulator.y() == Approx(expected.x_i_squared.y()));
CHECK(part.sticking_second_moment_of_area_covariance_accumulator == Approx(expected.xy).margin(1e-6));
CHECK(part.volume == Approx(layer_height * width));
}
TEST_CASE_METHOD(ObjectPartFixture, "Constructing ObjectPart with brim", "[SupportSpotsGenerator]") {
float brim_width = 1;
Polygons brim = get_brim(ExPolygon{expected_polygon}, BrimType::btOuterOnly, brim_width);
ObjectPart part{
extrusions,
connected_to_bed,
print_head_z,
layer_height,
brim
};
CHECK(part.sticking_area == Approx((1 + 2*brim_width) * (width + 2*brim_width)));
}