mirror of
https://git.mirrors.martin98.com/https://github.com/prusa3d/PrusaSlicer.git
synced 2025-06-04 11:14:17 +08:00
187 lines
6.8 KiB
C++
187 lines
6.8 KiB
C++
#include "libslic3r/Point.hpp"
|
|
#include <catch2/catch_test_macros.hpp>
|
|
#include <catch2/catch_approx.hpp>
|
|
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
|
#include <libslic3r/SupportSpotsGenerator.hpp>
|
|
|
|
using namespace Slic3r;
|
|
using namespace SupportSpotsGenerator;
|
|
using namespace Catch;
|
|
|
|
namespace Rectangle {
|
|
const float width = 10;
|
|
const float height = 20;
|
|
const Polygon polygon = {
|
|
scaled(Vec2f{-width / 2, -height / 2}),
|
|
scaled(Vec2f{width / 2, -height / 2}),
|
|
scaled(Vec2f{width / 2, height / 2}),
|
|
scaled(Vec2f{-width / 2, height / 2})
|
|
};
|
|
}
|
|
|
|
TEST_CASE("Numerical integral over polygon calculation compared with exact solution.", "[SupportSpotsGenerator]") {
|
|
const Integrals integrals{Rectangle::polygon};
|
|
|
|
CHECK(integrals.area == Approx(Rectangle::width * Rectangle::height));
|
|
CHECK(integrals.x_i.x() == Approx(0));
|
|
CHECK(integrals.x_i.y() == Approx(0));
|
|
CHECK(integrals.x_i_squared.x() == Approx(std::pow(Rectangle::width, 3) * Rectangle::height / 12));
|
|
CHECK(integrals.x_i_squared.y() == Approx(Rectangle::width * std::pow(Rectangle::height, 3) / 12));
|
|
}
|
|
|
|
TEST_CASE("Integrals over multiple polygons", "[SupportSpotsGenerator]") {
|
|
const Integrals integrals{{Rectangle::polygon, Rectangle::polygon}};
|
|
|
|
CHECK(integrals.area == Approx(2 * Rectangle::width * Rectangle::height));
|
|
}
|
|
|
|
TEST_CASE("Numerical integral over line calculation compared with exact solution.", "[SupportSpotsGenerator]") {
|
|
const float length = 10;
|
|
const float width = 20;
|
|
const Polyline polyline{scaled(Vec2f{-length/2.0f, 0.0f}), scaled(Vec2f{length/2.0f, 0.0f})};
|
|
|
|
const Integrals integrals{{polyline}, {width}};
|
|
CHECK(integrals.area == Approx(length * width));
|
|
CHECK(integrals.x_i.x() == Approx(0));
|
|
CHECK(integrals.x_i.y() == Approx(0));
|
|
CHECK(integrals.x_i_squared.x() == Approx(std::pow(length, 3) * width / 12));
|
|
CHECK(integrals.x_i_squared.y() == Approx(length * std::pow(width, 3) / 12));
|
|
}
|
|
|
|
TEST_CASE("Moment values and ratio check.", "[SupportSpotsGenerator]") {
|
|
const float width = 40;
|
|
const float height = 2;
|
|
|
|
// Moments are calculated at centroid.
|
|
// Polygon centroid must not be (0, 0).
|
|
const Polygon polygon = {
|
|
scaled(Vec2f{0, 0}),
|
|
scaled(Vec2f{width, 0}),
|
|
scaled(Vec2f{width, height}),
|
|
scaled(Vec2f{0, height})
|
|
};
|
|
|
|
const Integrals integrals{polygon};
|
|
|
|
const Vec2f x_axis{1, 0};
|
|
const float x_axis_moment = compute_second_moment(integrals, x_axis);
|
|
|
|
const Vec2f y_axis{0, 1};
|
|
const float y_axis_moment = compute_second_moment(integrals, y_axis);
|
|
|
|
const float moment_ratio = std::pow(width / height, 2);
|
|
|
|
// Ensure the object transaltion has no effect.
|
|
CHECK(x_axis_moment == Approx(width * std::pow(height, 3) / 12));
|
|
CHECK(y_axis_moment == Approx(std::pow(width, 3) * height / 12));
|
|
// If the object is "wide" the y axis moments should be large compared to x axis moment.
|
|
CHECK(y_axis_moment / x_axis_moment == Approx(moment_ratio));
|
|
}
|
|
|
|
TEST_CASE("Moments calculation for rotated axis.", "[SupportSpotsGenerator]") {
|
|
Polygon polygon = {
|
|
scaled(Vec2f{6.362284076172198, 138.9674202217155}),
|
|
scaled(Vec2f{97.48779843751677, 106.08136606617076}),
|
|
scaled(Vec2f{135.75221821532384, 66.84428834668765}),
|
|
scaled(Vec2f{191.5308049852741, 45.77905628725614}),
|
|
scaled(Vec2f{182.7525148049201, 74.01799041087513}),
|
|
scaled(Vec2f{296.83210979283473, 196.80022572637228}),
|
|
scaled(Vec2f{215.16434429179148, 187.45715418834143}),
|
|
scaled(Vec2f{64.64574271229334, 284.293883209721}),
|
|
scaled(Vec2f{110.76507036894843, 174.35633141113783}),
|
|
scaled(Vec2f{77.56229640885199, 189.33057746591336})
|
|
};
|
|
|
|
Integrals integrals{polygon};
|
|
|
|
// Meassured counterclockwise from (1, 0)
|
|
const float angle = 1.432f;
|
|
Vec2f axis{std::cos(angle), std::sin(angle)};
|
|
|
|
float moment_calculated_then_rotated = compute_second_moment(
|
|
integrals,
|
|
axis
|
|
);
|
|
|
|
// We want to rotate the object clockwise by angle to align the axis with (1, 0)
|
|
// Method .rotate is counterclockwise for positive angle
|
|
polygon.rotate(-angle);
|
|
|
|
Integrals integrals_rotated{{polygon}};
|
|
float moment_rotated_polygon = compute_second_moment(
|
|
integrals_rotated,
|
|
Vec2f{1, 0}
|
|
);
|
|
|
|
// Up to 0.1% accuracy
|
|
CHECK_THAT(moment_calculated_then_rotated, Catch::Matchers::WithinRel(moment_rotated_polygon, 0.001f));
|
|
}
|
|
|
|
struct ObjectPartFixture {
|
|
const Polyline polyline{
|
|
Point{scaled(Vec2f{0, 0})},
|
|
Point{scaled(Vec2f{1, 0})},
|
|
};
|
|
const float width = 0.1f;
|
|
bool connected_to_bed = true;
|
|
coordf_t print_head_z = 0.2;
|
|
coordf_t layer_height = 0.2;
|
|
ExtrusionAttributes attributes;
|
|
ExtrusionEntityCollection collection;
|
|
std::vector<const ExtrusionEntityCollection*> extrusions{};
|
|
Polygon expected_polygon{
|
|
Point{scaled(Vec2f{0, -width / 2})},
|
|
Point{scaled(Vec2f{1, -width / 2})},
|
|
Point{scaled(Vec2f{1, width / 2})},
|
|
Point{scaled(Vec2f{0, width / 2})}
|
|
};
|
|
|
|
ObjectPartFixture() {
|
|
attributes.width = width;
|
|
const ExtrusionPath path{polyline, attributes};
|
|
collection.append(path);
|
|
extrusions.push_back(&collection);
|
|
}
|
|
};
|
|
|
|
TEST_CASE_METHOD(ObjectPartFixture, "Constructing ObjectPart using extrusion collections", "[SupportSpotsGenerator]") {
|
|
ObjectPart part{
|
|
extrusions,
|
|
connected_to_bed,
|
|
print_head_z,
|
|
layer_height,
|
|
std::nullopt
|
|
};
|
|
|
|
Integrals expected{expected_polygon};
|
|
|
|
CHECK(part.connected_to_bed == true);
|
|
Vec3f volume_centroid{part.volume_centroid_accumulator / part.volume};
|
|
CHECK(volume_centroid.x() == Approx(0.5));
|
|
CHECK(volume_centroid.y() == Approx(0));
|
|
CHECK(volume_centroid.z() == Approx(layer_height / 2));
|
|
CHECK(part.sticking_area == Approx(expected.area));
|
|
CHECK(part.sticking_centroid_accumulator.x() == Approx(expected.x_i.x()));
|
|
CHECK(part.sticking_centroid_accumulator.y() == Approx(expected.x_i.y()));
|
|
CHECK(part.sticking_second_moment_of_area_accumulator.x() == Approx(expected.x_i_squared.x()));
|
|
CHECK(part.sticking_second_moment_of_area_accumulator.y() == Approx(expected.x_i_squared.y()));
|
|
CHECK(part.sticking_second_moment_of_area_covariance_accumulator == Approx(expected.xy).margin(1e-6));
|
|
CHECK(part.volume == Approx(layer_height * width));
|
|
}
|
|
|
|
TEST_CASE_METHOD(ObjectPartFixture, "Constructing ObjectPart with brim", "[SupportSpotsGenerator]") {
|
|
float brim_width = 1;
|
|
Polygons brim = get_brim(ExPolygon{expected_polygon}, BrimType::btOuterOnly, brim_width);
|
|
|
|
ObjectPart part{
|
|
extrusions,
|
|
connected_to_bed,
|
|
print_head_z,
|
|
layer_height,
|
|
brim
|
|
};
|
|
|
|
CHECK(part.sticking_area == Approx((1 + 2*brim_width) * (width + 2*brim_width)));
|
|
}
|
|
|