PrusaSlicer/tests/fff_print/test_seam_perimeters.cpp
Martin Šach 61291d9219 SPE-2495: Do not put scarft seam start on overhangs and blockers
Update the function offset_along_lines to offset along
perimeters and add a stop condition.
2025-02-14 12:02:29 +01:00

253 lines
9.9 KiB
C++

#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/GCode/SeamPerimeters.hpp"
#include "libslic3r/Layer.hpp"
#include "libslic3r/Point.hpp"
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_approx.hpp>
#include <libslic3r/GCode/SeamGeometry.hpp>
#include <libslic3r/Geometry.hpp>
#include <fstream>
#include "test_data.hpp"
using namespace Slic3r;
using namespace Slic3r::Seams;
using namespace Catch;
constexpr bool debug_files{false};
TEST_CASE("Oversample painted", "[Seams][SeamPerimeters]") {
Perimeters::PerimeterPoints square(4);
square[0].position = Vec2d{0.0, 0.0};
square[1].position = Vec2d{1.0, 0.0};
square[2].position = Vec2d{1.0, 1.0};
square[3].position = Vec2d{0.0, 1.0};
auto is_painted{[](const Vec3f &position, float radius) {
return (position - Vec3f{0.5, 0.0, 1.0}).norm() < radius;
}};
Perimeters::PerimeterPoints points{Perimeters::Impl::oversample_painted(
square, is_painted, 1.0, 0.2
)};
REQUIRE(points.size() == 8);
CHECK((points[1].position - Vec2d{0.2, 0.0}).norm() == Approx(0.0));
points = Perimeters::Impl::oversample_painted(
square, is_painted, 1.0, 0.199
);
CHECK(points.size() == 9);
}
TEST_CASE("Remove redundant points", "[Seams][SeamPerimeters]") {
using Perimeters::PointType;
using Perimeters::PointClassification;
Perimeters::PerimeterPoints points(9);
points[0].position = {0.0, 0.0};
points[0].type = PointType::common;
points[1].position = {1.0, 0.0};
points[1].type = PointType::enforcer; // Should keep
points[2].position = {2.0, 0.0};
points[2].type = PointType::enforcer; // Should keep
points[3].position = {3.0, 0.0};
points[3].type = PointType::blocker;
points[4].position = {3.0, 1.0};
points[4].type = PointType::blocker; // Should remove
points[5].position = {3.0, 1.1};
points[5].type = PointType::blocker;
points[6].position = {3.0, 1.2};
points[6].type = PointType::blocker;
points[6].classification = PointClassification::overhang; // Should keep
points[7].position = {3.0, 2.0};
points[7].type = PointType::blocker;
points[8].position = {0.0, 2.0};
points[8].type = PointType::common;
Perimeters::PerimeterPoints result{
Perimeters::Impl::remove_redundant_points(points, 0.1)};
REQUIRE(result.size() == 8);
CHECK((result[3].position - Vec2d{3.0, 0.0}).norm() == Approx(0.0));
CHECK((result[4].position - Vec2d{3.0, 1.1}).norm() == Approx(0.0));
CHECK(result[3].type == PointType::blocker);
CHECK(result[4].type == PointType::blocker);
}
TEST_CASE("Perimeter constructs KD trees", "[Seams][SeamPerimeters]") {
using Perimeters::PointType;
using Perimeters::PointClassification;
using Perimeters::AngleType;
std::vector<Vec2d> positions{Vec2d{0.0, 0.0}, Vec2d{1.0, 0.0}, Vec2d{1.0, 1.0}, Vec2d{0.0, 1.0}};
std::vector<double> angles(4, -M_PI / 2.0);
std::vector<PointType>
point_types{PointType::enforcer, PointType::blocker, PointType::common, PointType::common};
std::vector<PointClassification> point_classifications{
PointClassification::overhang, PointClassification::embedded, PointClassification::embedded,
PointClassification::common};
std::vector<AngleType>
angle_types{AngleType::convex, AngleType::concave, AngleType::smooth, AngleType::smooth};
Perimeters::Perimeter perimeter{
3.0,
2,
false,
std::move(positions),
std::move(angles),
std::move(point_types),
std::move(point_classifications),
std::move(angle_types)};
CHECK(perimeter.enforced_points.overhanging_points);
CHECK(perimeter.blocked_points.embedded_points);
CHECK(perimeter.common_points.common_points);
CHECK(perimeter.common_points.embedded_points);
}
constexpr const char *to_string(Perimeters::PointType point_type) {
using Perimeters::PointType;
switch (point_type) {
case PointType::enforcer: return "enforcer";
case PointType::blocker: return "blocker";
case PointType::common: return "common";
}
throw std::runtime_error("Unreachable");
}
constexpr const char *to_string(Perimeters::PointClassification point_classification) {
using Perimeters::PointClassification;
switch (point_classification) {
case PointClassification::embedded: return "embedded";
case PointClassification::overhang: return "overhang";
case PointClassification::common: return "common";
}
throw std::runtime_error("Unreachable");
}
constexpr const char *to_string(Perimeters::AngleType angle_type) {
using Perimeters::AngleType;
switch (angle_type) {
case AngleType::convex: return "convex";
case AngleType::concave: return "concave";
case AngleType::smooth: return "smooth";
}
throw std::runtime_error("Unreachable");
}
void serialize_shells(std::ostream &output, const Shells::Shells<> &shells) {
output << "x,y,z,point_type,point_classification,angle_type,layer_index,"
"point_index,distance,distance_to_previous,is_degenerate,shell_index"
<< std::endl;
for (std::size_t shell_index{0}; shell_index < shells.size(); ++shell_index) {
const Shells::Shell<> &shell{shells[shell_index]};
for (std::size_t perimeter_index{0}; perimeter_index < shell.size(); ++perimeter_index) {
const Shells::Slice<> &slice{shell[perimeter_index]};
const Perimeters::Perimeter &perimeter{slice.boundary};
const std::vector<Vec2d> &points{perimeter.positions};
double total_distance{0.0};
for (std::size_t point_index{0}; point_index < perimeter.point_types.size(); ++point_index) {
const Vec3d point{to_3d(points[point_index], perimeter.slice_z)};
const Perimeters::PointType point_type{perimeter.point_types[point_index]};
const Perimeters::PointClassification point_classification{
perimeter.point_classifications[point_index]};
const Perimeters::AngleType angle_type{perimeter.angle_types[point_index]};
const std::size_t layer_index{slice.layer_index};
const std::size_t previous_index{point_index == 0 ? points.size() - 1 : point_index - 1};
const double distance_to_previous{(points[point_index] - points[previous_index]).norm()};
total_distance += point_index == 0 ? 0.0 : distance_to_previous;
const double distance{total_distance};
const bool is_degenerate{perimeter.is_degenerate};
// clang-format off
output
<< point.x() << ","
<< point.y() << ","
<< point.z() << ","
<< to_string(point_type) << ","
<< to_string(point_classification) << ","
<< to_string(angle_type) << ","
<< layer_index << ","
<< point_index << ","
<< distance << ","
<< distance_to_previous << ","
<< is_degenerate << ","
<< shell_index << std::endl;
// clang-format on
}
}
}
}
TEST_CASE_METHOD(Test::SeamsFixture, "Create perimeters", "[Seams][SeamPerimeters][Integration]") {
Seams::Perimeters::LayerPerimeters perimeters{
Seams::Perimeters::create_perimeters(projected, layer_infos, painting, params.perimeter)};
Seams::Shells::Shells<> shells{
Seams::Shells::create_shells(std::move(perimeters), params.max_distance)};
if constexpr (debug_files) {
std::ofstream csv{"perimeters.csv"};
serialize_shells(csv, shells);
}
}
using Dir = Seams::Geometry::Direction1D;
Perimeters::Perimeter get_perimeter(){
Perimeters::Perimeter perimeter;
perimeter.positions = {
Vec2d{0.0, 0.0},
Vec2d{1.0, 0.0},
Vec2d{1.0, 1.0},
Vec2d{0.0, 1.0}
};
return perimeter;
}
TEST_CASE("Offset along perimeter forward", "[Seams][SeamPerimeters]") {
const std::optional<Perimeters::PointOnPerimeter> result{Perimeters::offset_along_perimeter(
{0, 1, {0.5, 0.0}}, get_perimeter(), 3.9, Dir::forward,
[](const Perimeters::Perimeter &, const std::size_t) { return false; }
)};
REQUIRE(result);
const auto &[previous_index, next_index, point] = *result;
CHECK((scaled(point) - Point::new_scale(0.4, 0.0)).norm() < scaled(EPSILON));
CHECK(previous_index == 0);
CHECK(next_index == 1);
}
TEST_CASE("Offset along perimeter backward", "[Seams][SeamPerimeters]") {
const std::optional<Perimeters::PointOnPerimeter> result{Perimeters::offset_along_perimeter(
{1, 2, {1.0, 0.5}}, get_perimeter(), 1.8, Dir::backward,
[](const Perimeters::Perimeter &, const std::size_t) { return false; }
)};
REQUIRE(result);
const auto &[previous_index, next_index, point] = *result;
CHECK((scaled(point) - Point::new_scale(0.0, 0.3)).norm() < scaled(EPSILON));
CHECK(previous_index == 3);
CHECK(next_index == 0);
}
TEST_CASE("Offset along perimeter forward respects stop condition", "[Seams][SeamPerimeters]") {
Perimeters::Perimeter perimeter{get_perimeter()};
perimeter.point_types = std::vector<Perimeters::PointType>(perimeter.positions.size(), Perimeters::PointType::common);
perimeter.point_types[2] = Perimeters::PointType::blocker;
const std::optional<Perimeters::PointOnPerimeter> result{Perimeters::offset_along_perimeter(
{0, 1, {0.5, 0.0}}, perimeter, 3.9, Dir::forward,
[](const Perimeters::Perimeter &perimeter, const std::size_t index) {
return perimeter.point_types[index] == Perimeters::PointType::blocker;
}
)};
REQUIRE(result);
const auto &[previous_index, next_index, point] = *result;
CHECK((scaled(point) - Point::new_scale(1.0, 0.0)).norm() < scaled(EPSILON));
CHECK(previous_index == 1);
CHECK(next_index == 1);
}