mirror of
https://git.mirrors.martin98.com/https://github.com/prusa3d/PrusaSlicer.git
synced 2025-08-03 19:50:40 +08:00
500 lines
17 KiB
C++
500 lines
17 KiB
C++
///|/ Copyright (c) Prusa Research 2016 - 2023 Tomáš Mészáros @tamasmeszaros, Vojtěch Bubník @bubnikv, Oleksandra Iushchenko @YuSanka, Lukáš Matěna @lukasmatena, Pavel Mikuš @Godrak, Filip Sykala @Jony01, Lukáš Hejl @hejllukas, Enrico Turri @enricoturri1966, Vojtěch Král @vojtechkral
|
|
///|/ Copyright (c) Slic3r 2013 - 2016 Alessandro Ranellucci @alranel
|
|
///|/ Copyright (c) 2016 Miro Hrončok @hroncok
|
|
///|/ Copyright (c) 2014 Kamil Kwolek
|
|
///|/
|
|
///|/ ported from xs/src/libslic3r/libslic3r.h:
|
|
///|/ Copyright (c) Prusa Research 2016 - 2019 Vojtěch Král @vojtechkral, Vojtěch Bubník @bubnikv, Enrico Turri @enricoturri1966
|
|
///|/ Copyright (c) Slic3r 2013 - 2016 Alessandro Ranellucci @alranel
|
|
///|/ Copyright (c) 2016 Miro Hrončok @hroncok
|
|
///|/ Copyright (c) 2014 Kamil Kwolek
|
|
///|/
|
|
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
|
|
///|/
|
|
#ifndef _libslic3r_h_
|
|
#define _libslic3r_h_
|
|
|
|
#include "libslic3r_version.h"
|
|
|
|
// Profiles for the alpha are stored into the PrusaSlicer-alpha directory to not mix with the current release.
|
|
// #define SLIC3R_APP_FULL_NAME SLIC3R_APP_KEY
|
|
#define SLIC3R_APP_FULL_NAME SLIC3R_APP_KEY "-alpha"
|
|
// #define SLIC3R_APP_FULL_NAME SLIC3R_APP_KEY "-beta"
|
|
|
|
|
|
|
|
#define GCODEVIEWER_APP_NAME "PrusaSlicer G-code Viewer"
|
|
#define GCODEVIEWER_APP_KEY "PrusaSlicerGcodeViewer"
|
|
|
|
// this needs to be included early for MSVC (listing it in Build.PL is not enough)
|
|
#include <memory>
|
|
#include <array>
|
|
#include <algorithm>
|
|
#include <ostream>
|
|
#include <iostream>
|
|
#include <math.h>
|
|
#include <queue>
|
|
#include <sstream>
|
|
#include <cstdio>
|
|
#include <stdint.h>
|
|
#include <stdarg.h>
|
|
#include <vector>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <type_traits>
|
|
#include <optional>
|
|
|
|
#ifdef _WIN32
|
|
// On MSVC, std::deque degenerates to a list of pointers, which defeats its purpose of reducing allocator load and memory fragmentation.
|
|
// https://github.com/microsoft/STL/issues/147#issuecomment-1090148740
|
|
// Thus it is recommended to use boost::container::deque instead.
|
|
#include <boost/container/deque.hpp>
|
|
#endif // _WIN32
|
|
|
|
#include "Technologies.hpp"
|
|
#include "Semver.hpp"
|
|
|
|
using coord_t =
|
|
#if 1
|
|
// Saves around 32% RAM after slicing step, 6.7% after G-code export (tested on PrusaSlicer 2.2.0 final).
|
|
int32_t;
|
|
#else
|
|
//FIXME At least FillRectilinear2 and std::boost Voronoi require coord_t to be 32bit.
|
|
int64_t;
|
|
#endif
|
|
|
|
using coordf_t = double;
|
|
|
|
//FIXME This epsilon value is used for many non-related purposes:
|
|
// For a threshold of a squared Euclidean distance,
|
|
// for a trheshold in a difference of radians,
|
|
// for a threshold of a cross product of two non-normalized vectors etc.
|
|
static constexpr double EPSILON = 1e-4;
|
|
// Scaling factor for a conversion from coord_t to coordf_t: 10e-6
|
|
// This scaling generates a following fixed point representation with for a 32bit integer:
|
|
// 0..4294mm with 1nm resolution
|
|
// int32_t fits an interval of (-2147.48mm, +2147.48mm)
|
|
// with int64_t we don't have to worry anymore about the size of the int.
|
|
static constexpr double SCALING_FACTOR = 0.000001;
|
|
static constexpr double PI = 3.141592653589793238;
|
|
// When extruding a closed loop, the loop is interrupted and shortened a bit to reduce the seam.
|
|
static constexpr double LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER = 0.15;
|
|
// Maximum perimeter length for the loop to apply the small perimeter speed.
|
|
#define SMALL_PERIMETER_LENGTH ((6.5 / SCALING_FACTOR) * 2 * PI)
|
|
static constexpr double INSET_OVERLAP_TOLERANCE = 0.4;
|
|
// 3mm ring around the top / bottom / bridging areas.
|
|
//FIXME This is quite a lot.
|
|
static constexpr double EXTERNAL_INFILL_MARGIN = 3.;
|
|
//FIXME Better to use an inline function with an explicit return type.
|
|
//inline coord_t scale_(coordf_t v) { return coord_t(floor(v / SCALING_FACTOR + 0.5f)); }
|
|
#define scale_(val) ((val) / SCALING_FACTOR)
|
|
|
|
#define SCALED_EPSILON scale_(EPSILON)
|
|
|
|
#ifndef UNUSED
|
|
#define UNUSED(x) (void)(x)
|
|
#endif /* UNUSED */
|
|
|
|
// Write slices as SVG images into out directory during the 2D processing of the slices.
|
|
// #define SLIC3R_DEBUG_SLICE_PROCESSING
|
|
|
|
namespace Slic3r {
|
|
|
|
extern Semver SEMVER;
|
|
|
|
// On MSVC, std::deque degenerates to a list of pointers, which defeats its purpose of reducing allocator load and memory fragmentation.
|
|
template<class T, class Allocator = std::allocator<T>>
|
|
using deque =
|
|
#ifdef _WIN32
|
|
// Use boost implementation, which allocates blocks of 512 bytes instead of blocks of 8 bytes.
|
|
boost::container::deque<T, Allocator>;
|
|
#else // _WIN32
|
|
std::deque<T, Allocator>;
|
|
#endif // _WIN32
|
|
|
|
template<typename T, typename Q>
|
|
inline T unscale(Q v) { return T(v) * T(SCALING_FACTOR); }
|
|
|
|
constexpr size_t MAX_NUMBER_OF_BEDS = 9;
|
|
|
|
enum Axis {
|
|
X=0,
|
|
Y,
|
|
Z,
|
|
E,
|
|
F,
|
|
NUM_AXES,
|
|
// For the GCodeReader to mark a parsed axis, which is not in "XYZEF", it was parsed correctly.
|
|
UNKNOWN_AXIS = NUM_AXES,
|
|
NUM_AXES_WITH_UNKNOWN,
|
|
};
|
|
|
|
template <typename T, typename Alloc, typename Alloc2>
|
|
inline void append(std::vector<T, Alloc> &dest, const std::vector<T, Alloc2> &src)
|
|
{
|
|
if (dest.empty())
|
|
dest = src; // copy
|
|
else
|
|
dest.insert(dest.end(), src.begin(), src.end());
|
|
}
|
|
|
|
template <typename T, typename Alloc>
|
|
inline void append(std::vector<T, Alloc> &dest, std::vector<T, Alloc> &&src)
|
|
{
|
|
if (dest.empty())
|
|
dest = std::move(src);
|
|
else {
|
|
dest.insert(dest.end(),
|
|
std::make_move_iterator(src.begin()),
|
|
std::make_move_iterator(src.end()));
|
|
// Release memory of the source contour now.
|
|
src.clear();
|
|
src.shrink_to_fit();
|
|
}
|
|
}
|
|
|
|
template<class T, class... Args> // Arbitrary allocator can be used
|
|
void clear_and_shrink(std::vector<T, Args...>& vec)
|
|
{
|
|
// shrink_to_fit does not garantee the release of memory nor does it clear()
|
|
std::vector<T, Args...> tmp;
|
|
vec.swap(tmp);
|
|
assert(vec.capacity() == 0);
|
|
}
|
|
|
|
// Append the source in reverse.
|
|
template <typename T>
|
|
inline void append_reversed(std::vector<T>& dest, const std::vector<T>& src)
|
|
{
|
|
if (dest.empty())
|
|
dest = {src.rbegin(), src.rend()};
|
|
else
|
|
dest.insert(dest.end(), src.rbegin(), src.rend());
|
|
}
|
|
|
|
// Append the source in reverse.
|
|
template <typename T>
|
|
inline void append_reversed(std::vector<T>& dest, std::vector<T>&& src)
|
|
{
|
|
if (dest.empty())
|
|
dest = {std::make_move_iterator(src.rbegin),
|
|
std::make_move_iterator(src.rend)};
|
|
else
|
|
dest.insert(dest.end(),
|
|
std::make_move_iterator(src.rbegin()),
|
|
std::make_move_iterator(src.rend()));
|
|
// Release memory of the source contour now.
|
|
src.clear();
|
|
src.shrink_to_fit();
|
|
}
|
|
|
|
// Casting an std::vector<> from one type to another type without warnings about a loss of accuracy.
|
|
template<typename T_TO, typename T_FROM>
|
|
std::vector<T_TO> cast(const std::vector<T_FROM> &src)
|
|
{
|
|
std::vector<T_TO> dst;
|
|
dst.reserve(src.size());
|
|
for (const T_FROM &a : src)
|
|
dst.emplace_back((T_TO)a);
|
|
return dst;
|
|
}
|
|
|
|
template <typename T>
|
|
inline void remove_nulls(std::vector<T*> &vec)
|
|
{
|
|
vec.erase(
|
|
std::remove_if(vec.begin(), vec.end(), [](const T *ptr) { return ptr == nullptr; }),
|
|
vec.end());
|
|
}
|
|
|
|
template <typename T>
|
|
inline void sort_remove_duplicates(std::vector<T> &vec)
|
|
{
|
|
std::sort(vec.begin(), vec.end());
|
|
vec.erase(std::unique(vec.begin(), vec.end()), vec.end());
|
|
}
|
|
|
|
// Older compilers do not provide a std::make_unique template. Provide a simple one.
|
|
template<typename T, typename... Args>
|
|
inline std::unique_ptr<T> make_unique(Args&&... args) {
|
|
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
|
|
}
|
|
|
|
// Variant of std::lower_bound() with compare predicate, but without the key.
|
|
// This variant is very useful in case that the T type is large or it does not even have a public constructor.
|
|
template<class ForwardIt, class LowerThanKeyPredicate>
|
|
ForwardIt lower_bound_by_predicate(ForwardIt first, ForwardIt last, LowerThanKeyPredicate lower_than_key)
|
|
{
|
|
ForwardIt it;
|
|
typename std::iterator_traits<ForwardIt>::difference_type count, step;
|
|
count = std::distance(first, last);
|
|
|
|
while (count > 0) {
|
|
it = first;
|
|
step = count / 2;
|
|
std::advance(it, step);
|
|
if (lower_than_key(*it)) {
|
|
first = ++it;
|
|
count -= step + 1;
|
|
}
|
|
else
|
|
count = step;
|
|
}
|
|
return first;
|
|
}
|
|
|
|
// from https://en.cppreference.com/w/cpp/algorithm/lower_bound
|
|
template<class ForwardIt, class T, class Compare=std::less<>>
|
|
ForwardIt binary_find(ForwardIt first, ForwardIt last, const T& value, Compare comp={})
|
|
{
|
|
// Note: BOTH type T and the type after ForwardIt is dereferenced
|
|
// must be implicitly convertible to BOTH Type1 and Type2, used in Compare.
|
|
// This is stricter than lower_bound requirement (see above)
|
|
|
|
first = std::lower_bound(first, last, value, comp);
|
|
return first != last && !comp(value, *first) ? first : last;
|
|
}
|
|
|
|
// from https://en.cppreference.com/w/cpp/algorithm/lower_bound
|
|
template<class ForwardIt, class LowerThanKeyPredicate, class EqualToKeyPredicate>
|
|
ForwardIt binary_find_by_predicate(ForwardIt first, ForwardIt last, LowerThanKeyPredicate lower_thank_key, EqualToKeyPredicate equal_to_key)
|
|
{
|
|
// Note: BOTH type T and the type after ForwardIt is dereferenced
|
|
// must be implicitly convertible to BOTH Type1 and Type2, used in Compare.
|
|
// This is stricter than lower_bound requirement (see above)
|
|
|
|
first = lower_bound_by_predicate(first, last, lower_thank_key);
|
|
return first != last && equal_to_key(*first) ? first : last;
|
|
}
|
|
|
|
template<typename ContainerType, typename ValueType> inline bool contains(const ContainerType &c, const ValueType &v)
|
|
{ return std::find(c.begin(), c.end(), v) != c.end(); }
|
|
template<typename T> inline bool contains(const std::initializer_list<T> &il, const T &v)
|
|
{ return std::find(il.begin(), il.end(), v) != il.end(); }
|
|
|
|
template<typename ContainerType, typename ValueType> inline bool one_of(const ValueType &v, const ContainerType &c)
|
|
{ return contains(c, v); }
|
|
template<typename T> inline bool one_of(const T& v, const std::initializer_list<T>& il)
|
|
{ return contains(il, v); }
|
|
|
|
template<typename T>
|
|
constexpr inline T sqr(T x)
|
|
{
|
|
return x * x;
|
|
}
|
|
|
|
template <typename T, typename Number>
|
|
constexpr inline T lerp(const T& a, const T& b, Number t)
|
|
{
|
|
assert((t >= Number(-EPSILON)) && (t <= Number(1) + Number(EPSILON)));
|
|
return (Number(1) - t) * a + t * b;
|
|
}
|
|
|
|
template <typename Number>
|
|
constexpr inline bool is_approx(Number value, Number test_value, Number precision = EPSILON)
|
|
{
|
|
return std::fabs(double(value) - double(test_value)) < double(precision);
|
|
}
|
|
|
|
template<typename Number>
|
|
constexpr inline bool is_approx(const std::optional<Number> &value,
|
|
const std::optional<Number> &test_value)
|
|
{
|
|
return (!value.has_value() && !test_value.has_value()) ||
|
|
(value.has_value() && test_value.has_value() && is_approx<Number>(*value, *test_value));
|
|
}
|
|
|
|
// A meta-predicate which is true for integers wider than or equal to coord_t
|
|
template<class I> struct is_scaled_coord
|
|
{
|
|
static const constexpr bool value =
|
|
std::is_integral<I>::value &&
|
|
std::numeric_limits<I>::digits >=
|
|
std::numeric_limits<coord_t>::digits;
|
|
};
|
|
|
|
// Meta predicates for floating, 'scaled coord' and generic arithmetic types
|
|
// Can be used to restrict templates to work for only the specified set of types.
|
|
// parameter T is the type we want to restrict
|
|
// parameter O (Optional defaults to T) is the type that the whole expression
|
|
// will be evaluated to.
|
|
// e.g. template<class T> FloatingOnly<T, bool> is_nan(T val);
|
|
// The whole template will be defined only for floating point types and the
|
|
// return type will be bool.
|
|
// For more info how to use, see docs for std::enable_if
|
|
//
|
|
template<class T, class O = T>
|
|
using FloatingOnly = std::enable_if_t<std::is_floating_point<T>::value, O>;
|
|
|
|
template<class T, class O = T>
|
|
using ScaledCoordOnly = std::enable_if_t<is_scaled_coord<T>::value, O>;
|
|
|
|
template<class T, class O = T>
|
|
using IntegerOnly = std::enable_if_t<std::is_integral<T>::value, O>;
|
|
|
|
template<class T, class O = T>
|
|
using ArithmeticOnly = std::enable_if_t<std::is_arithmetic<T>::value, O>;
|
|
|
|
template<class T, class O = T>
|
|
using IteratorOnly = std::enable_if_t<
|
|
!std::is_same_v<typename std::iterator_traits<T>::value_type, void>, O
|
|
>;
|
|
|
|
template<class T, class I, class... Args> // Arbitrary allocator can be used
|
|
IntegerOnly<I, std::vector<T, Args...>> reserve_vector(I capacity)
|
|
{
|
|
std::vector<T, Args...> ret;
|
|
if (capacity > I(0))
|
|
ret.reserve(size_t(capacity));
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Borrowed from C++20
|
|
template<class T>
|
|
using remove_cvref_t = std::remove_cv_t<std::remove_reference_t<T>>;
|
|
|
|
namespace detail_strip_ref_wrappers {
|
|
template<class T> struct StripCVRef_ { using type = remove_cvref_t<T>; };
|
|
template<class T> struct StripCVRef_<std::reference_wrapper<T>>
|
|
{
|
|
using type = std::remove_cv_t<T>;
|
|
};
|
|
} // namespace detail
|
|
|
|
// Removes reference wrappers as well
|
|
template<class T> using StripCVRef =
|
|
typename detail_strip_ref_wrappers::StripCVRef_<remove_cvref_t<T>>::type;
|
|
|
|
// A very simple range concept implementation with iterator-like objects.
|
|
// This should be replaced by std::ranges::subrange (C++20)
|
|
template<class It> class Range
|
|
{
|
|
It from, to;
|
|
public:
|
|
|
|
// The class is ready for range based for loops.
|
|
It begin() const { return from; }
|
|
It end() const { return to; }
|
|
|
|
// The iterator type can be obtained this way.
|
|
using iterator = It;
|
|
using value_type = typename std::iterator_traits<It>::value_type;
|
|
|
|
Range() = default;
|
|
Range(It b, It e) : from(std::move(b)), to(std::move(e)) {}
|
|
|
|
// Some useful container-like methods...
|
|
inline size_t size() const { return std::distance(from, to); }
|
|
inline bool empty() const { return from == to; }
|
|
};
|
|
|
|
template<class Cont> auto range(Cont &&cont)
|
|
{
|
|
return Range{std::begin(cont), std::end(cont)};
|
|
}
|
|
|
|
template<class Cont> auto crange(Cont &&cont)
|
|
{
|
|
return Range{std::cbegin(cont), std::cend(cont)};
|
|
}
|
|
|
|
template<class IntType = int, class = IntegerOnly<IntType, void>>
|
|
class IntIterator {
|
|
IntType m_val;
|
|
public:
|
|
using iterator_category = std::bidirectional_iterator_tag;
|
|
using difference_type = std::ptrdiff_t;
|
|
using value_type = IntType;
|
|
using pointer = IntType*; // or also value_type*
|
|
using reference = IntType&; // or also value_type&
|
|
|
|
IntIterator(IntType v): m_val{v} {}
|
|
|
|
IntIterator & operator++() { ++m_val; return *this; }
|
|
IntIterator operator++(int) { auto cpy = *this; ++m_val; return cpy; }
|
|
IntIterator & operator--() { --m_val; return *this; }
|
|
IntIterator operator--(int) { auto cpy = *this; --m_val; return cpy; }
|
|
|
|
IntType operator*() const { return m_val; }
|
|
IntType operator->() const { return m_val; }
|
|
|
|
bool operator==(const IntIterator& other) const
|
|
{
|
|
return m_val == other.m_val;
|
|
}
|
|
|
|
bool operator!=(const IntIterator& other) const
|
|
{
|
|
return !(*this == other);
|
|
}
|
|
};
|
|
|
|
template<class IntType, class = IntegerOnly<IntType>>
|
|
auto range(IntType from, IntType to)
|
|
{
|
|
return Range{IntIterator{from}, IntIterator{to}};
|
|
}
|
|
|
|
template<class T, class = FloatingOnly<T>>
|
|
constexpr T NaN = std::numeric_limits<T>::quiet_NaN();
|
|
|
|
constexpr float NaNf = NaN<float>;
|
|
constexpr double NaNd = NaN<double>;
|
|
|
|
// Rounding up.
|
|
// 1.5 is rounded to 2
|
|
// 1.49 is rounded to 1
|
|
// 0.5 is rounded to 1,
|
|
// 0.49 is rounded to 0
|
|
// -0.5 is rounded to 0,
|
|
// -0.51 is rounded to -1,
|
|
// -1.5 is rounded to -1.
|
|
// -1.51 is rounded to -2.
|
|
// If input is not a valid float (it is infinity NaN or if it does not fit)
|
|
// the float to int conversion produces a max int on Intel and +-max int on ARM.
|
|
template<typename I>
|
|
inline IntegerOnly<I, I> fast_round_up(double a)
|
|
{
|
|
// Why does Java Math.round(0.49999999999999994) return 1?
|
|
// https://stackoverflow.com/questions/9902968/why-does-math-round0-49999999999999994-return-1
|
|
return a == 0.49999999999999994 ? I(0) : I(floor(a + 0.5));
|
|
}
|
|
|
|
template<class T> using SamePair = std::pair<T, T>;
|
|
|
|
// Helper to be used in static_assert.
|
|
template<class T> struct always_false { enum { value = false }; };
|
|
|
|
// Map a generic function to each argument following the mapping function
|
|
template<class Fn, class...Args>
|
|
Fn for_each_argument(Fn &&fn, Args&&...args)
|
|
{
|
|
// see https://www.fluentcpp.com/2019/03/05/for_each_arg-applying-a-function-to-each-argument-of-a-function-in-cpp/
|
|
(fn(std::forward<Args>(args)),...);
|
|
|
|
return fn;
|
|
}
|
|
|
|
// Call fn on each element of the input tuple tup.
|
|
template<class Fn, class Tup>
|
|
Fn for_each_in_tuple(Fn fn, Tup &&tup)
|
|
{
|
|
auto mpfn = [&fn](auto&...pack) {
|
|
for_each_argument(fn, pack...);
|
|
};
|
|
|
|
std::apply(mpfn, tup);
|
|
|
|
return fn;
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool is_in_range(const T &value, const T &low, const T &high) {
|
|
return low <= value && value <= high;
|
|
}
|
|
|
|
} // namespace Slic3r
|
|
|
|
#endif // _libslic3r_h_
|