2024-03-14 15:42:52 +01:00

481 lines
25 KiB
C++

///|/ Copyright (c) Prusa Research 2016 - 2023 Vojtěch Bubník @bubnikv, Lukáš Matěna @lukasmatena, Pavel Mikuš @Godrak, Lukáš Hejl @hejllukas, Filip Sykala @Jony01, Enrico Turri @enricoturri1966, David Kocík @kocikdav, Oleksandra Iushchenko @YuSanka
///|/ Copyright (c) SuperSlicer 2023 Remi Durand @supermerill
///|/ Copyright (c) 2019 Thomas Moore
///|/ Copyright (c) 2016 Chow Loong Jin @hyperair
///|/ Copyright (c) Slic3r 2014 - 2015 Alessandro Ranellucci @alranel
///|/
///|/ ported from lib/Slic3r/GCode.pm:
///|/ Copyright (c) Slic3r 2011 - 2015 Alessandro Ranellucci @alranel
///|/ Copyright (c) 2013 Robert Giseburt
///|/ Copyright (c) 2012 Mark Hindess
///|/ Copyright (c) 2012 Henrik Brix Andersen @henrikbrixandersen
///|/
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
///|/
#ifndef slic3r_GCode_hpp_
#define slic3r_GCode_hpp_
#include "GCode/ExtrusionProcessor.hpp"
#include "JumpPointSearch.hpp"
#include "libslic3r.h"
#include "ExPolygon.hpp"
#include "Layer.hpp"
#include "Point.hpp"
#include "PlaceholderParser.hpp"
#include "PrintConfig.hpp"
#include "Geometry/ArcWelder.hpp"
#include "GCode/AvoidCrossingPerimeters.hpp"
#include "GCode/CoolingBuffer.hpp"
#include "GCode/FindReplace.hpp"
#include "GCode/GCodeWriter.hpp"
#include "GCode/LabelObjects.hpp"
#include "GCode/PressureEqualizer.hpp"
#include "GCode/RetractWhenCrossingPerimeters.hpp"
#include "GCode/SmoothPath.hpp"
#include "GCode/SpiralVase.hpp"
#include "GCode/ToolOrdering.hpp"
#include "GCode/Wipe.hpp"
#include "GCode/WipeTowerIntegration.hpp"
#include "GCode/SeamPlacer.hpp"
#include "GCode/GCodeProcessor.hpp"
#include "GCode/ThumbnailData.hpp"
#include "GCode/Travels.hpp"
#include "EdgeGrid.hpp"
#include "tcbspan/span.hpp"
#include <memory>
#include <map>
#include <string>
//#include "GCode/PressureEqualizer.hpp"
namespace Slic3r {
// Forward declarations.
class GCodeGenerator;
struct WipeTowerData;
namespace { struct Item; }
struct PrintInstance;
class OozePrevention {
public:
bool enable;
OozePrevention() : enable(false) {}
std::string pre_toolchange(GCodeGenerator &gcodegen);
std::string post_toolchange(GCodeGenerator &gcodegen);
private:
int _get_temp(const GCodeGenerator &gcodegen) const;
};
class ColorPrintColors
{
static const std::vector<std::string> Colors;
public:
static const std::vector<std::string>& get() { return Colors; }
};
struct LayerResult {
std::string gcode;
size_t layer_id;
// Is spiral vase post processing enabled for this layer?
bool spiral_vase_enable { false };
// Should the cooling buffer content be flushed at the end of this layer?
bool cooling_buffer_flush { false };
// Is indicating if this LayerResult should be processed, or it is just inserted artificial LayerResult.
// It is used for the pressure equalizer because it needs to buffer one layer back.
bool nop_layer_result { false };
static LayerResult make_nop_layer_result() { return {"", std::numeric_limits<coord_t>::max(), false, false, true}; }
};
namespace GCode {
// Object and support extrusions of the same PrintObject at the same print_z.
// public, so that it could be accessed by free helper functions from GCode.cpp
struct ObjectLayerToPrint
{
ObjectLayerToPrint() : object_layer(nullptr), support_layer(nullptr) {}
const Layer* object_layer;
const SupportLayer* support_layer;
const Layer* layer() const { return (object_layer != nullptr) ? object_layer : support_layer; }
const PrintObject* object() const { return (this->layer() != nullptr) ? this->layer()->object() : nullptr; }
coordf_t print_z() const { return (object_layer != nullptr && support_layer != nullptr) ? 0.5 * (object_layer->print_z + support_layer->print_z) : this->layer()->print_z; }
};
struct PrintObjectInstance
{
const PrintObject *print_object = nullptr;
int instance_idx = -1;
bool operator==(const PrintObjectInstance &other) const {return print_object == other.print_object && instance_idx == other.instance_idx; }
bool operator!=(const PrintObjectInstance &other) const { return *this == other; }
};
} // namespace GCode
class GCodeGenerator {
public:
GCodeGenerator(const Print* print = nullptr); // The default value is only used in unit tests.
~GCodeGenerator() = default;
// throws std::runtime_exception on error,
// throws CanceledException through print->throw_if_canceled().
void do_export(Print* print, const char* path, GCodeProcessorResult* result = nullptr, ThumbnailsGeneratorCallback thumbnail_cb = nullptr);
// Exported for the helper classes (OozePrevention, Wipe) and for the Perl binding for unit tests.
const Vec2d& origin() const { return m_origin; }
void set_origin(const Vec2d &pointf);
void set_origin(const coordf_t x, const coordf_t y) { this->set_origin(Vec2d(x, y)); }
// Convert coordinates of the active object to G-code coordinates, possibly adjusted for extruder offset.
template<typename Derived>
Eigen::Matrix<double, Derived::SizeAtCompileTime, 1, Eigen::DontAlign> point_to_gcode(const Eigen::MatrixBase<Derived> &point) const {
static_assert(
Derived::IsVectorAtCompileTime,
"GCodeGenerator::point_to_gcode(): first parameter is not a vector"
);
static_assert(
int(Derived::SizeAtCompileTime) == 2 || int(Derived::SizeAtCompileTime) == 3,
"GCodeGenerator::point_to_gcode(): first parameter is not a 2D or 3D vector"
);
if constexpr (Derived::SizeAtCompileTime == 2) {
return Vec2d(unscaled<double>(point.x()), unscaled<double>(point.y())) + m_origin
- m_config.extruder_offset.get_at(m_writer.extruder()->id());
} else {
const Vec2d gcode_point_xy{this->point_to_gcode(point.template head<2>())};
return to_3d(gcode_point_xy, unscaled(point.z()));
}
}
// Convert coordinates of the active object to G-code coordinates, possibly adjusted for extruder offset and quantized to G-code resolution.
template<typename Derived>
Vec2d point_to_gcode_quantized(const Eigen::MatrixBase<Derived> &point) const {
static_assert(Derived::IsVectorAtCompileTime && int(Derived::SizeAtCompileTime) == 2, "GCodeGenerator::point_to_gcode_quantized(): first parameter is not a 2D vector");
Vec2d p = this->point_to_gcode(point);
return { GCodeFormatter::quantize_xyzf(p.x()), GCodeFormatter::quantize_xyzf(p.y()) };
}
Point gcode_to_point(const Vec2d &point) const;
const FullPrintConfig &config() const { return m_config; }
const Layer* layer() const { return m_layer; }
GCodeWriter& writer() { return m_writer; }
const GCodeWriter& writer() const { return m_writer; }
PlaceholderParser& placeholder_parser() { return m_placeholder_parser_integration.parser; }
const PlaceholderParser& placeholder_parser() const { return m_placeholder_parser_integration.parser; }
// Process a template through the placeholder parser, collect error messages to be reported
// inside the generated string and after the G-code export finishes.
std::string placeholder_parser_process(const std::string &name, const std::string &templ, unsigned int current_extruder_id, const DynamicConfig *config_override = nullptr);
bool enable_cooling_markers() const { return m_enable_cooling_markers; }
void set_layer_count(unsigned int value) { m_layer_count = value; }
void apply_print_config(const PrintConfig &print_config);
// append full config to the given string
static void append_full_config(const Print& print, std::string& str);
// translate full config into a list of <key, value> items
static void encode_full_config(const Print& print, std::vector<std::pair<std::string, std::string>>& config);
using ObjectLayerToPrint = GCode::ObjectLayerToPrint;
using ObjectsLayerToPrint = std::vector<GCode::ObjectLayerToPrint>;
std::optional<Point> last_position;
private:
class GCodeOutputStream {
public:
GCodeOutputStream(FILE *f, GCodeProcessor &processor) : f(f), m_processor(processor) {}
~GCodeOutputStream() { this->close(); }
// Set a find-replace post-processor to modify the G-code before GCodePostProcessor.
// It is being set to null inside process_layers(), because the find-replace process
// is being called on a secondary thread to improve performance.
void set_find_replace(GCodeFindReplace *find_replace, bool enabled) { m_find_replace_backup = find_replace; m_find_replace = enabled ? find_replace : nullptr; }
void find_replace_enable() { m_find_replace = m_find_replace_backup; }
void find_replace_supress() { m_find_replace = nullptr; }
bool is_open() const { return f; }
bool is_error() const;
void flush();
void close();
// Write a string into a file.
void write(const std::string& what) { this->write(what.c_str()); }
void write(const char* what);
// Write a string into a file.
// Add a newline, if the string does not end with a newline already.
// Used to export a custom G-code section processed by the PlaceholderParser.
void writeln(const std::string& what);
// Formats and write into a file the given data.
void write_format(const char* format, ...);
private:
FILE *f { nullptr };
// Find-replace post-processor to be called before GCodePostProcessor.
GCodeFindReplace *m_find_replace { nullptr };
// If suppressed, the backoup holds m_find_replace.
GCodeFindReplace *m_find_replace_backup { nullptr };
GCodeProcessor &m_processor;
};
void _do_export(Print &print, GCodeOutputStream &file, ThumbnailsGeneratorCallback thumbnail_cb);
static ObjectsLayerToPrint collect_layers_to_print(const PrintObject &object);
static std::vector<std::pair<coordf_t, ObjectsLayerToPrint>> collect_layers_to_print(const Print &print);
/** @brief Generates ramping travel gcode for layer change. */
std::string get_layer_change_gcode(const Vec3d& from, const Vec3d& to, const unsigned extruder_id);
LayerResult process_layer(
const Print &print,
// Set of object & print layers of the same PrintObject and with the same print_z.
const ObjectsLayerToPrint &layers,
const LayerTools &layer_tools,
const GCode::SmoothPathCaches &smooth_path_caches,
const bool last_layer,
// Pairs of PrintObject index and its instance index.
const std::vector<const PrintInstance*> *ordering,
// If set to size_t(-1), then print all copies of all objects.
// Otherwise print a single copy of a single object.
const size_t single_object_idx = size_t(-1));
// Process all layers of all objects (non-sequential mode) with a parallel pipeline:
// Generate G-code, run the filters (vase mode, cooling buffer), run the G-code analyser
// and export G-code into file.
void process_layers(
const Print &print,
const ToolOrdering &tool_ordering,
const std::vector<const PrintInstance*> &print_object_instances_ordering,
const std::vector<std::pair<coordf_t, ObjectsLayerToPrint>> &layers_to_print,
const GCode::SmoothPathCache &smooth_path_cache_global,
GCodeOutputStream &output_stream);
// Process all layers of a single object instance (sequential mode) with a parallel pipeline:
// Generate G-code, run the filters (vase mode, cooling buffer), run the G-code analyser
// and export G-code into file.
void process_layers(
const Print &print,
const ToolOrdering &tool_ordering,
ObjectsLayerToPrint layers_to_print,
const size_t single_object_idx,
const GCode::SmoothPathCache &smooth_path_cache_global,
GCodeOutputStream &output_stream);
void set_extruders(const std::vector<unsigned int> &extruder_ids);
std::string preamble();
std::string change_layer(
coordf_t previous_layer_z,
coordf_t print_z,
bool vase_mode
);
std::string extrude_entity(const ExtrusionEntityReference &entity, const GCode::SmoothPathCache &smooth_path_cache, const std::string_view description, double speed = -1.);
std::string extrude_loop(const ExtrusionLoop &loop, const GCode::SmoothPathCache &smooth_path_cache, const std::string_view description, double speed = -1.);
std::string extrude_skirt(const ExtrusionLoop &loop_src, const ExtrusionFlow &extrusion_flow_override,
const GCode::SmoothPathCache &smooth_path_cache, const std::string_view description, double speed);
std::string extrude_multi_path(const ExtrusionMultiPath &multipath, bool reverse, const GCode::SmoothPathCache &smooth_path_cache, const std::string_view description, double speed = -1.);
std::string extrude_path(const ExtrusionPath &path, bool reverse, const GCode::SmoothPathCache &smooth_path_cache, const std::string_view description, double speed = -1.);
struct InstanceToPrint
{
InstanceToPrint(size_t object_layer_to_print_id, const PrintObject &print_object, size_t instance_id) :
object_layer_to_print_id(object_layer_to_print_id), print_object(print_object), instance_id(instance_id) {}
// Index into std::vector<ObjectLayerToPrint>, which contains Object and Support layers for the current print_z, collected for a single object, or for possibly multiple objects with multiple instances.
const size_t object_layer_to_print_id;
const PrintObject &print_object;
// Instance idx of the copy of a print object.
const size_t instance_id;
};
std::vector<InstanceToPrint> sort_print_object_instances(
// Object and Support layers for the current print_z, collected for a single object, or for possibly multiple objects with multiple instances.
const std::vector<ObjectLayerToPrint> &layers,
// Ordering must be defined for normal (non-sequential print).
const std::vector<const PrintInstance*> *ordering,
// For sequential print, the instance of the object to be printing has to be defined.
const size_t single_object_instance_idx);
// This function will be called for each printing extruder, possibly twice: First for wiping extrusions, second for normal extrusions.
void process_layer_single_object(
// output
std::string &gcode,
// Index of the extruder currently active.
const unsigned int extruder_id,
// What object and instance is going to be printed.
const InstanceToPrint &print_instance,
// and the object & support layer of the above.
const ObjectLayerToPrint &layer_to_print,
// Container for extruder overrides (when wiping into object or infill).
const LayerTools &layer_tools,
// Optional smooth path interpolating extrusion polylines.
const GCode::SmoothPathCache &smooth_path_cache,
// Is any extrusion possibly marked as wiping extrusion?
const bool is_anything_overridden,
// Round 1 (wiping into object or infill) or round 2 (normal extrusions).
const bool print_wipe_extrusions);
std::string extrude_support(const ExtrusionEntityReferences &support_fills, const GCode::SmoothPathCache &smooth_path_cache);
std::string generate_travel_gcode(
const Points3& travel,
const std::string& comment,
const std::function<std::string()>& insert_gcode
);
Polyline generate_travel_xy_path(
const Point& start,
const Point& end,
const bool needs_retraction,
bool& could_be_wipe_disabled
);
std::string travel_to(
const Point &start_point,
const Point &end_point,
ExtrusionRole role,
const std::string &comment,
const std::function<std::string()>& insert_gcode
);
std::string travel_to_first_position(const Vec3crd& point, const double from_z, const std::function<std::string()>& insert_gcode);
bool needs_retraction(const Polyline &travel, ExtrusionRole role = ExtrusionRole::None);
std::string retract_and_wipe(bool toolchange = false);
std::string unretract() { return m_writer.unretract(); }
std::string set_extruder(unsigned int extruder_id, double print_z);
bool line_distancer_is_required(const std::vector<unsigned int>& extruder_ids);
// Cache for custom seam enforcers/blockers for each layer.
SeamPlacer m_seam_placer;
/* Origin of print coordinates expressed in unscaled G-code coordinates.
This affects the input arguments supplied to the extrude*() and travel_to()
methods. */
Vec2d m_origin;
FullPrintConfig m_config;
// scaled G-code resolution
double m_scaled_resolution;
GCodeWriter m_writer;
struct PlaceholderParserIntegration {
void reset();
void init(const GCodeWriter &config);
void update_from_gcodewriter(const GCodeWriter &writer, const WipeTowerData& wipe_tower_data);
void validate_output_vector_variables();
PlaceholderParser parser;
// For random number generator etc.
PlaceholderParser::ContextData context;
// Collection of templates, on which the placeholder substitution failed.
std::map<std::string, std::string> failed_templates;
// Input/output from/to custom G-code block, for returning position, retraction etc.
DynamicConfig output_config;
ConfigOptionFloats *opt_position { nullptr };
ConfigOptionFloats *opt_e_position { nullptr };
ConfigOptionFloat *opt_zhop { nullptr };
ConfigOptionFloats *opt_e_retracted { nullptr };
ConfigOptionFloats *opt_e_restart_extra { nullptr };
ConfigOptionFloats *opt_extruded_volume { nullptr };
ConfigOptionFloats *opt_extruded_weight { nullptr };
ConfigOptionFloat *opt_extruded_volume_total { nullptr };
ConfigOptionFloat *opt_extruded_weight_total { nullptr };
// Caches of the data passed to the script.
size_t num_extruders;
std::vector<double> position;
std::vector<double> e_position;
std::vector<double> e_retracted;
std::vector<double> e_restart_extra;
} m_placeholder_parser_integration;
OozePrevention m_ooze_prevention;
GCode::Wipe m_wipe;
GCode::LabelObjects m_label_objects;
AvoidCrossingPerimeters m_avoid_crossing_perimeters;
JPSPathFinder m_avoid_crossing_curled_overhangs;
RetractWhenCrossingPerimeters m_retract_when_crossing_perimeters;
GCode::TravelObstacleTracker m_travel_obstacle_tracker;
bool m_enable_loop_clipping;
// If enabled, the G-code generator will put following comments at the ends
// of the G-code lines: _EXTRUDE_SET_SPEED, _WIPE, _BRIDGE_FAN_START, _BRIDGE_FAN_END
// Those comments are received and consumed (removed from the G-code) by the CoolingBuffer.pm Perl module.
bool m_enable_cooling_markers;
// Markers for the Pressure Equalizer to recognize the extrusion type.
// The Pressure Equalizer removes the markers from the final G-code.
bool m_enable_extrusion_role_markers;
// Keeps track of the last extrusion role passed to the processor
GCodeExtrusionRole m_last_processor_extrusion_role;
// How many times will change_layer() be called?
// change_layer() will update the progress bar.
unsigned int m_layer_count;
// Progress bar indicator. Increments from -1 up to layer_count.
int m_layer_index;
// Current layer processed. In sequential printing mode, only a single copy will be printed.
// In non-sequential mode, all its copies will be printed.
const Layer* m_layer;
// m_layer is an object layer and it is being printed over raft surface.
bool m_object_layer_over_raft;
double m_volumetric_speed;
// Support for the extrusion role markers. Which marker is active?
GCodeExtrusionRole m_last_extrusion_role;
// Support for G-Code Processor
float m_last_height{ 0.0f };
float m_last_layer_z{ 0.0f };
float m_max_layer_z{ 0.0f };
float m_last_width{ 0.0f };
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
double m_last_mm3_per_mm;
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
std::optional<Vec3d> m_previous_layer_last_position;
std::optional<Vec3d> m_previous_layer_last_position_before_wipe;
// This needs to be populated during the layer processing!
std::optional<Vec3d> m_current_layer_first_position;
std::optional<unsigned> m_layer_change_extruder_id;
bool m_already_unretracted{false};
std::unique_ptr<CoolingBuffer> m_cooling_buffer;
std::unique_ptr<SpiralVase> m_spiral_vase;
std::unique_ptr<GCodeFindReplace> m_find_replace;
std::unique_ptr<PressureEqualizer> m_pressure_equalizer;
std::unique_ptr<GCode::WipeTowerIntegration> m_wipe_tower;
// Heights (print_z) at which the skirt has already been extruded.
std::vector<coordf_t> m_skirt_done;
// Has the brim been extruded already? Brim is being extruded only for the first object of a multi-object print.
bool m_brim_done;
// Flag indicating whether the nozzle temperature changes from 1st to 2nd layer were performed.
bool m_second_layer_things_done;
// G-code that is due to be written before the next extrusion
std::string m_pending_pre_extrusion_gcode;
bool m_silent_time_estimator_enabled;
// Processor
GCodeProcessor m_processor;
// Back-pointer to Print (const).
const Print* m_print;
std::string _extrude(
const ExtrusionAttributes &attribs, const Geometry::ArcWelder::Path &path, const std::string_view description, double speed = -1);
void print_machine_envelope(GCodeOutputStream &file, const Print &print);
void _print_first_layer_bed_temperature(GCodeOutputStream &file, const Print &print, const std::string &gcode, unsigned int first_printing_extruder_id, bool wait);
void _print_first_layer_extruder_temperatures(GCodeOutputStream &file, const Print &print, const std::string &gcode, unsigned int first_printing_extruder_id, bool wait);
// On the first printing layer. This flag triggers first layer speeds.
bool on_first_layer() const { return m_layer != nullptr && m_layer->id() == 0; }
// To control print speed of 1st object layer over raft interface.
bool object_layer_over_raft() const { return m_object_layer_over_raft; }
// Fill in cache of smooth paths for perimeters, fills and supports of the given object layers.
// Based on params, the paths are either decimated to sparser polylines, or interpolated with circular arches.
static void smooth_path_interpolate(const ObjectLayerToPrint &layers, const GCode::SmoothPathCache::InterpolationParameters &params, GCode::SmoothPathCache &out);
friend class GCode::Wipe;
friend class GCode::WipeTowerIntegration;
friend class PressureEqualizer;
};
std::vector<const PrintInstance*> sort_object_instances_by_model_order(const Print& print);
}
#endif