mirror of
https://git.mirrors.martin98.com/https://github.com/prusa3d/PrusaSlicer.git
synced 2025-07-27 21:22:02 +08:00

WIP GCode/SmoothPath.cpp,hpp cache for interpolating extrusion path with arches. Removed Perl test t/geometry.t, replaced with C++ tests. Refactored ExtrusionEntity and derived classes to hold extrusion attributes in new ExtrusionFlow/ExtrusionAttributes classes. Reworked path ordering in G-code export to never copy polylines, but to work with a new "flipped" attribute. Reworked G-code export to interpolate extrusion paths with smooth paths and to extrude those smooth paths. New parameters: arc_fitting, arc_fitting_tolerance Renamed GCode class to GCodeGenerator Moved GCodeWriter.cpp/hpp to GCode/ Moved Wipe from from GCode.cpp,hpp to GCode/Wipe.cpp,hpp Moved WipeTowerIntegration from GCode.cpp,hpp to GCode/WipeTowerIntegration.cpp,hpp New variant of douglas_peucker() to simplify range of iterators in place. Refactored wipe in general and wipe on perimeters / hiding seams. WIP: Convert estimate_speed_from_extrusion_quality() and its application to smooth paths. WIP: Cooling buffer to process G2G3, disable arc fitting for filters that cannot process it.
338 lines
12 KiB
C++
338 lines
12 KiB
C++
#include "ExtrusionEntity.hpp"
|
|
#include "ExtrusionEntityCollection.hpp"
|
|
#include "ExPolygon.hpp"
|
|
#include "ClipperUtils.hpp"
|
|
#include "Exception.hpp"
|
|
#include "Extruder.hpp"
|
|
#include "Flow.hpp"
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <sstream>
|
|
|
|
namespace Slic3r {
|
|
|
|
void ExtrusionPath::intersect_expolygons(const ExPolygons &collection, ExtrusionEntityCollection* retval) const
|
|
{
|
|
this->_inflate_collection(intersection_pl(Polylines{ polyline }, collection), retval);
|
|
}
|
|
|
|
void ExtrusionPath::subtract_expolygons(const ExPolygons &collection, ExtrusionEntityCollection* retval) const
|
|
{
|
|
this->_inflate_collection(diff_pl(Polylines{ this->polyline }, collection), retval);
|
|
}
|
|
|
|
void ExtrusionPath::clip_end(double distance)
|
|
{
|
|
this->polyline.clip_end(distance);
|
|
}
|
|
|
|
void ExtrusionPath::simplify(double tolerance)
|
|
{
|
|
this->polyline.simplify(tolerance);
|
|
}
|
|
|
|
double ExtrusionPath::length() const
|
|
{
|
|
return this->polyline.length();
|
|
}
|
|
|
|
void ExtrusionPath::_inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const
|
|
{
|
|
for (const Polyline &polyline : polylines)
|
|
collection->entities.emplace_back(new ExtrusionPath(polyline, this->attributes()));
|
|
}
|
|
|
|
void ExtrusionPath::polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const
|
|
{
|
|
polygons_append(out, offset(this->polyline, float(scale_(m_attributes.width/2)) + scaled_epsilon));
|
|
}
|
|
|
|
void ExtrusionPath::polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const
|
|
{
|
|
// Instantiating the Flow class to get the line spacing.
|
|
// Don't know the nozzle diameter, setting to zero. It shall not matter it shall be optimized out by the compiler.
|
|
bool bridge = this->role().is_bridge();
|
|
assert(! bridge || m_attributes.width == m_attributes.height);
|
|
auto flow = bridge ? Flow::bridging_flow(m_attributes.width, 0.f) : Flow(m_attributes.width, m_attributes.height, 0.f);
|
|
polygons_append(out, offset(this->polyline, 0.5f * float(flow.scaled_spacing()) + scaled_epsilon));
|
|
}
|
|
|
|
void ExtrusionMultiPath::reverse()
|
|
{
|
|
for (ExtrusionPath &path : this->paths)
|
|
path.reverse();
|
|
std::reverse(this->paths.begin(), this->paths.end());
|
|
}
|
|
|
|
double ExtrusionMultiPath::length() const
|
|
{
|
|
double len = 0;
|
|
for (const ExtrusionPath &path : this->paths)
|
|
len += path.polyline.length();
|
|
return len;
|
|
}
|
|
|
|
void ExtrusionMultiPath::polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const
|
|
{
|
|
for (const ExtrusionPath &path : this->paths)
|
|
path.polygons_covered_by_width(out, scaled_epsilon);
|
|
}
|
|
|
|
void ExtrusionMultiPath::polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const
|
|
{
|
|
for (const ExtrusionPath &path : this->paths)
|
|
path.polygons_covered_by_spacing(out, scaled_epsilon);
|
|
}
|
|
|
|
double ExtrusionMultiPath::min_mm3_per_mm() const
|
|
{
|
|
double min_mm3_per_mm = std::numeric_limits<double>::max();
|
|
for (const ExtrusionPath &path : this->paths)
|
|
min_mm3_per_mm = std::min(min_mm3_per_mm, path.min_mm3_per_mm());
|
|
return min_mm3_per_mm;
|
|
}
|
|
|
|
Polyline ExtrusionMultiPath::as_polyline() const
|
|
{
|
|
Polyline out;
|
|
if (! paths.empty()) {
|
|
size_t len = 0;
|
|
for (size_t i_path = 0; i_path < paths.size(); ++ i_path) {
|
|
assert(! paths[i_path].polyline.points.empty());
|
|
assert(i_path == 0 || paths[i_path - 1].polyline.points.back() == paths[i_path].polyline.points.front());
|
|
len += paths[i_path].polyline.points.size();
|
|
}
|
|
// The connecting points between the segments are equal.
|
|
len -= paths.size() - 1;
|
|
assert(len > 0);
|
|
out.points.reserve(len);
|
|
out.points.push_back(paths.front().polyline.points.front());
|
|
for (size_t i_path = 0; i_path < paths.size(); ++ i_path)
|
|
out.points.insert(out.points.end(), paths[i_path].polyline.points.begin() + 1, paths[i_path].polyline.points.end());
|
|
}
|
|
return out;
|
|
}
|
|
|
|
double ExtrusionLoop::area() const
|
|
{
|
|
double a = 0;
|
|
for (const ExtrusionPath &path : this->paths) {
|
|
assert(path.size() >= 2);
|
|
if (path.size() >= 2) {
|
|
// Assumming that the last point of one path segment is repeated at the start of the following path segment.
|
|
auto it = path.polyline.points.begin();
|
|
Point prev = *it ++;
|
|
for (; it != path.polyline.points.end(); ++ it) {
|
|
a += cross2(prev.cast<double>(), it->cast<double>());
|
|
prev = *it;
|
|
}
|
|
}
|
|
}
|
|
return a * 0.5;
|
|
}
|
|
|
|
void ExtrusionLoop::reverse()
|
|
{
|
|
#if 0
|
|
this->reverse_loop();
|
|
#else
|
|
throw Slic3r::LogicError("ExtrusionLoop::reverse() must NOT be called");
|
|
#endif
|
|
}
|
|
|
|
void ExtrusionLoop::reverse_loop()
|
|
{
|
|
for (ExtrusionPath &path : this->paths)
|
|
path.reverse();
|
|
std::reverse(this->paths.begin(), this->paths.end());
|
|
}
|
|
|
|
Polygon ExtrusionLoop::polygon() const
|
|
{
|
|
Polygon polygon;
|
|
for (const ExtrusionPath &path : this->paths) {
|
|
// for each polyline, append all points except the last one (because it coincides with the first one of the next polyline)
|
|
polygon.points.insert(polygon.points.end(), path.polyline.points.begin(), path.polyline.points.end()-1);
|
|
}
|
|
return polygon;
|
|
}
|
|
|
|
double ExtrusionLoop::length() const
|
|
{
|
|
double len = 0;
|
|
for (const ExtrusionPath &path : this->paths)
|
|
len += path.polyline.length();
|
|
return len;
|
|
}
|
|
|
|
bool ExtrusionLoop::split_at_vertex(const Point &point, const double scaled_epsilon)
|
|
{
|
|
for (ExtrusionPaths::iterator path = this->paths.begin(); path != this->paths.end(); ++path)
|
|
if (int idx = path->polyline.find_point(point, scaled_epsilon); idx != -1) {
|
|
if (this->paths.size() == 1) {
|
|
// just change the order of points
|
|
path->polyline.points.insert(path->polyline.points.end(), path->polyline.points.begin() + 1, path->polyline.points.begin() + idx + 1);
|
|
path->polyline.points.erase(path->polyline.points.begin(), path->polyline.points.begin() + idx);
|
|
} else {
|
|
// new paths list starts with the second half of current path
|
|
ExtrusionPaths new_paths;
|
|
new_paths.reserve(this->paths.size() + 1);
|
|
{
|
|
ExtrusionPath p = *path;
|
|
p.polyline.points.erase(p.polyline.points.begin(), p.polyline.points.begin() + idx);
|
|
if (p.polyline.is_valid())
|
|
new_paths.emplace_back(std::move(p));
|
|
}
|
|
|
|
// then we add all paths until the end of current path list
|
|
std::move(path + 1, this->paths.end(), std::back_inserter(new_paths)); // not including this path
|
|
|
|
// then we add all paths since the beginning of current list up to the previous one
|
|
std::move(this->paths.begin(), path, std::back_inserter(new_paths)); // not including this path
|
|
|
|
// finally we add the first half of current path
|
|
{
|
|
ExtrusionPath &p = *path;
|
|
p.polyline.points.erase(p.polyline.points.begin() + idx + 1, p.polyline.points.end());
|
|
if (p.polyline.is_valid())
|
|
new_paths.emplace_back(std::move(p));
|
|
}
|
|
// we can now override the old path list with the new one and stop looping
|
|
this->paths = std::move(new_paths);
|
|
}
|
|
return true;
|
|
}
|
|
// The point was not found.
|
|
return false;
|
|
}
|
|
|
|
ExtrusionLoop::ClosestPathPoint ExtrusionLoop::get_closest_path_and_point(const Point &point, bool prefer_non_overhang) const
|
|
{
|
|
// Find the closest path and closest point belonging to that path. Avoid overhangs, if asked for.
|
|
ClosestPathPoint out { 0, 0 };
|
|
double min2 = std::numeric_limits<double>::max();
|
|
ClosestPathPoint best_non_overhang { 0, 0 };
|
|
double min2_non_overhang = std::numeric_limits<double>::max();
|
|
for (const ExtrusionPath &path : this->paths) {
|
|
std::pair<int, Point> foot_pt_ = foot_pt(path.polyline.points, point);
|
|
double d2 = (foot_pt_.second - point).cast<double>().squaredNorm();
|
|
if (d2 < min2) {
|
|
out.foot_pt = foot_pt_.second;
|
|
out.path_idx = &path - &this->paths.front();
|
|
out.segment_idx = foot_pt_.first;
|
|
min2 = d2;
|
|
}
|
|
if (prefer_non_overhang && ! path.role().is_bridge() && d2 < min2_non_overhang) {
|
|
best_non_overhang.foot_pt = foot_pt_.second;
|
|
best_non_overhang.path_idx = &path - &this->paths.front();
|
|
best_non_overhang.segment_idx = foot_pt_.first;
|
|
min2_non_overhang = d2;
|
|
}
|
|
}
|
|
if (prefer_non_overhang && min2_non_overhang != std::numeric_limits<double>::max())
|
|
// Only apply the non-overhang point if there is one.
|
|
out = best_non_overhang;
|
|
return out;
|
|
}
|
|
|
|
// Splitting an extrusion loop, possibly made of multiple segments, some of the segments may be bridging.
|
|
void ExtrusionLoop::split_at(const Point &point, bool prefer_non_overhang, const double scaled_epsilon)
|
|
{
|
|
if (this->paths.empty())
|
|
return;
|
|
|
|
auto [path_idx, segment_idx, p] = get_closest_path_and_point(point, prefer_non_overhang);
|
|
|
|
// Snap p to start or end of segment_idx if closer than scaled_epsilon.
|
|
{
|
|
const Point *p1 = this->paths[path_idx].polyline.points.data() + segment_idx;
|
|
const Point *p2 = p1;
|
|
++ p2;
|
|
double d2_1 = (point - *p1).cast<double>().squaredNorm();
|
|
double d2_2 = (point - *p2).cast<double>().squaredNorm();
|
|
const double thr2 = scaled_epsilon * scaled_epsilon;
|
|
if (d2_1 < d2_2) {
|
|
if (d2_1 < thr2)
|
|
p = *p1;
|
|
} else {
|
|
if (d2_2 < thr2)
|
|
p = *p2;
|
|
}
|
|
}
|
|
|
|
// now split path_idx in two parts
|
|
const ExtrusionPath &path = this->paths[path_idx];
|
|
ExtrusionPath p1(path.attributes());
|
|
ExtrusionPath p2(path.attributes());
|
|
path.polyline.split_at(p, &p1.polyline, &p2.polyline);
|
|
|
|
if (this->paths.size() == 1) {
|
|
if (p2.polyline.is_valid()) {
|
|
if (p1.polyline.is_valid())
|
|
p2.polyline.points.insert(p2.polyline.points.end(), p1.polyline.points.begin() + 1, p1.polyline.points.end());
|
|
this->paths.front().polyline.points = std::move(p2.polyline.points);
|
|
} else
|
|
this->paths.front().polyline.points = std::move(p1.polyline.points);
|
|
} else {
|
|
// install the two paths
|
|
this->paths.erase(this->paths.begin() + path_idx);
|
|
if (p2.polyline.is_valid()) this->paths.insert(this->paths.begin() + path_idx, p2);
|
|
if (p1.polyline.is_valid()) this->paths.insert(this->paths.begin() + path_idx, p1);
|
|
}
|
|
|
|
// split at the new vertex
|
|
this->split_at_vertex(p, 0.);
|
|
}
|
|
|
|
void ExtrusionLoop::clip_end(double distance, ExtrusionPaths* paths) const
|
|
{
|
|
*paths = this->paths;
|
|
|
|
while (distance > 0 && !paths->empty()) {
|
|
ExtrusionPath &last = paths->back();
|
|
double len = last.length();
|
|
if (len <= distance) {
|
|
paths->pop_back();
|
|
distance -= len;
|
|
} else {
|
|
last.polyline.clip_end(distance);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ExtrusionLoop::has_overhang_point(const Point &point) const
|
|
{
|
|
for (const ExtrusionPath &path : this->paths) {
|
|
int pos = path.polyline.find_point(point);
|
|
if (pos != -1) {
|
|
// point belongs to this path
|
|
// we consider it overhang only if it's not an endpoint
|
|
return (path.role().is_bridge() && pos > 0 && pos != int(path.polyline.points.size())-1);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void ExtrusionLoop::polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const
|
|
{
|
|
for (const ExtrusionPath &path : this->paths)
|
|
path.polygons_covered_by_width(out, scaled_epsilon);
|
|
}
|
|
|
|
void ExtrusionLoop::polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const
|
|
{
|
|
for (const ExtrusionPath &path : this->paths)
|
|
path.polygons_covered_by_spacing(out, scaled_epsilon);
|
|
}
|
|
|
|
double ExtrusionLoop::min_mm3_per_mm() const
|
|
{
|
|
double min_mm3_per_mm = std::numeric_limits<double>::max();
|
|
for (const ExtrusionPath &path : this->paths)
|
|
min_mm3_per_mm = std::min(min_mm3_per_mm, path.min_mm3_per_mm());
|
|
return min_mm3_per_mm;
|
|
}
|
|
|
|
}
|