1678 lines
83 KiB
C++

#include "Exception.hpp"
#include "Print.hpp"
#include "BoundingBox.hpp"
#include "Brim.hpp"
#include "ClipperUtils.hpp"
#include "Extruder.hpp"
#include "Flow.hpp"
#include "Geometry/ConvexHull.hpp"
#include "I18N.hpp"
#include "ShortestPath.hpp"
#include "Thread.hpp"
#include "GCode.hpp"
#include "GCode/WipeTower.hpp"
#include "GCode/ConflictChecker.hpp"
#include "Utils.hpp"
#include "BuildVolume.hpp"
#include "format.hpp"
#include <float.h>
#include <algorithm>
#include <limits>
#include <string>
#include <unordered_set>
#include <boost/filesystem/path.hpp>
#include <boost/format.hpp>
#include <boost/log/trivial.hpp>
#include <boost/regex.hpp>
namespace Slic3r {
template class PrintState<PrintStep, psCount>;
template class PrintState<PrintObjectStep, posCount>;
PrintRegion::PrintRegion(const PrintRegionConfig &config) : PrintRegion(config, config.hash()) {}
PrintRegion::PrintRegion(PrintRegionConfig &&config) : PrintRegion(std::move(config), config.hash()) {}
void Print::clear()
{
std::scoped_lock<std::mutex> lock(this->state_mutex());
// The following call should stop background processing if it is running.
this->invalidate_all_steps();
for (PrintObject *object : m_objects)
delete object;
m_objects.clear();
m_print_regions.clear();
m_model.clear_objects();
}
// Called by Print::apply().
// This method only accepts PrintConfig option keys.
bool Print::invalidate_state_by_config_options(const ConfigOptionResolver & /* new_config */, const std::vector<t_config_option_key> &opt_keys)
{
if (opt_keys.empty())
return false;
// Cache the plenty of parameters, which influence the G-code generator only,
// or they are only notes not influencing the generated G-code.
static std::unordered_set<std::string> steps_gcode = {
"autoemit_temperature_commands",
"avoid_crossing_perimeters",
"avoid_crossing_perimeters_max_detour",
"bed_shape",
"bed_temperature",
"before_layer_gcode",
"between_objects_gcode",
"bridge_acceleration",
"bridge_fan_speed",
"enable_dynamic_fan_speeds",
"overhang_fan_speed_0",
"overhang_fan_speed_1",
"overhang_fan_speed_2",
"overhang_fan_speed_3",
"colorprint_heights",
"cooling",
"default_acceleration",
"deretract_speed",
"disable_fan_first_layers",
"duplicate_distance",
"end_gcode",
"end_filament_gcode",
"external_perimeter_acceleration",
"extrusion_axis",
"extruder_clearance_height",
"extruder_clearance_radius",
"extruder_colour",
"extruder_offset",
"extrusion_multiplier",
"fan_always_on",
"fan_below_layer_time",
"full_fan_speed_layer",
"filament_colour",
"filament_diameter",
"filament_density",
"filament_notes",
"filament_cost",
"filament_spool_weight",
"first_layer_acceleration",
"first_layer_acceleration_over_raft",
"first_layer_bed_temperature",
"first_layer_speed_over_raft",
"gcode_comments",
"gcode_label_objects",
"infill_acceleration",
"layer_gcode",
"min_fan_speed",
"max_fan_speed",
"max_print_height",
"min_print_speed",
"max_print_speed",
"max_volumetric_speed",
"max_volumetric_extrusion_rate_slope_positive",
"max_volumetric_extrusion_rate_slope_negative",
"notes",
"only_retract_when_crossing_perimeters",
"output_filename_format",
"perimeter_acceleration",
"post_process",
"gcode_substitutions",
"printer_notes",
"retract_before_travel",
"retract_before_wipe",
"retract_layer_change",
"retract_length",
"retract_length_toolchange",
"retract_lift",
"retract_lift_above",
"retract_lift_below",
"retract_restart_extra",
"retract_restart_extra_toolchange",
"retract_speed",
"single_extruder_multi_material_priming",
"slowdown_below_layer_time",
"solid_infill_acceleration",
"standby_temperature_delta",
"start_gcode",
"start_filament_gcode",
"toolchange_gcode",
"top_solid_infill_acceleration",
"travel_acceleration",
"thumbnails",
"thumbnails_format",
"use_firmware_retraction",
"use_relative_e_distances",
"use_volumetric_e",
"variable_layer_height",
"wipe"
};
static std::unordered_set<std::string> steps_ignore;
std::vector<PrintStep> steps;
std::vector<PrintObjectStep> osteps;
bool invalidated = false;
for (const t_config_option_key &opt_key : opt_keys) {
if (steps_gcode.find(opt_key) != steps_gcode.end()) {
// These options only affect G-code export or they are just notes without influence on the generated G-code,
// so there is nothing to invalidate.
steps.emplace_back(psGCodeExport);
} else if (steps_ignore.find(opt_key) != steps_ignore.end()) {
// These steps have no influence on the G-code whatsoever. Just ignore them.
} else if (
opt_key == "skirts"
|| opt_key == "skirt_height"
|| opt_key == "draft_shield"
|| opt_key == "skirt_distance"
|| opt_key == "min_skirt_length"
|| opt_key == "ooze_prevention"
|| opt_key == "wipe_tower_x"
|| opt_key == "wipe_tower_y"
|| opt_key == "wipe_tower_rotation_angle") {
steps.emplace_back(psSkirtBrim);
} else if (
opt_key == "first_layer_height"
|| opt_key == "nozzle_diameter"
|| opt_key == "resolution"
// Spiral Vase forces different kind of slicing than the normal model:
// In Spiral Vase mode, holes are closed and only the largest area contour is kept at each layer.
// Therefore toggling the Spiral Vase on / off requires complete reslicing.
|| opt_key == "spiral_vase") {
osteps.emplace_back(posSlice);
} else if (
opt_key == "complete_objects"
|| opt_key == "filament_type"
|| opt_key == "first_layer_temperature"
|| opt_key == "filament_loading_speed"
|| opt_key == "filament_loading_speed_start"
|| opt_key == "filament_unloading_speed"
|| opt_key == "filament_unloading_speed_start"
|| opt_key == "filament_toolchange_delay"
|| opt_key == "filament_cooling_moves"
|| opt_key == "filament_minimal_purge_on_wipe_tower"
|| opt_key == "filament_cooling_initial_speed"
|| opt_key == "filament_cooling_final_speed"
|| opt_key == "filament_ramming_parameters"
|| opt_key == "filament_max_volumetric_speed"
|| opt_key == "gcode_flavor"
|| opt_key == "high_current_on_filament_swap"
|| opt_key == "infill_first"
|| opt_key == "single_extruder_multi_material"
|| opt_key == "temperature"
|| opt_key == "idle_temperature"
|| opt_key == "wipe_tower"
|| opt_key == "wipe_tower_width"
|| opt_key == "wipe_tower_brim_width"
|| opt_key == "wipe_tower_cone_angle"
|| opt_key == "wipe_tower_bridging"
|| opt_key == "wipe_tower_extra_spacing"
|| opt_key == "wipe_tower_no_sparse_layers"
|| opt_key == "wipe_tower_extruder"
|| opt_key == "wiping_volumes_matrix"
|| opt_key == "parking_pos_retraction"
|| opt_key == "cooling_tube_retraction"
|| opt_key == "cooling_tube_length"
|| opt_key == "extra_loading_move"
|| opt_key == "travel_speed"
|| opt_key == "travel_speed_z"
|| opt_key == "first_layer_speed"
|| opt_key == "z_offset") {
steps.emplace_back(psWipeTower);
steps.emplace_back(psSkirtBrim);
} else if (opt_key == "filament_soluble") {
steps.emplace_back(psWipeTower);
// Soluble support interface / non-soluble base interface produces non-soluble interface layers below soluble interface layers.
// Thus switching between soluble / non-soluble interface layer material may require recalculation of supports.
//FIXME Killing supports on any change of "filament_soluble" is rough. We should check for each object whether that is necessary.
osteps.emplace_back(posSupportMaterial);
} else if (
opt_key == "first_layer_extrusion_width"
|| opt_key == "min_layer_height"
|| opt_key == "max_layer_height"
|| opt_key == "gcode_resolution") {
osteps.emplace_back(posPerimeters);
osteps.emplace_back(posInfill);
osteps.emplace_back(posSupportMaterial);
steps.emplace_back(psSkirtBrim);
} else if (opt_key == "avoid_crossing_curled_overhangs") {
osteps.emplace_back(posEstimateCurledExtrusions);
} else {
// for legacy, if we can't handle this option let's invalidate all steps
//FIXME invalidate all steps of all objects as well?
invalidated |= this->invalidate_all_steps();
// Continue with the other opt_keys to possibly invalidate any object specific steps.
}
}
sort_remove_duplicates(steps);
for (PrintStep step : steps)
invalidated |= this->invalidate_step(step);
sort_remove_duplicates(osteps);
for (PrintObjectStep ostep : osteps)
for (PrintObject *object : m_objects)
invalidated |= object->invalidate_step(ostep);
return invalidated;
}
bool Print::invalidate_step(PrintStep step)
{
bool invalidated = Inherited::invalidate_step(step);
// Propagate to dependent steps.
if (step != psGCodeExport)
invalidated |= Inherited::invalidate_step(psGCodeExport);
return invalidated;
}
// returns true if an object step is done on all objects
// and there's at least one object
bool Print::is_step_done(PrintObjectStep step) const
{
if (m_objects.empty())
return false;
std::scoped_lock<std::mutex> lock(this->state_mutex());
for (const PrintObject *object : m_objects)
if (! object->is_step_done_unguarded(step))
return false;
return true;
}
// returns 0-based indices of used extruders
std::vector<unsigned int> Print::object_extruders() const
{
std::vector<unsigned int> extruders;
extruders.reserve(m_print_regions.size() * m_objects.size() * 3);
for (const PrintObject *object : m_objects)
for (const PrintRegion &region : object->all_regions())
region.collect_object_printing_extruders(*this, extruders);
sort_remove_duplicates(extruders);
return extruders;
}
// returns 0-based indices of used extruders
std::vector<unsigned int> Print::support_material_extruders() const
{
std::vector<unsigned int> extruders;
bool support_uses_current_extruder = false;
auto num_extruders = (unsigned int)m_config.nozzle_diameter.size();
for (PrintObject *object : m_objects) {
if (object->has_support_material()) {
assert(object->config().support_material_extruder >= 0);
if (object->config().support_material_extruder == 0)
support_uses_current_extruder = true;
else {
unsigned int i = (unsigned int)object->config().support_material_extruder - 1;
extruders.emplace_back((i >= num_extruders) ? 0 : i);
}
assert(object->config().support_material_interface_extruder >= 0);
if (object->config().support_material_interface_extruder == 0)
support_uses_current_extruder = true;
else {
unsigned int i = (unsigned int)object->config().support_material_interface_extruder - 1;
extruders.emplace_back((i >= num_extruders) ? 0 : i);
}
}
}
if (support_uses_current_extruder)
// Add all object extruders to the support extruders as it is not know which one will be used to print supports.
append(extruders, this->object_extruders());
sort_remove_duplicates(extruders);
return extruders;
}
// returns 0-based indices of used extruders
std::vector<unsigned int> Print::extruders() const
{
std::vector<unsigned int> extruders = this->object_extruders();
append(extruders, this->support_material_extruders());
sort_remove_duplicates(extruders);
// The wipe tower extruder can also be set. When the wipe tower is enabled and it will be generated,
// append its extruder into the list too.
if (has_wipe_tower() && config().wipe_tower_extruder != 0 && extruders.size() > 1) {
assert(config().wipe_tower_extruder > 0 && config().wipe_tower_extruder < int(config().nozzle_diameter.size()));
extruders.emplace_back(config().wipe_tower_extruder - 1); // the config value is 1-based
sort_remove_duplicates(extruders);
}
return extruders;
}
unsigned int Print::num_object_instances() const
{
unsigned int instances = 0;
for (const PrintObject *print_object : m_objects)
instances += (unsigned int)print_object->instances().size();
return instances;
}
double Print::max_allowed_layer_height() const
{
double nozzle_diameter_max = 0.;
for (unsigned int extruder_id : this->extruders())
nozzle_diameter_max = std::max(nozzle_diameter_max, m_config.nozzle_diameter.get_at(extruder_id));
return nozzle_diameter_max;
}
std::vector<ObjectID> Print::print_object_ids() const
{
std::vector<ObjectID> out;
// Reserve one more for the caller to append the ID of the Print itself.
out.reserve(m_objects.size() + 1);
for (const PrintObject *print_object : m_objects)
out.emplace_back(print_object->id());
return out;
}
bool Print::has_infinite_skirt() const
{
return (m_config.draft_shield == dsEnabled && m_config.skirts > 0)/* || (m_config.ooze_prevention && this->extruders().size() > 1)*/;
}
bool Print::has_skirt() const
{
return (m_config.skirt_height > 0 && m_config.skirts > 0) || has_infinite_skirt();
// case dsLimited should only be taken into account when skirt_height and skirts are positive,
// so it is covered by the first condition.
}
bool Print::has_brim() const
{
return std::any_of(m_objects.begin(), m_objects.end(), [](PrintObject *object) { return object->has_brim(); });
}
bool Print::sequential_print_horizontal_clearance_valid(const Print& print, Polygons* polygons)
{
Polygons convex_hulls_other;
if (polygons != nullptr)
polygons->clear();
std::vector<size_t> intersecting_idxs;
std::map<ObjectID, Polygon> map_model_object_to_convex_hull;
for (const PrintObject *print_object : print.objects()) {
assert(! print_object->model_object()->instances.empty());
assert(! print_object->instances().empty());
ObjectID model_object_id = print_object->model_object()->id();
auto it_convex_hull = map_model_object_to_convex_hull.find(model_object_id);
// Get convex hull of all printable volumes assigned to this print object.
ModelInstance *model_instance0 = print_object->model_object()->instances.front();
if (it_convex_hull == map_model_object_to_convex_hull.end()) {
// Calculate the convex hull of a printable object.
// Grow convex hull with the clearance margin.
// FIXME: Arrangement has different parameters for offsetting (jtMiter, limit 2)
// which causes that the warning will be showed after arrangement with the
// appropriate object distance. Even if I set this to jtMiter the warning still shows up.
Geometry::Transformation trafo = model_instance0->get_transformation();
trafo.set_offset({ 0.0, 0.0, model_instance0->get_offset().z() });
it_convex_hull = map_model_object_to_convex_hull.emplace_hint(it_convex_hull, model_object_id,
offset(print_object->model_object()->convex_hull_2d(trafo.get_matrix()),
// Shrink the extruder_clearance_radius a tiny bit, so that if the object arrangement algorithm placed the objects
// exactly by satisfying the extruder_clearance_radius, this test will not trigger collision.
float(scale_(0.5 * print.config().extruder_clearance_radius.value - BuildVolume::BedEpsilon)),
jtRound, scale_(0.1)).front());
}
// Make a copy, so it may be rotated for instances.
Polygon convex_hull0 = it_convex_hull->second;
const double z_diff = Geometry::rotation_diff_z(model_instance0->get_matrix(), print_object->instances().front().model_instance->get_matrix());
if (std::abs(z_diff) > EPSILON)
convex_hull0.rotate(z_diff);
// Now we check that no instance of convex_hull intersects any of the previously checked object instances.
for (const PrintInstance &instance : print_object->instances()) {
Polygon convex_hull = convex_hull0;
// instance.shift is a position of a centered object, while model object may not be centered.
// Convert the shift from the PrintObject's coordinates into ModelObject's coordinates by removing the centering offset.
convex_hull.translate(instance.shift - print_object->center_offset());
// if output needed, collect indices (inside convex_hulls_other) of intersecting hulls
for (size_t i = 0; i < convex_hulls_other.size(); ++i) {
if (! intersection(convex_hulls_other[i], convex_hull).empty()) {
if (polygons == nullptr)
return false;
else {
intersecting_idxs.emplace_back(i);
intersecting_idxs.emplace_back(convex_hulls_other.size());
}
}
}
convex_hulls_other.emplace_back(std::move(convex_hull));
}
}
if (!intersecting_idxs.empty()) {
// use collected indices (inside convex_hulls_other) to update output
std::sort(intersecting_idxs.begin(), intersecting_idxs.end());
intersecting_idxs.erase(std::unique(intersecting_idxs.begin(), intersecting_idxs.end()), intersecting_idxs.end());
for (size_t i : intersecting_idxs) {
polygons->emplace_back(std::move(convex_hulls_other[i]));
}
return false;
}
return true;
}
static inline bool sequential_print_vertical_clearance_valid(const Print &print)
{
std::vector<const PrintInstance*> print_instances_ordered = sort_object_instances_by_model_order(print);
// Ignore the last instance printed.
print_instances_ordered.pop_back();
// Find the other highest instance.
auto it = std::max_element(print_instances_ordered.begin(), print_instances_ordered.end(), [](auto l, auto r) {
return l->print_object->height() < r->print_object->height();
});
return it == print_instances_ordered.end() || (*it)->print_object->height() <= scale_(print.config().extruder_clearance_height.value);
}
// Matches "G92 E0" with various forms of writing the zero and with an optional comment.
boost::regex regex_g92e0 { "^[ \\t]*[gG]92[ \\t]*[eE](0(\\.0*)?|\\.0+)[ \\t]*(;.*)?$" };
// Precondition: Print::validate() requires the Print::apply() to be called its invocation.
std::string Print::validate(std::vector<std::string>* warnings) const
{
std::vector<unsigned int> extruders = this->extruders();
if (warnings) {
for (size_t a=0; a<extruders.size(); ++a)
for (size_t b=a+1; b<extruders.size(); ++b)
if (std::abs(m_config.bed_temperature.get_at(extruders[a]) - m_config.bed_temperature.get_at(extruders[b])) > 15
|| std::abs(m_config.first_layer_bed_temperature.get_at(extruders[a]) - m_config.first_layer_bed_temperature.get_at(extruders[b])) > 15) {
warnings->emplace_back("_BED_TEMPS_DIFFER");
goto DONE;
}
DONE:;
}
if (m_objects.empty())
return _u8L("All objects are outside of the print volume.");
if (extruders.empty())
return _u8L("The supplied settings will cause an empty print.");
if (m_config.complete_objects) {
if (!sequential_print_horizontal_clearance_valid(*this, const_cast<Polygons*>(&m_sequential_print_clearance_contours)))
return _u8L("Some objects are too close; your extruder will collide with them.");
if (!sequential_print_vertical_clearance_valid(*this))
return _u8L("Some objects are too tall and cannot be printed without extruder collisions.");
}
else
const_cast<Polygons*>(&m_sequential_print_clearance_contours)->clear();
if (m_config.avoid_crossing_perimeters && m_config.avoid_crossing_curled_overhangs) {
return _u8L("Avoid crossing perimeters option and avoid crossing curled overhangs option cannot be both enabled together.");
}
if (m_config.spiral_vase) {
size_t total_copies_count = 0;
for (const PrintObject *object : m_objects)
total_copies_count += object->instances().size();
// #4043
if (total_copies_count > 1 && ! m_config.complete_objects.value)
return _u8L("Only a single object may be printed at a time in Spiral Vase mode. "
"Either remove all but the last object, or enable sequential mode by \"complete_objects\".");
assert(m_objects.size() == 1);
if (m_objects.front()->all_regions().size() > 1)
return _u8L("The Spiral Vase option can only be used when printing single material objects.");
}
if (m_config.machine_limits_usage == MachineLimitsUsage::EmitToGCode && m_config.gcode_flavor == gcfKlipper)
return L("Machine limits cannot be emitted to G-Code when Klipper firmware flavor is used. "
"Change the value of machine_limits_usage.");
// Cache of layer height profiles for checking:
// 1) Whether all layers are synchronized if printing with wipe tower and / or unsynchronized supports.
// 2) Whether layer height is constant for Organic supports.
// 3) Whether build volume Z is not violated.
std::vector<std::vector<coordf_t>> layer_height_profiles;
auto layer_height_profile = [this, &layer_height_profiles](const size_t print_object_idx) -> const std::vector<coordf_t>& {
const PrintObject &print_object = *m_objects[print_object_idx];
if (layer_height_profiles.empty())
layer_height_profiles.assign(m_objects.size(), std::vector<coordf_t>());
std::vector<coordf_t> &profile = layer_height_profiles[print_object_idx];
if (profile.empty())
PrintObject::update_layer_height_profile(*print_object.model_object(), print_object.slicing_parameters(), profile);
return profile;
};
// Checks that the print does not exceed the max print height
for (size_t print_object_idx = 0; print_object_idx < m_objects.size(); ++ print_object_idx) {
const PrintObject &print_object = *m_objects[print_object_idx];
//FIXME It is quite expensive to generate object layers just to get the print height!
if (auto layers = generate_object_layers(print_object.slicing_parameters(), layer_height_profile(print_object_idx));
! layers.empty() && layers.back() > this->config().max_print_height + EPSILON) {
return
// Test whether the last slicing plane is below or above the print volume.
0.5 * (layers[layers.size() - 2] + layers.back()) > this->config().max_print_height + EPSILON ?
format(_u8L("The object %1% exceeds the maximum build volume height."), print_object.model_object()->name) :
format(_u8L("While the object %1% itself fits the build volume, its last layer exceeds the maximum build volume height."), print_object.model_object()->name) +
" " + _u8L("You might want to reduce the size of your model or change current print settings and retry.");
}
}
// Some of the objects has variable layer height applied by painting or by a table.
bool has_custom_layering = std::find_if(m_objects.begin(), m_objects.end(),
[](const PrintObject *object) { return object->model_object()->has_custom_layering(); })
!= m_objects.end();
// Custom layering is not allowed for tree supports as of now.
for (size_t print_object_idx = 0; print_object_idx < m_objects.size(); ++ print_object_idx)
if (const PrintObject &print_object = *m_objects[print_object_idx];
print_object.has_support_material() && print_object.config().support_material_style.value == smsOrganic &&
print_object.model_object()->has_custom_layering()) {
if (const std::vector<coordf_t> &layers = layer_height_profile(print_object_idx); ! layers.empty())
if (! check_object_layers_fixed(print_object.slicing_parameters(), layers))
return _u8L("Variable layer height is not supported with Organic supports.");
}
if (this->has_wipe_tower() && ! m_objects.empty()) {
// Make sure all extruders use same diameter filament and have the same nozzle diameter
// EPSILON comparison is used for nozzles and 10 % tolerance is used for filaments
double first_nozzle_diam = m_config.nozzle_diameter.get_at(extruders.front());
double first_filament_diam = m_config.filament_diameter.get_at(extruders.front());
for (const auto& extruder_idx : extruders) {
double nozzle_diam = m_config.nozzle_diameter.get_at(extruder_idx);
double filament_diam = m_config.filament_diameter.get_at(extruder_idx);
if (nozzle_diam - EPSILON > first_nozzle_diam || nozzle_diam + EPSILON < first_nozzle_diam
|| std::abs((filament_diam-first_filament_diam)/first_filament_diam) > 0.1)
return _u8L("The wipe tower is only supported if all extruders have the same nozzle diameter "
"and use filaments of the same diameter.");
}
if (m_config.gcode_flavor != gcfRepRapSprinter && m_config.gcode_flavor != gcfRepRapFirmware &&
m_config.gcode_flavor != gcfRepetier && m_config.gcode_flavor != gcfMarlinLegacy &&
m_config.gcode_flavor != gcfMarlinFirmware && m_config.gcode_flavor != gcfKlipper)
return _u8L("The Wipe Tower is currently only supported for the Marlin, Klipper, RepRap/Sprinter, RepRapFirmware and Repetier G-code flavors.");
if (! m_config.use_relative_e_distances)
return _u8L("The Wipe Tower is currently only supported with the relative extruder addressing (use_relative_e_distances=1).");
if (m_config.ooze_prevention && m_config.single_extruder_multi_material)
return _u8L("Ooze prevention is only supported with the wipe tower when 'single_extruder_multi_material' is off.");
if (m_config.use_volumetric_e)
return _u8L("The Wipe Tower currently does not support volumetric E (use_volumetric_e=0).");
if (m_config.complete_objects && extruders.size() > 1)
return _u8L("The Wipe Tower is currently not supported for multimaterial sequential prints.");
if (m_objects.size() > 1) {
const SlicingParameters &slicing_params0 = m_objects.front()->slicing_parameters();
size_t tallest_object_idx = 0;
for (size_t i = 1; i < m_objects.size(); ++ i) {
const PrintObject *object = m_objects[i];
const SlicingParameters &slicing_params = object->slicing_parameters();
if (std::abs(slicing_params.first_print_layer_height - slicing_params0.first_print_layer_height) > EPSILON ||
std::abs(slicing_params.layer_height - slicing_params0.layer_height ) > EPSILON)
return _u8L("The Wipe Tower is only supported for multiple objects if they have equal layer heights");
if (slicing_params.raft_layers() != slicing_params0.raft_layers())
return _u8L("The Wipe Tower is only supported for multiple objects if they are printed over an equal number of raft layers");
if (slicing_params0.gap_object_support != slicing_params.gap_object_support ||
slicing_params0.gap_support_object != slicing_params.gap_support_object)
return _u8L("The Wipe Tower is only supported for multiple objects if they are printed with the same support_material_contact_distance");
if (! equal_layering(slicing_params, slicing_params0))
return _u8L("The Wipe Tower is only supported for multiple objects if they are sliced equally.");
if (has_custom_layering) {
auto &lh = layer_height_profile(i);
auto &lh_tallest = layer_height_profile(tallest_object_idx);
if (*(lh.end()-2) > *(lh_tallest.end()-2))
tallest_object_idx = i;
}
}
if (has_custom_layering) {
for (size_t idx_object = 0; idx_object < m_objects.size(); ++ idx_object) {
if (idx_object == tallest_object_idx)
continue;
// Check that the layer height profiles are equal. This will happen when one object is
// a copy of another, or when a layer height modifier is used the same way on both objects.
// The latter case might create a floating point inaccuracy mismatch, so compare
// element-wise using an epsilon check.
size_t i = 0;
const coordf_t eps = 0.5 * EPSILON; // layers closer than EPSILON will be merged later. Let's make
// this check a bit more sensitive to make sure we never consider two different layers as one.
while (i < layer_height_profiles[idx_object].size()
&& i < layer_height_profiles[tallest_object_idx].size()) {
if (i%2 == 0 && layer_height_profiles[tallest_object_idx][i] > layer_height_profiles[idx_object][layer_height_profiles[idx_object].size() - 2 ])
break;
if (std::abs(layer_height_profiles[idx_object][i] - layer_height_profiles[tallest_object_idx][i]) > eps)
return _u8L("The Wipe tower is only supported if all objects have the same variable layer height");
++i;
}
}
}
}
}
{
// Find the smallest used nozzle diameter and the number of unique nozzle diameters.
double min_nozzle_diameter = std::numeric_limits<double>::max();
double max_nozzle_diameter = 0;
for (unsigned int extruder_id : extruders) {
double dmr = m_config.nozzle_diameter.get_at(extruder_id);
min_nozzle_diameter = std::min(min_nozzle_diameter, dmr);
max_nozzle_diameter = std::max(max_nozzle_diameter, dmr);
}
#if 0
// We currently allow one to assign extruders with a higher index than the number
// of physical extruders the machine is equipped with, as the Printer::apply() clamps them.
unsigned int total_extruders_count = m_config.nozzle_diameter.size();
for (const auto& extruder_idx : extruders)
if ( extruder_idx >= total_extruders_count )
return _u8L("One or more object were assigned an extruder that the printer does not have.");
#endif
auto validate_extrusion_width = [/*min_nozzle_diameter,*/ max_nozzle_diameter](const ConfigBase &config, const char *opt_key, double layer_height, std::string &err_msg) -> bool {
// This may change in the future, if we switch to "extrusion width wrt. nozzle diameter"
// instead of currently used logic "extrusion width wrt. layer height", see GH issues #1923 #2829.
// double extrusion_width_min = config.get_abs_value(opt_key, min_nozzle_diameter);
// double extrusion_width_max = config.get_abs_value(opt_key, max_nozzle_diameter);
double extrusion_width_min = config.get_abs_value(opt_key, layer_height);
double extrusion_width_max = config.get_abs_value(opt_key, layer_height);
if (extrusion_width_min == 0) {
// Default "auto-generated" extrusion width is always valid.
} else if (extrusion_width_min <= layer_height) {
err_msg = (boost::format(_u8L("%1%=%2% mm is too low to be printable at a layer height %3% mm")) % opt_key % extrusion_width_min % layer_height).str();
return false;
} else if (extrusion_width_max >= max_nozzle_diameter * 3.) {
err_msg = (boost::format(_u8L("Excessive %1%=%2% mm to be printable with a nozzle diameter %3% mm")) % opt_key % extrusion_width_max % max_nozzle_diameter).str();
return false;
}
return true;
};
for (PrintObject *object : m_objects) {
if (object->has_support_material()) {
if ((object->config().support_material_extruder == 0 || object->config().support_material_interface_extruder == 0) && max_nozzle_diameter - min_nozzle_diameter > EPSILON) {
// The object has some form of support and either support_material_extruder or support_material_interface_extruder
// will be printed with the current tool without a forced tool change. Play safe, assert that all object nozzles
// are of the same diameter.
return _u8L("Printing with multiple extruders of differing nozzle diameters. "
"If support is to be printed with the current extruder (support_material_extruder == 0 or support_material_interface_extruder == 0), "
"all nozzles have to be of the same diameter.");
}
if (this->has_wipe_tower() && object->config().support_material_style != smsOrganic) {
if (object->config().support_material_contact_distance == 0) {
// Soluble interface
if (! object->config().support_material_synchronize_layers)
return _u8L("For the Wipe Tower to work with the soluble supports, the support layers need to be synchronized with the object layers.");
} else {
// Non-soluble interface
if (object->config().support_material_extruder != 0 || object->config().support_material_interface_extruder != 0)
return _u8L("The Wipe Tower currently supports the non-soluble supports only if they are printed with the current extruder without triggering a tool change. "
"(both support_material_extruder and support_material_interface_extruder need to be set to 0).");
}
}
}
// Do we have custom support data that would not be used?
// Notify the user in that case.
if (! object->has_support() && warnings) {
for (const ModelVolume* mv : object->model_object()->volumes) {
bool has_enforcers = mv->is_support_enforcer() ||
(mv->is_model_part() && mv->supported_facets.has_facets(*mv, EnforcerBlockerType::ENFORCER));
if (has_enforcers) {
warnings->emplace_back("_SUPPORTS_OFF");
break;
}
}
}
// validate first_layer_height
assert(! m_config.first_layer_height.percent);
double first_layer_height = m_config.first_layer_height.value;
double first_layer_min_nozzle_diameter;
if (object->has_raft()) {
// if we have raft layers, only support material extruder is used on first layer
size_t first_layer_extruder = object->config().raft_layers == 1
? object->config().support_material_interface_extruder-1
: object->config().support_material_extruder-1;
first_layer_min_nozzle_diameter = (first_layer_extruder == size_t(-1)) ?
min_nozzle_diameter :
m_config.nozzle_diameter.get_at(first_layer_extruder);
} else {
// if we don't have raft layers, any nozzle diameter is potentially used in first layer
first_layer_min_nozzle_diameter = min_nozzle_diameter;
}
if (first_layer_height > first_layer_min_nozzle_diameter)
return _u8L("First layer height can't be greater than nozzle diameter");
// validate layer_height
double layer_height = object->config().layer_height.value;
if (layer_height > min_nozzle_diameter)
return _u8L("Layer height can't be greater than nozzle diameter");
// Validate extrusion widths.
std::string err_msg;
if (! validate_extrusion_width(object->config(), "extrusion_width", layer_height, err_msg))
return err_msg;
if ((object->has_support() || object->has_raft()) && ! validate_extrusion_width(object->config(), "support_material_extrusion_width", layer_height, err_msg))
return err_msg;
for (const char *opt_key : { "perimeter_extrusion_width", "external_perimeter_extrusion_width", "infill_extrusion_width", "solid_infill_extrusion_width", "top_infill_extrusion_width" })
for (const PrintRegion &region : object->all_regions())
if (! validate_extrusion_width(region.config(), opt_key, layer_height, err_msg))
return err_msg;
}
}
{
bool before_layer_gcode_resets_extruder = boost::regex_search(m_config.before_layer_gcode.value, regex_g92e0);
bool layer_gcode_resets_extruder = boost::regex_search(m_config.layer_gcode.value, regex_g92e0);
if (m_config.use_relative_e_distances) {
// See GH issues #6336 #5073
if ((m_config.gcode_flavor == gcfMarlinLegacy || m_config.gcode_flavor == gcfMarlinFirmware) &&
! before_layer_gcode_resets_extruder && ! layer_gcode_resets_extruder)
return _u8L("Relative extruder addressing requires resetting the extruder position at each layer to prevent loss of floating point accuracy. Add \"G92 E0\" to layer_gcode.");
} else if (before_layer_gcode_resets_extruder)
return _u8L("\"G92 E0\" was found in before_layer_gcode, which is incompatible with absolute extruder addressing.");
else if (layer_gcode_resets_extruder)
return _u8L("\"G92 E0\" was found in layer_gcode, which is incompatible with absolute extruder addressing.");
}
return std::string();
}
#if 0
// the bounding box of objects placed in copies position
// (without taking skirt/brim/support material into account)
BoundingBox Print::bounding_box() const
{
BoundingBox bb;
for (const PrintObject *object : m_objects)
for (const PrintInstance &instance : object->instances()) {
BoundingBox bb2(object->bounding_box());
bb.merge(bb2.min + instance.shift);
bb.merge(bb2.max + instance.shift);
}
return bb;
}
// the total bounding box of extrusions, including skirt/brim/support material
// this methods needs to be called even when no steps were processed, so it should
// only use configuration values
BoundingBox Print::total_bounding_box() const
{
// get objects bounding box
BoundingBox bb = this->bounding_box();
// we need to offset the objects bounding box by at least half the perimeters extrusion width
Flow perimeter_flow = m_objects.front()->get_layer(0)->get_region(0)->flow(frPerimeter);
double extra = perimeter_flow.width/2;
// consider support material
if (this->has_support_material()) {
extra = std::max(extra, SUPPORT_MATERIAL_MARGIN);
}
// consider brim and skirt
if (m_config.brim_width.value > 0) {
Flow brim_flow = this->brim_flow();
extra = std::max(extra, m_config.brim_width.value + brim_flow.width/2);
}
if (this->has_skirt()) {
int skirts = m_config.skirts.value;
if (skirts == 0 && this->has_infinite_skirt()) skirts = 1;
Flow skirt_flow = this->skirt_flow();
extra = std::max(
extra,
m_config.brim_width.value
+ m_config.skirt_distance.value
+ skirts * skirt_flow.spacing()
+ skirt_flow.width/2
);
}
if (extra > 0)
bb.offset(scale_(extra));
return bb;
}
#endif
double Print::skirt_first_layer_height() const
{
assert(! m_config.first_layer_height.percent);
return m_config.first_layer_height.value;
}
Flow Print::brim_flow() const
{
ConfigOptionFloatOrPercent width = m_config.first_layer_extrusion_width;
if (width.value == 0)
width = m_print_regions.front()->config().perimeter_extrusion_width;
if (width.value == 0)
width = m_objects.front()->config().extrusion_width;
/* We currently use a random region's perimeter extruder.
While this works for most cases, we should probably consider all of the perimeter
extruders and take the one with, say, the smallest index.
The same logic should be applied to the code that selects the extruder during G-code
generation as well. */
return Flow::new_from_config_width(
frPerimeter,
width,
(float)m_config.nozzle_diameter.get_at(m_print_regions.front()->config().perimeter_extruder-1),
(float)this->skirt_first_layer_height());
}
Flow Print::skirt_flow() const
{
ConfigOptionFloatOrPercent width = m_config.first_layer_extrusion_width;
if (width.value == 0)
width = m_print_regions.front()->config().perimeter_extrusion_width;
if (width.value == 0)
width = m_objects.front()->config().extrusion_width;
/* We currently use a random object's support material extruder.
While this works for most cases, we should probably consider all of the support material
extruders and take the one with, say, the smallest index;
The same logic should be applied to the code that selects the extruder during G-code
generation as well. */
return Flow::new_from_config_width(
frPerimeter,
width,
(float)m_config.nozzle_diameter.get_at(m_objects.front()->config().support_material_extruder-1),
(float)this->skirt_first_layer_height());
}
bool Print::has_support_material() const
{
for (const PrintObject *object : m_objects)
if (object->has_support_material())
return true;
return false;
}
/* This method assigns extruders to the volumes having a material
but not having extruders set in the volume config. */
void Print::auto_assign_extruders(ModelObject* model_object) const
{
// only assign extruders if object has more than one volume
if (model_object->volumes.size() < 2)
return;
// size_t extruders = m_config.nozzle_diameter.values.size();
for (size_t volume_id = 0; volume_id < model_object->volumes.size(); ++ volume_id) {
ModelVolume *volume = model_object->volumes[volume_id];
//FIXME Vojtech: This assigns an extruder ID even to a modifier volume, if it has a material assigned.
if ((volume->is_model_part() || volume->is_modifier()) && ! volume->material_id().empty() && ! volume->config.has("extruder"))
volume->config.set("extruder", int(volume_id + 1));
}
}
// Slicing process, running at a background thread.
void Print::process()
{
name_tbb_thread_pool_threads_set_locale();
BOOST_LOG_TRIVIAL(info) << "Starting the slicing process." << log_memory_info();
for (PrintObject *obj : m_objects)
obj->make_perimeters();
for (PrintObject *obj : m_objects)
obj->infill();
for (PrintObject *obj : m_objects)
obj->ironing();
for (PrintObject *obj : m_objects)
obj->generate_support_spots();
// check data from previous step, format the error message(s) and send alert to ui
alert_when_supports_needed();
for (PrintObject *obj : m_objects)
obj->generate_support_material();
for (PrintObject *obj : m_objects)
obj->estimate_curled_extrusions();
if (this->set_started(psWipeTower)) {
m_wipe_tower_data.clear();
m_tool_ordering.clear();
if (this->has_wipe_tower()) {
//this->set_status(95, _u8L("Generating wipe tower"));
this->_make_wipe_tower();
} else if (! this->config().complete_objects.value) {
// Initialize the tool ordering, so it could be used by the G-code preview slider for planning tool changes and filament switches.
m_tool_ordering = ToolOrdering(*this, -1, false);
if (m_tool_ordering.empty() || m_tool_ordering.last_extruder() == unsigned(-1))
throw Slic3r::SlicingError("The print is empty. The model is not printable with current print settings.");
}
this->set_done(psWipeTower);
}
if (this->set_started(psSkirtBrim)) {
this->set_status(88, _u8L("Generating skirt and brim"));
m_skirt.clear();
m_skirt_convex_hull.clear();
m_first_layer_convex_hull.points.clear();
const bool draft_shield = config().draft_shield != dsDisabled;
if (this->has_skirt() && draft_shield) {
// In case that draft shield is active, generate skirt first so brim
// can be trimmed to make room for it.
_make_skirt();
}
m_brim.clear();
m_first_layer_convex_hull.points.clear();
if (this->has_brim()) {
Polygons islands_area;
m_brim = make_brim(*this, this->make_try_cancel(), islands_area);
for (Polygon &poly : union_(this->first_layer_islands(), islands_area))
append(m_first_layer_convex_hull.points, std::move(poly.points));
}
if (has_skirt() && ! draft_shield) {
// In case that draft shield is NOT active, generate skirt now.
// It will be placed around the brim, so brim has to be ready.
assert(m_skirt.empty());
_make_skirt();
}
this->finalize_first_layer_convex_hull();
this->set_done(psSkirtBrim);
}
std::optional<const FakeWipeTower*> wipe_tower_opt = {};
if (this->has_wipe_tower()) {
m_fake_wipe_tower.set_pos_and_rotation({ m_config.wipe_tower_x, m_config.wipe_tower_y }, m_config.wipe_tower_rotation_angle);
wipe_tower_opt = std::make_optional<const FakeWipeTower*>(&m_fake_wipe_tower);
}
auto conflictRes = ConflictChecker::find_inter_of_lines_in_diff_objs(m_objects, wipe_tower_opt);
m_conflict_result = conflictRes;
if (conflictRes.has_value())
BOOST_LOG_TRIVIAL(error) << boost::format("gcode path conflicts found between %1% and %2%") % conflictRes->_objName1 % conflictRes->_objName2;
BOOST_LOG_TRIVIAL(info) << "Slicing process finished." << log_memory_info();
}
// G-code export process, running at a background thread.
// The export_gcode may die for various reasons (fails to process output_filename_format,
// write error into the G-code, cannot execute post-processing scripts).
// It is up to the caller to show an error message.
std::string Print::export_gcode(const std::string& path_template, GCodeProcessorResult* result, ThumbnailsGeneratorCallback thumbnail_cb)
{
// output everything to a G-code file
// The following call may die if the output_filename_format template substitution fails.
std::string path = this->output_filepath(path_template);
std::string message;
if (!path.empty() && result == nullptr) {
// Only show the path if preview_data is not set -> running from command line.
message = _u8L("Exporting G-code");
message += " to ";
message += path;
} else
message = _u8L("Generating G-code");
this->set_status(90, message);
// Create GCode on heap, it has quite a lot of data.
std::unique_ptr<GCode> gcode(new GCode);
gcode->do_export(this, path.c_str(), result, thumbnail_cb);
if (m_conflict_result.has_value())
result->conflict_result = *m_conflict_result;
return path.c_str();
}
void Print::_make_skirt()
{
// First off we need to decide how tall the skirt must be.
// The skirt_height option from config is expressed in layers, but our
// object might have different layer heights, so we need to find the print_z
// of the highest layer involved.
// Note that unless has_infinite_skirt() == true
// the actual skirt might not reach this $skirt_height_z value since the print
// order of objects on each layer is not guaranteed and will not generally
// include the thickest object first. It is just guaranteed that a skirt is
// prepended to the first 'n' layers (with 'n' = skirt_height).
// $skirt_height_z in this case is the highest possible skirt height for safety.
coordf_t skirt_height_z = 0.;
for (const PrintObject *object : m_objects) {
size_t skirt_layers = this->has_infinite_skirt() ?
object->layer_count() :
std::min(size_t(m_config.skirt_height.value), object->layer_count());
skirt_height_z = std::max(skirt_height_z, object->m_layers[skirt_layers-1]->print_z);
}
// Collect points from all layers contained in skirt height.
Points points;
for (const PrintObject *object : m_objects) {
Points object_points;
// Get object layers up to skirt_height_z.
for (const Layer *layer : object->m_layers) {
if (layer->print_z > skirt_height_z)
break;
for (const ExPolygon &expoly : layer->lslices)
// Collect the outer contour points only, ignore holes for the calculation of the convex hull.
append(object_points, expoly.contour.points);
}
// Get support layers up to skirt_height_z.
for (const SupportLayer *layer : object->support_layers()) {
if (layer->print_z > skirt_height_z)
break;
layer->support_fills.collect_points(object_points);
}
// Repeat points for each object copy.
for (const PrintInstance &instance : object->instances()) {
Points copy_points = object_points;
for (Point &pt : copy_points)
pt += instance.shift;
append(points, copy_points);
}
}
// Include the wipe tower.
append(points, this->first_layer_wipe_tower_corners());
// Unless draft shield is enabled, include all brims as well.
if (config().draft_shield == dsDisabled)
append(points, m_first_layer_convex_hull.points);
if (points.size() < 3)
// At least three points required for a convex hull.
return;
this->throw_if_canceled();
Polygon convex_hull = Slic3r::Geometry::convex_hull(points);
// Skirt may be printed on several layers, having distinct layer heights,
// but loops must be aligned so can't vary width/spacing
// TODO: use each extruder's own flow
double first_layer_height = this->skirt_first_layer_height();
Flow flow = this->skirt_flow();
float spacing = flow.spacing();
double mm3_per_mm = flow.mm3_per_mm();
std::vector<size_t> extruders;
std::vector<double> extruders_e_per_mm;
{
auto set_extruders = this->extruders();
extruders.reserve(set_extruders.size());
extruders_e_per_mm.reserve(set_extruders.size());
for (auto &extruder_id : set_extruders) {
extruders.push_back(extruder_id);
extruders_e_per_mm.push_back(Extruder((unsigned int)extruder_id, &m_config).e_per_mm(mm3_per_mm));
}
}
// Number of skirt loops per skirt layer.
size_t n_skirts = m_config.skirts.value;
if (this->has_infinite_skirt() && n_skirts == 0)
n_skirts = 1;
// Initial offset of the brim inner edge from the object (possible with a support & raft).
// The skirt will touch the brim if the brim is extruded.
auto distance = float(scale_(m_config.skirt_distance.value) - spacing/2.);
// Draw outlines from outside to inside.
// Loop while we have less skirts than required or any extruder hasn't reached the min length if any.
std::vector<coordf_t> extruded_length(extruders.size(), 0.);
for (size_t i = n_skirts, extruder_idx = 0; i > 0; -- i) {
this->throw_if_canceled();
// Offset the skirt outside.
distance += float(scale_(spacing));
// Generate the skirt centerline.
Polygon loop;
{
Polygons loops = offset(convex_hull, distance, ClipperLib::jtRound, float(scale_(0.1)));
Geometry::simplify_polygons(loops, scale_(0.05), &loops);
if (loops.empty())
break;
loop = loops.front();
}
// Extrude the skirt loop.
ExtrusionLoop eloop(elrSkirt);
eloop.paths.emplace_back(ExtrusionPath(
ExtrusionPath(
ExtrusionRole::Skirt,
(float)mm3_per_mm, // this will be overridden at G-code export time
flow.width(),
(float)first_layer_height // this will be overridden at G-code export time
)));
eloop.paths.back().polyline = loop.split_at_first_point();
m_skirt.append(eloop);
if (m_config.min_skirt_length.value > 0) {
// The skirt length is limited. Sum the total amount of filament length extruded, in mm.
extruded_length[extruder_idx] += unscale<double>(loop.length()) * extruders_e_per_mm[extruder_idx];
if (extruded_length[extruder_idx] < m_config.min_skirt_length.value) {
// Not extruded enough yet with the current extruder. Add another loop.
if (i == 1)
++ i;
} else {
assert(extruded_length[extruder_idx] >= m_config.min_skirt_length.value);
// Enough extruded with the current extruder. Extrude with the next one,
// until the prescribed number of skirt loops is extruded.
if (extruder_idx + 1 < extruders.size())
++ extruder_idx;
}
} else {
// The skirt lenght is not limited, extrude the skirt with the 1st extruder only.
}
}
// Brims were generated inside out, reverse to print the outmost contour first.
m_skirt.reverse();
// Remember the outer edge of the last skirt line extruded as m_skirt_convex_hull.
for (Polygon &poly : offset(convex_hull, distance + 0.5f * float(scale_(spacing)), ClipperLib::jtRound, float(scale_(0.1))))
append(m_skirt_convex_hull, std::move(poly.points));
}
Polygons Print::first_layer_islands() const
{
Polygons islands;
for (PrintObject *object : m_objects) {
Polygons object_islands;
for (ExPolygon &expoly : object->m_layers.front()->lslices)
object_islands.push_back(expoly.contour);
if (! object->support_layers().empty())
object->support_layers().front()->support_fills.polygons_covered_by_spacing(object_islands, float(SCALED_EPSILON));
islands.reserve(islands.size() + object_islands.size() * object->instances().size());
for (const PrintInstance &instance : object->instances())
for (Polygon &poly : object_islands) {
islands.push_back(poly);
islands.back().translate(instance.shift);
}
}
return islands;
}
Points Print::first_layer_wipe_tower_corners() const
{
Points pts_scaled;
if (has_wipe_tower() && ! m_wipe_tower_data.tool_changes.empty()) {
double width = m_config.wipe_tower_width + 2*m_wipe_tower_data.brim_width;
double depth = m_wipe_tower_data.depth + 2*m_wipe_tower_data.brim_width;
Vec2d pt0(-m_wipe_tower_data.brim_width, -m_wipe_tower_data.brim_width);
// First the corners.
std::vector<Vec2d> pts = { pt0,
Vec2d(pt0.x()+width, pt0.y()),
Vec2d(pt0.x()+width, pt0.y()+depth),
Vec2d(pt0.x(),pt0.y()+depth)
};
// Now the stabilization cone.
Vec2d center = (pts[0] + pts[2])/2.;
const auto [cone_R, cone_x_scale] = WipeTower::get_wipe_tower_cone_base(m_config.wipe_tower_width, m_wipe_tower_data.height, m_wipe_tower_data.depth, m_config.wipe_tower_cone_angle);
double r = cone_R + m_wipe_tower_data.brim_width;
for (double alpha = 0.; alpha<2*M_PI; alpha += M_PI/20.)
pts.emplace_back(center + r*Vec2d(std::cos(alpha)/cone_x_scale, std::sin(alpha)));
for (Vec2d& pt : pts) {
pt = Eigen::Rotation2Dd(Geometry::deg2rad(m_config.wipe_tower_rotation_angle.value)) * pt;
pt += Vec2d(m_config.wipe_tower_x.value, m_config.wipe_tower_y.value);
pts_scaled.emplace_back(Point(scale_(pt.x()), scale_(pt.y())));
}
}
return pts_scaled;
}
void Print::finalize_first_layer_convex_hull()
{
append(m_first_layer_convex_hull.points, m_skirt_convex_hull);
if (m_first_layer_convex_hull.empty()) {
// Neither skirt nor brim was extruded. Collect points of printed objects from 1st layer.
for (Polygon &poly : this->first_layer_islands())
append(m_first_layer_convex_hull.points, std::move(poly.points));
}
append(m_first_layer_convex_hull.points, this->first_layer_wipe_tower_corners());
m_first_layer_convex_hull = Geometry::convex_hull(m_first_layer_convex_hull.points);
}
void Print::alert_when_supports_needed()
{
if (this->set_started(psAlertWhenSupportsNeeded)) {
BOOST_LOG_TRIVIAL(debug) << "psAlertWhenSupportsNeeded - start";
set_status(69, _u8L("Alert if supports needed"));
auto issue_to_alert_message = [](SupportSpotsGenerator::SupportPointCause cause, bool critical) {
std::string message;
switch (cause) {
//TRN Alert when support is needed. Describes that the model has long bridging extrusions which may print badly
case SupportSpotsGenerator::SupportPointCause::LongBridge: message = _u8L("Long bridging extrusions"); break;
//TRN Alert when support is needed. Describes bridge anchors/turns in the air, which will definitely print badly
case SupportSpotsGenerator::SupportPointCause::FloatingBridgeAnchor: message = _u8L("Floating bridge anchors"); break;
case SupportSpotsGenerator::SupportPointCause::FloatingExtrusion:
if (critical) {
//TRN Alert when support is needed. Describes that the print has large overhang area which will print badly or not print at all.
message = _u8L("Collapsing overhang");
} else {
//TRN Alert when support is needed. Describes extrusions that are not supported enough and come out curled or loose.
message = _u8L("Loose extrusions");
}
break;
//TRN Alert when support is needed. Describes that the print has low bed adhesion and may became loose.
case SupportSpotsGenerator::SupportPointCause::SeparationFromBed: message = _u8L("Low bed adhesion"); break;
//TRN Alert when support is needed. Describes that the object has part that is not connected to the bed and will not print at all without supports.
case SupportSpotsGenerator::SupportPointCause::UnstableFloatingPart: message = _u8L("Floating object part"); break;
//TRN Alert when support is needed. Describes that the object has thin part that may brake during printing
case SupportSpotsGenerator::SupportPointCause::WeakObjectPart: message = _u8L("Thin fragile part"); break;
}
return message;
};
// TRN this translation rule is used to translate lists of uknown size on single line. The first argument is element of the list,
// the second argument may be element or rest of the list. For most languages, this does not need translation, but some use different
// separator than comma and some use blank space in front of the separator.
auto single_line_list_rule = L("%1%, %2%");
auto multiline_list_rule = "%1%\n%2%";
auto elements_to_translated_list = [](const std::vector<std::string> &translated_elements, std::string expansion_rule) {
if (expansion_rule.find("%1%") == expansion_rule.npos || expansion_rule.find("%2%") == expansion_rule.npos) {
BOOST_LOG_TRIVIAL(error) << "INCORRECT EXPANSION RULE FOR LIST TRANSLATION: " << expansion_rule
<< " - IT SHOULD CONTAIN %1% and %2%!";
expansion_rule = "%1% %2%";
}
if (translated_elements.size() == 0) {
return std::string{};
}
if (translated_elements.size() == 1) {
return translated_elements.front();
}
std::string translated_list = expansion_rule;
for (int i = 0; i < int(translated_elements.size()) - 1; ++ i) {
auto first_elem = translated_list.find("%1%");
assert(first_elem != translated_list.npos);
translated_list.replace(first_elem, 3, translated_elements[i]);
// expand the translated list by another application of the same rule
auto second_elem = translated_list.find("%2%");
assert(second_elem != translated_list.npos);
if (i < int(translated_elements.size()) - 2) {
translated_list.replace(second_elem, 3, expansion_rule);
} else {
translated_list.replace(second_elem, 3, translated_elements[i + 1]);
}
}
return translated_list;
};
// vector of pairs of object and its issues, where each issue is a pair of type and critical flag
std::vector<std::pair<const PrintObject *, std::vector<std::pair<SupportSpotsGenerator::SupportPointCause, bool>>>> objects_isssues;
for (const PrintObject *object : m_objects) {
std::unordered_set<const ModelObject *> checked_model_objects;
if (!object->has_support() && checked_model_objects.find(object->model_object()) == checked_model_objects.end()) {
if (object->m_shared_regions->generated_support_points.has_value()) {
SupportSpotsGenerator::SupportPoints supp_points = object->m_shared_regions->generated_support_points->support_points;
SupportSpotsGenerator::PartialObjects partial_objects = object->m_shared_regions->generated_support_points
->partial_objects;
auto issues = SupportSpotsGenerator::gather_issues(supp_points, partial_objects);
if (issues.size() > 0) {
objects_isssues.emplace_back(object, issues);
}
}
checked_model_objects.emplace(object->model_object());
}
}
bool recommend_brim = false;
std::map<std::pair<SupportSpotsGenerator::SupportPointCause, bool>, std::vector<const PrintObject *>> po_by_support_issues;
for (const auto &obj : objects_isssues) {
for (const auto &issue : obj.second) {
po_by_support_issues[issue].push_back(obj.first);
if (issue.first == SupportSpotsGenerator::SupportPointCause::SeparationFromBed && !obj.first->has_brim()) {
recommend_brim = true;
}
}
}
std::vector<std::pair<std::string, std::vector<std::string>>> message_elements;
if (objects_isssues.size() > po_by_support_issues.size()) {
// there are more objects than causes, group by issues
for (const auto &issue : po_by_support_issues) {
auto &pair = message_elements.emplace_back(issue_to_alert_message(issue.first.first, issue.first.second),
std::vector<std::string>{});
for (const auto &obj : issue.second) {
pair.second.push_back(obj->m_model_object->name);
}
}
} else {
// more causes than objects, group by objects
for (const auto &obj : objects_isssues) {
auto &pair = message_elements.emplace_back(obj.first->model_object()->name, std::vector<std::string>{});
for (const auto &issue : obj.second) {
pair.second.push_back(issue_to_alert_message(issue.first, issue.second));
}
}
}
// first, gather sublements into single line list, store in first subelement
for (auto &pair : message_elements) {
pair.second.front() = elements_to_translated_list(pair.second, single_line_list_rule);
}
// then gather elements to create multiline list
std::vector<std::string> lines = {};
for (auto &pair : message_elements) {
lines.push_back(""); // empty line for readability
lines.push_back(pair.first);
lines.push_back(pair.second.front());
}
lines.push_back("");
lines.push_back(_u8L("Consider enabling supports."));
if (recommend_brim) {
lines.push_back(_u8L("Also consider enabling brim."));
}
// TRN Alert message for detected print issues. first argument is a list of detected issues.
auto message = Slic3r::format(_u8L("Detected print stability issues:\n%1%"), elements_to_translated_list(lines, multiline_list_rule));
if (objects_isssues.size() > 0) {
this->active_step_add_warning(PrintStateBase::WarningLevel::NON_CRITICAL, message);
}
BOOST_LOG_TRIVIAL(debug) << "psAlertWhenSupportsNeeded - end";
this->set_done(psAlertWhenSupportsNeeded);
}
}
// Wipe tower support.
bool Print::has_wipe_tower() const
{
return
! m_config.spiral_vase.value &&
m_config.wipe_tower.value &&
m_config.nozzle_diameter.values.size() > 1;
}
const WipeTowerData& Print::wipe_tower_data(size_t extruders_cnt) const
{
// If the wipe tower wasn't created yet, make sure the depth and brim_width members are set to default.
if (! is_step_done(psWipeTower) && extruders_cnt !=0) {
const_cast<Print*>(this)->m_wipe_tower_data.brim_width = m_config.wipe_tower_brim_width;
// Calculating depth should take into account currently set wiping volumes.
// For a long time, the initial preview would just use 900/width per toolchange (15mm on a 60mm wide tower)
// and it worked well enough. Let's try to do slightly better by accounting for the purging volumes.
std::vector<std::vector<float>> wipe_volumes = WipeTower::extract_wipe_volumes(m_config);
std::vector<float> max_wipe_volumes;
for (const std::vector<float>& v : wipe_volumes)
max_wipe_volumes.emplace_back(*std::max_element(v.begin(), v.end()));
float maximum = std::accumulate(max_wipe_volumes.begin(), max_wipe_volumes.end(), 0.f);
maximum = maximum * extruders_cnt / max_wipe_volumes.size();
float width = float(m_config.wipe_tower_width);
float layer_height = 0.2f; // just assume fixed value, it will still be better than before.
const_cast<Print*>(this)->m_wipe_tower_data.depth = (maximum/layer_height)/width;
const_cast<Print*>(this)->m_wipe_tower_data.height = -1.f; // unknown yet
}
return m_wipe_tower_data;
}
void Print::_make_wipe_tower()
{
m_wipe_tower_data.clear();
if (! this->has_wipe_tower())
return;
std::vector<std::vector<float>> wipe_volumes = WipeTower::extract_wipe_volumes(m_config);
// Let the ToolOrdering class know there will be initial priming extrusions at the start of the print.
m_wipe_tower_data.tool_ordering = ToolOrdering(*this, (unsigned int)-1, true);
if (! m_wipe_tower_data.tool_ordering.has_wipe_tower())
// Don't generate any wipe tower.
return;
// Check whether there are any layers in m_tool_ordering, which are marked with has_wipe_tower,
// they print neither object, nor support. These layers are above the raft and below the object, and they
// shall be added to the support layers to be printed.
// see https://github.com/prusa3d/PrusaSlicer/issues/607
{
size_t idx_begin = size_t(-1);
size_t idx_end = m_wipe_tower_data.tool_ordering.layer_tools().size();
// Find the first wipe tower layer, which does not have a counterpart in an object or a support layer.
for (size_t i = 0; i < idx_end; ++ i) {
const LayerTools &lt = m_wipe_tower_data.tool_ordering.layer_tools()[i];
if (lt.has_wipe_tower && ! lt.has_object && ! lt.has_support) {
idx_begin = i;
break;
}
}
if (idx_begin != size_t(-1)) {
// Find the position in m_objects.first()->support_layers to insert these new support layers.
double wipe_tower_new_layer_print_z_first = m_wipe_tower_data.tool_ordering.layer_tools()[idx_begin].print_z;
auto it_layer = m_objects.front()->support_layers().begin();
auto it_end = m_objects.front()->support_layers().end();
for (; it_layer != it_end && (*it_layer)->print_z - EPSILON < wipe_tower_new_layer_print_z_first; ++ it_layer);
// Find the stopper of the sequence of wipe tower layers, which do not have a counterpart in an object or a support layer.
for (size_t i = idx_begin; i < idx_end; ++ i) {
LayerTools &lt = const_cast<LayerTools&>(m_wipe_tower_data.tool_ordering.layer_tools()[i]);
if (! (lt.has_wipe_tower && ! lt.has_object && ! lt.has_support))
break;
lt.has_support = true;
// Insert the new support layer.
double height = lt.print_z - (i == 0 ? 0. : m_wipe_tower_data.tool_ordering.layer_tools()[i-1].print_z);
//FIXME the support layer ID is set to -1, as Vojtech hopes it is not being used anyway.
it_layer = m_objects.front()->insert_support_layer(it_layer, -1, 0, height, lt.print_z, lt.print_z - 0.5 * height);
++ it_layer;
}
}
}
this->throw_if_canceled();
// Initialize the wipe tower.
WipeTower wipe_tower(m_config, wipe_volumes, m_wipe_tower_data.tool_ordering.first_extruder());
//wipe_tower.set_retract();
//wipe_tower.set_zhop();
// Set the extruder & material properties at the wipe tower object.
for (size_t i = 0; i < m_config.nozzle_diameter.size(); ++ i)
wipe_tower.set_extruder(i, m_config);
m_wipe_tower_data.priming = Slic3r::make_unique<std::vector<WipeTower::ToolChangeResult>>(
wipe_tower.prime((float)this->skirt_first_layer_height(), m_wipe_tower_data.tool_ordering.all_extruders(), false));
// Lets go through the wipe tower layers and determine pairs of extruder changes for each
// to pass to wipe_tower (so that it can use it for planning the layout of the tower)
{
unsigned int current_extruder_id = m_wipe_tower_data.tool_ordering.all_extruders().back();
for (auto &layer_tools : m_wipe_tower_data.tool_ordering.layer_tools()) { // for all layers
if (!layer_tools.has_wipe_tower) continue;
bool first_layer = &layer_tools == &m_wipe_tower_data.tool_ordering.front();
wipe_tower.plan_toolchange((float)layer_tools.print_z, (float)layer_tools.wipe_tower_layer_height, current_extruder_id, current_extruder_id, false);
for (const auto extruder_id : layer_tools.extruders) {
if ((first_layer && extruder_id == m_wipe_tower_data.tool_ordering.all_extruders().back()) || extruder_id != current_extruder_id) {
float volume_to_wipe = wipe_volumes[current_extruder_id][extruder_id]; // total volume to wipe after this toolchange
// Not all of that can be used for infill purging:
volume_to_wipe -= (float)m_config.filament_minimal_purge_on_wipe_tower.get_at(extruder_id);
// try to assign some infills/objects for the wiping:
volume_to_wipe = layer_tools.wiping_extrusions_nonconst().mark_wiping_extrusions(*this, layer_tools, current_extruder_id, extruder_id, volume_to_wipe);
// add back the minimal amount toforce on the wipe tower:
volume_to_wipe += (float)m_config.filament_minimal_purge_on_wipe_tower.get_at(extruder_id);
// request a toolchange at the wipe tower with at least volume_to_wipe purging amount
wipe_tower.plan_toolchange((float)layer_tools.print_z, (float)layer_tools.wipe_tower_layer_height,
current_extruder_id, extruder_id, volume_to_wipe);
current_extruder_id = extruder_id;
}
}
layer_tools.wiping_extrusions_nonconst().ensure_perimeters_infills_order(*this, layer_tools);
if (&layer_tools == &m_wipe_tower_data.tool_ordering.back() || (&layer_tools + 1)->wipe_tower_partitions == 0)
break;
}
}
// Generate the wipe tower layers.
m_wipe_tower_data.tool_changes.reserve(m_wipe_tower_data.tool_ordering.layer_tools().size());
wipe_tower.generate(m_wipe_tower_data.tool_changes);
m_wipe_tower_data.depth = wipe_tower.get_depth();
m_wipe_tower_data.z_and_depth_pairs = wipe_tower.get_z_and_depth_pairs();
m_wipe_tower_data.brim_width = wipe_tower.get_brim_width();
m_wipe_tower_data.height = wipe_tower.get_wipe_tower_height();
// Unload the current filament over the purge tower.
coordf_t layer_height = m_objects.front()->config().layer_height.value;
if (m_wipe_tower_data.tool_ordering.back().wipe_tower_partitions > 0) {
// The wipe tower goes up to the last layer of the print.
if (wipe_tower.layer_finished()) {
// The wipe tower is printed to the top of the print and it has no space left for the final extruder purge.
// Lift Z to the next layer.
wipe_tower.set_layer(float(m_wipe_tower_data.tool_ordering.back().print_z + layer_height), float(layer_height), 0, false, true);
} else {
// There is yet enough space at this layer of the wipe tower for the final purge.
}
} else {
// The wipe tower does not reach the last print layer, perform the pruge at the last print layer.
assert(m_wipe_tower_data.tool_ordering.back().wipe_tower_partitions == 0);
wipe_tower.set_layer(float(m_wipe_tower_data.tool_ordering.back().print_z), float(layer_height), 0, false, true);
}
m_wipe_tower_data.final_purge = Slic3r::make_unique<WipeTower::ToolChangeResult>(
wipe_tower.tool_change((unsigned int)(-1)));
m_wipe_tower_data.used_filament = wipe_tower.get_used_filament();
m_wipe_tower_data.number_of_toolchanges = wipe_tower.get_number_of_toolchanges();
const Vec3d origin = Vec3d::Zero();
m_fake_wipe_tower.set_fake_extrusion_data(wipe_tower.position(), wipe_tower.width(), wipe_tower.get_wipe_tower_height(), config().first_layer_height, m_wipe_tower_data.depth,
m_wipe_tower_data.z_and_depth_pairs, m_wipe_tower_data.brim_width, config().wipe_tower_rotation_angle, config().wipe_tower_cone_angle, {scale_(origin.x()), scale_(origin.y())});
}
// Generate a recommended G-code output file name based on the format template, default extension, and template parameters
// (timestamps, object placeholders derived from the model, current placeholder prameters and print statistics.
// Use the final print statistics if available, or just keep the print statistics placeholders if not available yet (before G-code is finalized).
std::string Print::output_filename(const std::string &filename_base) const
{
// Set the placeholders for the data know first after the G-code export is finished.
// These values will be just propagated into the output file name.
DynamicConfig config = this->finished() ? this->print_statistics().config() : this->print_statistics().placeholders();
config.set_key_value("num_extruders", new ConfigOptionInt((int)m_config.nozzle_diameter.size()));
config.set_key_value("default_output_extension", new ConfigOptionString(".gcode"));
return this->PrintBase::output_filename(m_config.output_filename_format.value, ".gcode", filename_base, &config);
}
DynamicConfig PrintStatistics::config() const
{
DynamicConfig config;
std::string normal_print_time = short_time(this->estimated_normal_print_time);
std::string silent_print_time = short_time(this->estimated_silent_print_time);
config.set_key_value("print_time", new ConfigOptionString(normal_print_time));
config.set_key_value("normal_print_time", new ConfigOptionString(normal_print_time));
config.set_key_value("silent_print_time", new ConfigOptionString(silent_print_time));
config.set_key_value("used_filament", new ConfigOptionFloat(this->total_used_filament / 1000.));
config.set_key_value("extruded_volume", new ConfigOptionFloat(this->total_extruded_volume));
config.set_key_value("total_cost", new ConfigOptionFloat(this->total_cost));
config.set_key_value("total_toolchanges", new ConfigOptionInt(this->total_toolchanges));
config.set_key_value("total_weight", new ConfigOptionFloat(this->total_weight));
config.set_key_value("total_wipe_tower_cost", new ConfigOptionFloat(this->total_wipe_tower_cost));
config.set_key_value("total_wipe_tower_filament", new ConfigOptionFloat(this->total_wipe_tower_filament));
config.set_key_value("initial_tool", new ConfigOptionInt(int(this->initial_extruder_id)));
config.set_key_value("initial_extruder", new ConfigOptionInt(int(this->initial_extruder_id)));
config.set_key_value("initial_filament_type", new ConfigOptionString(this->initial_filament_type));
config.set_key_value("printing_filament_types", new ConfigOptionString(this->printing_filament_types));
config.set_key_value("num_printing_extruders", new ConfigOptionInt(int(this->printing_extruders.size())));
// config.set_key_value("printing_extruders", new ConfigOptionInts(std::vector<int>(this->printing_extruders.begin(), this->printing_extruders.end())));
return config;
}
DynamicConfig PrintStatistics::placeholders()
{
DynamicConfig config;
for (const std::string &key : {
"print_time", "normal_print_time", "silent_print_time",
"used_filament", "extruded_volume", "total_cost", "total_weight",
"total_toolchanges", "total_wipe_tower_cost", "total_wipe_tower_filament",
"initial_tool", "initial_extruder", "initial_filament_type", "printing_filament_types", "num_printing_extruders" })
config.set_key_value(key, new ConfigOptionString(std::string("{") + key + "}"));
return config;
}
std::string PrintStatistics::finalize_output_path(const std::string &path_in) const
{
std::string final_path;
try {
boost::filesystem::path path(path_in);
DynamicConfig cfg = this->config();
PlaceholderParser pp;
std::string new_stem = pp.process(path.stem().string(), 0, &cfg);
final_path = (path.parent_path() / (new_stem + path.extension().string())).string();
} catch (const std::exception &ex) {
BOOST_LOG_TRIVIAL(error) << "Failed to apply the print statistics to the export file name: " << ex.what();
final_path = path_in;
}
return final_path;
}
std::vector<ExtrusionPaths> FakeWipeTower::getFakeExtrusionPathsFromWipeTower() const
{
float h = height;
float lh = layer_height;
int d = scale_(depth);
int w = scale_(width);
int bd = scale_(brim_width);
Point minCorner = { -bd, -bd };
Point maxCorner = { minCorner.x() + w + bd, minCorner.y() + d + bd };
const auto [cone_base_R, cone_scale_x] = WipeTower::get_wipe_tower_cone_base(width, height, depth, cone_angle);
std::vector<ExtrusionPaths> paths;
for (float hh = 0.f; hh < h; hh += lh) {
if (hh != 0.f) {
// The wipe tower may be getting smaller. Find the depth for this layer.
size_t i = 0;
for (i=0; i<z_and_depth_pairs.size()-1; ++i)
if (hh >= z_and_depth_pairs[i].first && hh < z_and_depth_pairs[i+1].first)
break;
d = scale_(z_and_depth_pairs[i].second);
minCorner = {0.f, -d/2 + scale_(z_and_depth_pairs.front().second/2.f)};
maxCorner = { minCorner.x() + w, minCorner.y() + d };
}
ExtrusionPath path(ExtrusionRole::WipeTower, 0.0, 0.0, lh);
path.polyline = { minCorner, {maxCorner.x(), minCorner.y()}, maxCorner, {minCorner.x(), maxCorner.y()}, minCorner };
paths.push_back({ path });
// We added the border, now add several parallel lines so we can detect an object that is fully inside the tower.
// For now, simply use fixed spacing of 3mm.
for (coord_t y=minCorner.y()+scale_(3.); y<maxCorner.y(); y+=scale_(3.)) {
path.polyline = { {minCorner.x(), y}, {maxCorner.x(), y} };
paths.back().emplace_back(path);
}
// And of course the stabilization cone and its base...
if (cone_base_R > 0.) {
path.polyline.clear();
double r = cone_base_R * (1 - hh/height);
for (double alpha=0; alpha<2.01*M_PI; alpha+=2*M_PI/20.)
path.polyline.points.emplace_back(Point::new_scale(width/2. + r * std::cos(alpha)/cone_scale_x, depth/2. + r * std::sin(alpha)));
paths.back().emplace_back(path);
if (hh == 0.f) { // Cone brim.
for (float bw=brim_width; bw>0.f; bw-=3.f) {
path.polyline.clear();
for (double alpha=0; alpha<2.01*M_PI; alpha+=2*M_PI/20.) // see load_wipe_tower_preview, where the same is a bit clearer
path.polyline.points.emplace_back(Point::new_scale(
width/2. + cone_base_R * std::cos(alpha)/cone_scale_x * (1. + cone_scale_x*bw/cone_base_R),
depth/2. + cone_base_R * std::sin(alpha) * (1. + bw/cone_base_R))
);
paths.back().emplace_back(path);
}
}
}
// Only the first layer has brim.
if (hh == 0.f) {
minCorner = minCorner + Point(bd, bd);
maxCorner = maxCorner - Point(bd, bd);
}
}
// Rotate and translate the tower into the final position.
for (ExtrusionPaths& ps : paths) {
for (ExtrusionPath& p : ps) {
p.polyline.rotate(Geometry::deg2rad(rotation_angle));
p.polyline.translate(scale_(pos.x()), scale_(pos.y()));
}
}
return paths;
}
} // namespace Slic3r