PrusaSlicer/src/libslic3r/SLAPrint.cpp

1192 lines
50 KiB
C++

#include "SLAPrint.hpp"
#include "SLAPrintSteps.hpp"
#include "CSGMesh/CSGMeshCopy.hpp"
#include "CSGMesh/PerformCSGMeshBooleans.hpp"
#include "format.hpp"
#include "Format/SLAArchiveFormatRegistry.hpp"
#include "Geometry.hpp"
#include "Thread.hpp"
#include <unordered_set>
#include <numeric>
#include <tbb/parallel_for.h>
#include <boost/filesystem/path.hpp>
#include <boost/log/trivial.hpp>
// #define SLAPRINT_DO_BENCHMARK
#ifdef SLAPRINT_DO_BENCHMARK
#include <libnest2d/tools/benchmark.h>
#endif
#include "I18N.hpp"
//! macro used to mark string used at localization,
//! return same string
#define _u8L(s) Slic3r::I18N::translate(s)
namespace Slic3r {
bool is_zero_elevation(const SLAPrintObjectConfig &c)
{
return c.pad_enable.getBool() && c.pad_around_object.getBool();
}
// Compile the argument for support creation from the static print config.
sla::SupportTreeConfig make_support_cfg(const SLAPrintObjectConfig& c)
{
sla::SupportTreeConfig scfg;
scfg.enabled = c.supports_enable.getBool();
scfg.tree_type = c.support_tree_type.value;
switch(scfg.tree_type) {
case sla::SupportTreeType::Default: {
scfg.head_front_radius_mm = 0.5*c.support_head_front_diameter.getFloat();
double pillar_r = 0.5 * c.support_pillar_diameter.getFloat();
scfg.head_back_radius_mm = pillar_r;
scfg.head_fallback_radius_mm =
0.01 * c.support_small_pillar_diameter_percent.getFloat() * pillar_r;
scfg.head_penetration_mm = c.support_head_penetration.getFloat();
scfg.head_width_mm = c.support_head_width.getFloat();
scfg.object_elevation_mm = is_zero_elevation(c) ?
0. : c.support_object_elevation.getFloat();
scfg.bridge_slope = c.support_critical_angle.getFloat() * PI / 180.0 ;
scfg.max_bridge_length_mm = c.support_max_bridge_length.getFloat();
scfg.max_pillar_link_distance_mm = c.support_max_pillar_link_distance.getFloat();
scfg.pillar_connection_mode = c.support_pillar_connection_mode.value;
scfg.ground_facing_only = c.support_buildplate_only.getBool();
scfg.pillar_widening_factor = c.support_pillar_widening_factor.getFloat();
scfg.base_radius_mm = 0.5*c.support_base_diameter.getFloat();
scfg.base_height_mm = c.support_base_height.getFloat();
scfg.pillar_base_safety_distance_mm =
c.support_base_safety_distance.getFloat() < EPSILON ?
scfg.safety_distance_mm : c.support_base_safety_distance.getFloat();
scfg.max_bridges_on_pillar = unsigned(c.support_max_bridges_on_pillar.getInt());
scfg.max_weight_on_model_support = c.support_max_weight_on_model.getFloat();
break;
}
case sla::SupportTreeType::Branching:
[[fallthrough]];
case sla::SupportTreeType::Organic:{
scfg.head_front_radius_mm = 0.5*c.branchingsupport_head_front_diameter.getFloat();
double pillar_r = 0.5 * c.branchingsupport_pillar_diameter.getFloat();
scfg.head_back_radius_mm = pillar_r;
scfg.head_fallback_radius_mm =
0.01 * c.branchingsupport_small_pillar_diameter_percent.getFloat() * pillar_r;
scfg.head_penetration_mm = c.branchingsupport_head_penetration.getFloat();
scfg.head_width_mm = c.branchingsupport_head_width.getFloat();
scfg.object_elevation_mm = is_zero_elevation(c) ?
0. : c.branchingsupport_object_elevation.getFloat();
scfg.bridge_slope = c.branchingsupport_critical_angle.getFloat() * PI / 180.0 ;
scfg.max_bridge_length_mm = c.branchingsupport_max_bridge_length.getFloat();
scfg.max_pillar_link_distance_mm = c.branchingsupport_max_pillar_link_distance.getFloat();
scfg.pillar_connection_mode = c.branchingsupport_pillar_connection_mode.value;
scfg.ground_facing_only = c.branchingsupport_buildplate_only.getBool();
scfg.pillar_widening_factor = c.branchingsupport_pillar_widening_factor.getFloat();
scfg.base_radius_mm = 0.5*c.branchingsupport_base_diameter.getFloat();
scfg.base_height_mm = c.branchingsupport_base_height.getFloat();
scfg.pillar_base_safety_distance_mm =
c.branchingsupport_base_safety_distance.getFloat() < EPSILON ?
scfg.safety_distance_mm : c.branchingsupport_base_safety_distance.getFloat();
scfg.max_bridges_on_pillar = unsigned(c.branchingsupport_max_bridges_on_pillar.getInt());
scfg.max_weight_on_model_support = c.branchingsupport_max_weight_on_model.getFloat();
break;
}
}
return scfg;
}
sla::PadConfig::EmbedObject builtin_pad_cfg(const SLAPrintObjectConfig& c)
{
sla::PadConfig::EmbedObject ret;
ret.enabled = is_zero_elevation(c);
if(ret.enabled) {
ret.everywhere = c.pad_around_object_everywhere.getBool();
ret.object_gap_mm = c.pad_object_gap.getFloat();
ret.stick_width_mm = c.pad_object_connector_width.getFloat();
ret.stick_stride_mm = c.pad_object_connector_stride.getFloat();
ret.stick_penetration_mm = c.pad_object_connector_penetration
.getFloat();
}
return ret;
}
sla::PadConfig make_pad_cfg(const SLAPrintObjectConfig& c)
{
sla::PadConfig pcfg;
pcfg.wall_thickness_mm = c.pad_wall_thickness.getFloat();
pcfg.wall_slope = c.pad_wall_slope.getFloat() * PI / 180.0;
pcfg.max_merge_dist_mm = c.pad_max_merge_distance.getFloat();
pcfg.wall_height_mm = c.pad_wall_height.getFloat();
pcfg.brim_size_mm = c.pad_brim_size.getFloat();
// set builtin pad implicitly ON
pcfg.embed_object = builtin_pad_cfg(c);
return pcfg;
}
bool validate_pad(const indexed_triangle_set &pad, const sla::PadConfig &pcfg)
{
// An empty pad can only be created if embed_object mode is enabled
// and the pad is not forced everywhere
return !pad.empty() || (pcfg.embed_object.enabled && !pcfg.embed_object.everywhere);
}
void SLAPrint::clear()
{
std::scoped_lock<std::mutex> lock(this->state_mutex());
// The following call should stop background processing if it is running.
this->invalidate_all_steps();
for (SLAPrintObject *object : m_objects)
delete object;
m_objects.clear();
m_model.clear_objects();
}
// Transformation without rotation around Z and without a shift by X and Y.
Transform3d SLAPrint::sla_trafo(const ModelObject &model_object) const
{
ModelInstance &model_instance = *model_object.instances.front();
auto trafo = Transform3d::Identity();
trafo.translate(Vec3d{ 0., 0., model_instance.get_offset().z() * this->relative_correction().z() });
trafo.linear() = Eigen::DiagonalMatrix<double, 3, 3>(this->relative_correction()) * model_instance.get_matrix().linear();
if (model_instance.is_left_handed())
trafo = Eigen::Scaling(Vec3d(-1., 1., 1.)) * trafo;
return trafo;
}
// List of instances, where the ModelInstance transformation is a composite of sla_trafo and the transformation defined by SLAPrintObject::Instance.
static std::vector<SLAPrintObject::Instance> sla_instances(const ModelObject &model_object)
{
std::vector<SLAPrintObject::Instance> instances;
assert(! model_object.instances.empty());
if (! model_object.instances.empty()) {
const Transform3d& trafo0 = model_object.instances.front()->get_matrix();
for (ModelInstance *model_instance : model_object.instances)
if (model_instance->is_printable()) {
instances.emplace_back(
model_instance->id(),
Point::new_scale(model_instance->get_offset(X), model_instance->get_offset(Y)),
float(Geometry::rotation_diff_z(trafo0, model_instance->get_matrix())));
}
}
return instances;
}
std::vector<ObjectID> SLAPrint::print_object_ids() const
{
std::vector<ObjectID> out;
// Reserve one more for the caller to append the ID of the Print itself.
out.reserve(m_objects.size() + 1);
for (const SLAPrintObject *print_object : m_objects)
out.emplace_back(print_object->id());
return out;
}
SLAPrint::ApplyStatus SLAPrint::apply(const Model &model, DynamicPrintConfig config)
{
#ifdef _DEBUG
check_model_ids_validity(model);
#endif /* _DEBUG */
// Normalize the config.
config.option("sla_print_settings_id", true);
config.option("sla_material_settings_id", true);
config.option("printer_settings_id", true);
config.option("physical_printer_settings_id", true);
// Collect changes to print config.
t_config_option_keys print_diff = m_print_config.diff(config);
t_config_option_keys printer_diff = m_printer_config.diff(config);
t_config_option_keys material_diff = m_material_config.diff(config);
t_config_option_keys object_diff = m_default_object_config.diff(config);
t_config_option_keys placeholder_parser_diff = m_placeholder_parser.config_diff(config);
// Do not use the ApplyStatus as we will use the max function when updating apply_status.
unsigned int apply_status = APPLY_STATUS_UNCHANGED;
auto update_apply_status = [&apply_status](bool invalidated)
{ apply_status = std::max<unsigned int>(apply_status, invalidated ? APPLY_STATUS_INVALIDATED : APPLY_STATUS_CHANGED); };
if (! (print_diff.empty() && printer_diff.empty() && material_diff.empty() && object_diff.empty()))
update_apply_status(false);
// Grab the lock for the Print / PrintObject milestones.
std::scoped_lock<std::mutex> lock(this->state_mutex());
// The following call may stop the background processing.
bool invalidate_all_model_objects = false;
if (! print_diff.empty())
update_apply_status(this->invalidate_state_by_config_options(print_diff, invalidate_all_model_objects));
if (! printer_diff.empty())
update_apply_status(this->invalidate_state_by_config_options(printer_diff, invalidate_all_model_objects));
if (! material_diff.empty())
update_apply_status(this->invalidate_state_by_config_options(material_diff, invalidate_all_model_objects));
// Apply variables to placeholder parser. The placeholder parser is currently used
// only to generate the output file name.
if (! placeholder_parser_diff.empty()) {
// update_apply_status(this->invalidate_step(slapsRasterize));
m_placeholder_parser.apply_config(config);
// Set the profile aliases for the PrintBase::output_filename()
m_placeholder_parser.set("print_preset", config.option("sla_print_settings_id")->clone());
m_placeholder_parser.set("material_preset", config.option("sla_material_settings_id")->clone());
m_placeholder_parser.set("printer_preset", config.option("printer_settings_id")->clone());
m_placeholder_parser.set("physical_printer_preset", config.option("physical_printer_settings_id")->clone());
}
// It is also safe to change m_config now after this->invalidate_state_by_config_options() call.
m_print_config.apply_only(config, print_diff, true);
m_printer_config.apply_only(config, printer_diff, true);
// Handle changes to material config.
m_material_config.apply_only(config, material_diff, true);
// Handle changes to object config defaults
m_default_object_config.apply_only(config, object_diff, true);
if (!m_archiver || !printer_diff.empty())
m_archiver = SLAArchiveWriter::create(m_printer_config.sla_archive_format.value.c_str(), m_printer_config);
struct ModelObjectStatus {
enum Status {
Unknown,
Old,
New,
Moved,
Deleted,
};
ModelObjectStatus(ObjectID id, Status status = Unknown) : id(id), status(status) {}
ObjectID id;
Status status;
// Search by id.
bool operator<(const ModelObjectStatus &rhs) const { return id < rhs.id; }
};
std::set<ModelObjectStatus> model_object_status;
// 1) Synchronize model objects.
if (model.id() != m_model.id() || invalidate_all_model_objects) {
// Kill everything, initialize from scratch.
// Stop background processing.
this->call_cancel_callback();
update_apply_status(this->invalidate_all_steps());
for (SLAPrintObject *object : m_objects) {
model_object_status.emplace(object->model_object()->id(), ModelObjectStatus::Deleted);
update_apply_status(object->invalidate_all_steps());
delete object;
}
m_objects.clear();
m_model.assign_copy(model);
for (const ModelObject *model_object : m_model.objects)
model_object_status.emplace(model_object->id(), ModelObjectStatus::New);
} else {
if (model_object_list_equal(m_model, model)) {
// The object list did not change.
for (const ModelObject *model_object : m_model.objects)
model_object_status.emplace(model_object->id(), ModelObjectStatus::Old);
} else if (model_object_list_extended(m_model, model)) {
// Add new objects. Their volumes and configs will be synchronized later.
update_apply_status(this->invalidate_step(slapsMergeSlicesAndEval));
for (const ModelObject *model_object : m_model.objects)
model_object_status.emplace(model_object->id(), ModelObjectStatus::Old);
for (size_t i = m_model.objects.size(); i < model.objects.size(); ++ i) {
model_object_status.emplace(model.objects[i]->id(), ModelObjectStatus::New);
m_model.objects.emplace_back(ModelObject::new_copy(*model.objects[i]));
m_model.objects.back()->set_model(&m_model);
}
} else {
// Reorder the objects, add new objects.
// First stop background processing before shuffling or deleting the PrintObjects in the object list.
this->call_cancel_callback();
update_apply_status(this->invalidate_step(slapsMergeSlicesAndEval));
// Second create a new list of objects.
std::vector<ModelObject*> model_objects_old(std::move(m_model.objects));
m_model.objects.clear();
m_model.objects.reserve(model.objects.size());
auto by_id_lower = [](const ModelObject *lhs, const ModelObject *rhs){ return lhs->id() < rhs->id(); };
std::sort(model_objects_old.begin(), model_objects_old.end(), by_id_lower);
for (const ModelObject *mobj : model.objects) {
auto it = std::lower_bound(model_objects_old.begin(), model_objects_old.end(), mobj, by_id_lower);
if (it == model_objects_old.end() || (*it)->id() != mobj->id()) {
// New ModelObject added.
m_model.objects.emplace_back(ModelObject::new_copy(*mobj));
m_model.objects.back()->set_model(&m_model);
model_object_status.emplace(mobj->id(), ModelObjectStatus::New);
} else {
// Existing ModelObject re-added (possibly moved in the list).
m_model.objects.emplace_back(*it);
model_object_status.emplace(mobj->id(), ModelObjectStatus::Moved);
}
}
bool deleted_any = false;
for (ModelObject *&model_object : model_objects_old) {
if (model_object_status.find(ModelObjectStatus(model_object->id())) == model_object_status.end()) {
model_object_status.emplace(model_object->id(), ModelObjectStatus::Deleted);
deleted_any = true;
} else
// Do not delete this ModelObject instance.
model_object = nullptr;
}
if (deleted_any) {
// Delete PrintObjects of the deleted ModelObjects.
std::vector<SLAPrintObject*> print_objects_old = std::move(m_objects);
m_objects.clear();
m_objects.reserve(print_objects_old.size());
for (SLAPrintObject *print_object : print_objects_old) {
auto it_status = model_object_status.find(ModelObjectStatus(print_object->model_object()->id()));
assert(it_status != model_object_status.end());
if (it_status->status == ModelObjectStatus::Deleted) {
update_apply_status(print_object->invalidate_all_steps());
delete print_object;
} else
m_objects.emplace_back(print_object);
}
for (ModelObject *model_object : model_objects_old)
delete model_object;
}
}
}
// 2) Map print objects including their transformation matrices.
struct PrintObjectStatus {
enum Status {
Unknown,
Deleted,
Reused,
New
};
PrintObjectStatus(SLAPrintObject *print_object, Status status = Unknown) :
id(print_object->model_object()->id()),
print_object(print_object),
trafo(print_object->trafo()),
status(status) {}
PrintObjectStatus(ObjectID id) : id(id), print_object(nullptr), trafo(Transform3d::Identity()), status(Unknown) {}
// ID of the ModelObject & PrintObject
ObjectID id;
// Pointer to the old PrintObject
SLAPrintObject *print_object;
// Trafo generated with model_object->world_matrix(true)
Transform3d trafo;
Status status;
// Search by id.
bool operator<(const PrintObjectStatus &rhs) const { return id < rhs.id; }
};
std::multiset<PrintObjectStatus> print_object_status;
for (SLAPrintObject *print_object : m_objects)
print_object_status.emplace(PrintObjectStatus(print_object));
// 3) Synchronize ModelObjects & PrintObjects.
std::vector<SLAPrintObject*> print_objects_new;
print_objects_new.reserve(std::max(m_objects.size(), m_model.objects.size()));
bool new_objects = false;
for (size_t idx_model_object = 0; idx_model_object < model.objects.size(); ++ idx_model_object) {
ModelObject &model_object = *m_model.objects[idx_model_object];
auto it_status = model_object_status.find(ModelObjectStatus(model_object.id()));
assert(it_status != model_object_status.end());
assert(it_status->status != ModelObjectStatus::Deleted);
// PrintObject for this ModelObject, if it exists.
auto it_print_object_status = print_object_status.end();
if (it_status->status != ModelObjectStatus::New) {
// Update the ModelObject instance, possibly invalidate the linked PrintObjects.
assert(it_status->status == ModelObjectStatus::Old || it_status->status == ModelObjectStatus::Moved);
const ModelObject &model_object_new = *model.objects[idx_model_object];
it_print_object_status = print_object_status.lower_bound(PrintObjectStatus(model_object.id()));
if (it_print_object_status != print_object_status.end() && it_print_object_status->id != model_object.id())
it_print_object_status = print_object_status.end();
// Check whether a model part volume was added or removed, their transformations or order changed.
bool model_parts_differ =
model_volume_list_changed(model_object, model_object_new,
{ModelVolumeType::MODEL_PART,
ModelVolumeType::NEGATIVE_VOLUME,
ModelVolumeType::SUPPORT_ENFORCER,
ModelVolumeType::SUPPORT_BLOCKER});
bool sla_trafo_differs =
model_object.instances.empty() != model_object_new.instances.empty() ||
(! model_object.instances.empty() &&
(! sla_trafo(model_object).isApprox(sla_trafo(model_object_new)) ||
model_object.instances.front()->is_left_handed() != model_object_new.instances.front()->is_left_handed()));
if (model_parts_differ || sla_trafo_differs) {
// The very first step (the slicing step) is invalidated. One may freely remove all associated PrintObjects.
if (it_print_object_status != print_object_status.end()) {
update_apply_status(it_print_object_status->print_object->invalidate_all_steps());
const_cast<PrintObjectStatus&>(*it_print_object_status).status = PrintObjectStatus::Deleted;
}
// Copy content of the ModelObject including its ID, do not change the parent.
model_object.assign_copy(model_object_new);
} else {
// Synchronize Object's config.
bool object_config_changed = ! model_object.config.timestamp_matches(model_object_new.config);
if (object_config_changed)
model_object.config.assign_config(model_object_new.config);
if (! object_diff.empty() || object_config_changed) {
SLAPrintObjectConfig new_config = m_default_object_config;
new_config.apply(model_object.config.get(), true);
if (it_print_object_status != print_object_status.end()) {
t_config_option_keys diff = it_print_object_status->print_object->config().diff(new_config);
if (! diff.empty()) {
update_apply_status(it_print_object_status->print_object->invalidate_state_by_config_options(diff));
it_print_object_status->print_object->config_apply_only(new_config, diff, true);
}
}
}
bool old_user_modified = model_object.sla_points_status == sla::PointsStatus::UserModified;
bool new_user_modified = model_object_new.sla_points_status == sla::PointsStatus::UserModified;
if ((old_user_modified && ! new_user_modified) || // switching to automatic supports from manual supports
(! old_user_modified && new_user_modified) || // switching to manual supports from automatic supports
(new_user_modified && model_object.sla_support_points != model_object_new.sla_support_points)) {
if (it_print_object_status != print_object_status.end())
update_apply_status(it_print_object_status->print_object->invalidate_step(slaposSupportPoints));
model_object.sla_support_points = model_object_new.sla_support_points;
}
model_object.sla_points_status = model_object_new.sla_points_status;
// Invalidate hollowing if drain holes have changed
if (model_object.sla_drain_holes != model_object_new.sla_drain_holes)
{
model_object.sla_drain_holes = model_object_new.sla_drain_holes;
update_apply_status(it_print_object_status->print_object->invalidate_step(slaposDrillHoles));
}
// Copy the ModelObject name, input_file and instances. The instances will compared against PrintObject instances in the next step.
model_object.name = model_object_new.name;
model_object.input_file = model_object_new.input_file;
model_object.clear_instances();
model_object.instances.reserve(model_object_new.instances.size());
for (const ModelInstance *model_instance : model_object_new.instances) {
model_object.instances.emplace_back(new ModelInstance(*model_instance));
model_object.instances.back()->set_model_object(&model_object);
}
}
}
std::vector<SLAPrintObject::Instance> new_instances = sla_instances(model_object);
if (it_print_object_status != print_object_status.end() && it_print_object_status->status != PrintObjectStatus::Deleted) {
// The SLAPrintObject is already there.
if (new_instances.empty()) {
const_cast<PrintObjectStatus&>(*it_print_object_status).status = PrintObjectStatus::Deleted;
} else {
if (new_instances != it_print_object_status->print_object->instances()) {
// Instances changed.
it_print_object_status->print_object->set_instances(new_instances);
update_apply_status(this->invalidate_step(slapsMergeSlicesAndEval));
}
print_objects_new.emplace_back(it_print_object_status->print_object);
const_cast<PrintObjectStatus&>(*it_print_object_status).status = PrintObjectStatus::Reused;
}
} else if (! new_instances.empty()) {
auto print_object = new SLAPrintObject(this, &model_object);
// FIXME: this invalidates the transformed mesh in SLAPrintObject
// which is expensive to calculate (especially the raw_mesh() call)
print_object->set_trafo(sla_trafo(model_object), model_object.instances.front()->is_left_handed());
print_object->set_instances(std::move(new_instances));
print_object->config_apply(m_default_object_config, true);
print_object->config_apply(model_object.config.get(), true);
print_objects_new.emplace_back(print_object);
new_objects = true;
}
}
if (m_objects != print_objects_new) {
this->call_cancel_callback();
update_apply_status(this->invalidate_all_steps());
m_objects = print_objects_new;
// Delete the PrintObjects marked as Unknown or Deleted.
for (auto &pos : print_object_status)
if (pos.status == PrintObjectStatus::Unknown || pos.status == PrintObjectStatus::Deleted) {
update_apply_status(pos.print_object->invalidate_all_steps());
delete pos.print_object;
}
if (new_objects)
update_apply_status(false);
}
if(m_objects.empty()) {
m_printer_input = {};
m_print_statistics = {};
}
#ifdef _DEBUG
check_model_ids_equal(m_model, model);
#endif /* _DEBUG */
m_full_print_config = std::move(config);
return static_cast<ApplyStatus>(apply_status);
}
// Generate a recommended output file name based on the format template, default extension, and template parameters
// (timestamps, object placeholders derived from the model, current placeholder prameters and print statistics.
// Use the final print statistics if available, or just keep the print statistics placeholders if not available yet (before the output is finalized).
std::string SLAPrint::output_filename(const std::string &filename_base) const
{
DynamicConfig config = this->finished() ? this->print_statistics().config() : this->print_statistics().placeholders();
std::string default_ext = get_default_extension(m_printer_config.sla_archive_format.value.c_str());
if (default_ext.empty())
default_ext = "sl1";
default_ext.insert(default_ext.begin(), '.');
config.set_key_value("default_output_extension",
new ConfigOptionString(default_ext));
return this->PrintBase::output_filename(m_print_config.output_filename_format.value, default_ext, filename_base, &config);
}
std::string SLAPrint::validate(std::vector<std::string>*) const
{
for(SLAPrintObject * po : m_objects) {
const ModelObject *mo = po->model_object();
bool supports_en = po->config().supports_enable.getBool();
if(supports_en &&
mo->sla_points_status == sla::PointsStatus::UserModified &&
mo->sla_support_points.empty())
return _u8L("Cannot proceed without support points! "
"Add support points or disable support generation.");
sla::SupportTreeConfig cfg = make_support_cfg(po->config());
double elv = cfg.object_elevation_mm;
sla::PadConfig padcfg = make_pad_cfg(po->config());
sla::PadConfig::EmbedObject &builtinpad = padcfg.embed_object;
if(supports_en && !builtinpad.enabled && elv < cfg.head_fullwidth())
return _u8L(
"Elevation is too low for object. Use the \"Pad around "
"object\" feature to print the object without elevation.");
if(supports_en && builtinpad.enabled &&
cfg.pillar_base_safety_distance_mm < builtinpad.object_gap_mm) {
return _u8L(
"The endings of the support pillars will be deployed on the "
"gap between the object and the pad. 'Support base safety "
"distance' has to be greater than the 'Pad object gap' "
"parameter to avoid this.");
}
std::string pval = padcfg.validate();
if (!pval.empty()) return pval;
}
double expt_max = m_printer_config.max_exposure_time.getFloat();
double expt_min = m_printer_config.min_exposure_time.getFloat();
double expt_cur = m_material_config.exposure_time.getFloat();
if (expt_cur < expt_min || expt_cur > expt_max)
return _u8L("Exposition time is out of printer profile bounds.");
double iexpt_max = m_printer_config.max_initial_exposure_time.getFloat();
double iexpt_min = m_printer_config.min_initial_exposure_time.getFloat();
double iexpt_cur = m_material_config.initial_exposure_time.getFloat();
if (iexpt_cur < iexpt_min || iexpt_cur > iexpt_max)
return _u8L("Initial exposition time is out of printer profile bounds.");
return "";
}
void SLAPrint::export_print(const std::string &fname, const ThumbnailsList &thumbnails, const std::string &projectname)
{
if (m_archiver)
m_archiver->export_print(fname, *this, thumbnails, projectname);
else {
throw ExportError(format(_u8L("Unknown archive format: %s"), m_printer_config.sla_archive_format.value));
}
}
bool SLAPrint::invalidate_step(SLAPrintStep step)
{
bool invalidated = Inherited::invalidate_step(step);
// propagate to dependent steps
if (step == slapsMergeSlicesAndEval) {
invalidated |= this->invalidate_all_steps();
}
return invalidated;
}
void SLAPrint::process()
{
if (m_objects.empty())
return;
name_tbb_thread_pool_threads_set_locale();
// Assumption: at this point the print objects should be populated only with
// the model objects we have to process and the instances are also filtered
Steps printsteps(this);
// We want to first process all objects...
std::vector<SLAPrintObjectStep> level1_obj_steps = {
slaposAssembly, slaposHollowing, slaposDrillHoles, slaposObjectSlice, slaposSupportPoints, slaposSupportTree, slaposPad
};
// and then slice all supports to allow preview to be displayed ASAP
std::vector<SLAPrintObjectStep> level2_obj_steps = {
slaposSliceSupports
};
SLAPrintStep print_steps[] = { slapsMergeSlicesAndEval, slapsRasterize };
double st = Steps::min_objstatus;
BOOST_LOG_TRIVIAL(info) << "Start slicing process.";
#ifdef SLAPRINT_DO_BENCHMARK
Benchmark bench;
#else
struct {
void start() {} void stop() {} double getElapsedSec() { return .0; }
} bench;
#endif
std::array<double, slaposCount + slapsCount> step_times {};
auto apply_steps_on_objects =
[this, &st, &printsteps, &step_times, &bench]
(const std::vector<SLAPrintObjectStep> &steps)
{
double incr = 0;
for (SLAPrintObject *po : m_objects) {
for (SLAPrintObjectStep step : steps) {
// Cancellation checking. Each step will check for
// cancellation on its own and return earlier gracefully.
// Just after it returns execution gets to this point and
// throws the canceled signal.
throw_if_canceled();
st += incr;
if (po->set_started(step)) {
m_report_status(*this, st, printsteps.label(step));
bench.start();
printsteps.execute(step, *po);
bench.stop();
step_times[step] += bench.getElapsedSec();
throw_if_canceled();
po->set_done(step);
}
incr = printsteps.progressrange(step);
}
}
};
apply_steps_on_objects(level1_obj_steps);
apply_steps_on_objects(level2_obj_steps);
st = Steps::max_objstatus;
for(SLAPrintStep currentstep : print_steps) {
throw_if_canceled();
if (set_started(currentstep)) {
m_report_status(*this, st, printsteps.label(currentstep));
bench.start();
printsteps.execute(currentstep);
bench.stop();
step_times[slaposCount + currentstep] += bench.getElapsedSec();
throw_if_canceled();
set_done(currentstep);
}
st += printsteps.progressrange(currentstep);
}
// If everything vent well
m_report_status(*this, 100, _u8L("Slicing done"));
#ifdef SLAPRINT_DO_BENCHMARK
std::string csvbenchstr;
for (size_t i = 0; i < size_t(slaposCount); ++i)
csvbenchstr += printsteps.label(SLAPrintObjectStep(i)) + ";";
for (size_t i = 0; i < size_t(slapsCount); ++i)
csvbenchstr += printsteps.label(SLAPrintStep(i)) + ";";
csvbenchstr += "\n";
for (double t : step_times) csvbenchstr += std::to_string(t) + ";";
std::cout << "Performance stats: \n" << csvbenchstr << std::endl;
#endif
}
bool SLAPrint::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys, bool &invalidate_all_model_objects)
{
if (opt_keys.empty())
return false;
static std::unordered_set<std::string> steps_full = {
"initial_layer_height",
"material_correction",
"material_correction_x",
"material_correction_y",
"material_correction_z",
"material_print_speed",
"relative_correction",
"relative_correction_x",
"relative_correction_y",
"relative_correction_z",
"absolute_correction",
"elefant_foot_compensation",
"elefant_foot_min_width",
"gamma_correction"
};
// Cache the plenty of parameters, which influence the final rasterization only,
// or they are only notes not influencing the rasterization step.
static std::unordered_set<std::string> steps_rasterize = {
"min_exposure_time",
"max_exposure_time",
"exposure_time",
"min_initial_exposure_time",
"max_initial_exposure_time",
"initial_exposure_time",
"display_width",
"display_height",
"display_pixels_x",
"display_pixels_y",
"display_mirror_x",
"display_mirror_y",
"display_orientation",
"sla_archive_format",
"sla_output_precision"
};
static std::unordered_set<std::string> steps_ignore = {
"bed_shape",
"max_print_height",
"printer_technology",
"output_filename_format",
"fast_tilt_time",
"slow_tilt_time",
"high_viscosity_tilt_time",
"area_fill",
"bottle_cost",
"bottle_volume",
"bottle_weight",
"material_density"
};
std::vector<SLAPrintStep> steps;
std::vector<SLAPrintObjectStep> osteps;
bool invalidated = false;
for (const t_config_option_key &opt_key : opt_keys) {
if (steps_rasterize.find(opt_key) != steps_rasterize.end()) {
// These options only affect the final rasterization, or they are just notes without influence on the output,
// so there is nothing to invalidate.
steps.emplace_back(slapsMergeSlicesAndEval);
} else if (steps_ignore.find(opt_key) != steps_ignore.end()) {
// These steps have no influence on the output. Just ignore them.
} else if (steps_full.find(opt_key) != steps_full.end()) {
steps.emplace_back(slapsMergeSlicesAndEval);
osteps.emplace_back(slaposObjectSlice);
invalidate_all_model_objects = true;
} else {
// All values should be covered.
assert(false);
}
}
sort_remove_duplicates(steps);
for (SLAPrintStep step : steps)
invalidated |= this->invalidate_step(step);
sort_remove_duplicates(osteps);
for (SLAPrintObjectStep ostep : osteps)
for (SLAPrintObject *object : m_objects)
invalidated |= object->invalidate_step(ostep);
return invalidated;
}
// Returns true if an object step is done on all objects and there's at least one object.
bool SLAPrint::is_step_done(SLAPrintObjectStep step) const
{
if (m_objects.empty())
return false;
std::scoped_lock<std::mutex> lock(this->state_mutex());
for (const SLAPrintObject *object : m_objects)
if (! object->is_step_done_unguarded(step))
return false;
return true;
}
SLAPrintObject::SLAPrintObject(SLAPrint *print, ModelObject *model_object)
: Inherited(print, model_object)
{}
SLAPrintObject::~SLAPrintObject() {}
// Called by SLAPrint::apply().
// This method only accepts SLAPrintObjectConfig option keys.
bool SLAPrintObject::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys)
{
if (opt_keys.empty())
return false;
std::vector<SLAPrintObjectStep> steps;
bool invalidated = false;
for (const t_config_option_key &opt_key : opt_keys) {
if ( opt_key == "hollowing_enable"
|| opt_key == "hollowing_min_thickness"
|| opt_key == "hollowing_quality"
|| opt_key == "hollowing_closing_distance"
) {
steps.emplace_back(slaposHollowing);
} else if (
opt_key == "layer_height"
|| opt_key == "faded_layers"
|| opt_key == "pad_enable"
|| opt_key == "pad_wall_thickness"
|| opt_key == "supports_enable"
|| opt_key == "support_tree_type"
|| opt_key == "support_object_elevation"
|| opt_key == "branchingsupport_object_elevation"
|| opt_key == "pad_around_object"
|| opt_key == "pad_around_object_everywhere"
|| opt_key == "slice_closing_radius"
|| opt_key == "slicing_mode") {
steps.emplace_back(slaposObjectSlice);
} else if (
opt_key == "support_points_density_relative"
|| opt_key == "support_enforcers_only"
|| opt_key == "support_points_minimal_distance") {
steps.emplace_back(slaposSupportPoints);
} else if (
opt_key == "support_head_front_diameter"
|| opt_key == "support_head_penetration"
|| opt_key == "support_head_width"
|| opt_key == "support_pillar_diameter"
|| opt_key == "support_pillar_widening_factor"
|| opt_key == "support_small_pillar_diameter_percent"
|| opt_key == "support_max_weight_on_model"
|| opt_key == "support_max_bridges_on_pillar"
|| opt_key == "support_pillar_connection_mode"
|| opt_key == "support_buildplate_only"
|| opt_key == "support_base_diameter"
|| opt_key == "support_base_height"
|| opt_key == "support_critical_angle"
|| opt_key == "support_max_bridge_length"
|| opt_key == "support_max_pillar_link_distance"
|| opt_key == "support_base_safety_distance"
|| opt_key == "branchingsupport_head_front_diameter"
|| opt_key == "branchingsupport_head_penetration"
|| opt_key == "branchingsupport_head_width"
|| opt_key == "branchingsupport_pillar_diameter"
|| opt_key == "branchingsupport_pillar_widening_factor"
|| opt_key == "branchingsupport_small_pillar_diameter_percent"
|| opt_key == "branchingsupport_max_weight_on_model"
|| opt_key == "branchingsupport_max_bridges_on_pillar"
|| opt_key == "branchingsupport_pillar_connection_mode"
|| opt_key == "branchingsupport_buildplate_only"
|| opt_key == "branchingsupport_base_diameter"
|| opt_key == "branchingsupport_base_height"
|| opt_key == "branchingsupport_critical_angle"
|| opt_key == "branchingsupport_max_bridge_length"
|| opt_key == "branchingsupport_max_pillar_link_distance"
|| opt_key == "branchingsupport_base_safety_distance"
|| opt_key == "pad_object_gap"
) {
steps.emplace_back(slaposSupportTree);
} else if (
opt_key == "pad_wall_height"
|| opt_key == "pad_brim_size"
|| opt_key == "pad_max_merge_distance"
|| opt_key == "pad_wall_slope"
|| opt_key == "pad_edge_radius"
|| opt_key == "pad_object_connector_stride"
|| opt_key == "pad_object_connector_width"
|| opt_key == "pad_object_connector_penetration"
) {
steps.emplace_back(slaposPad);
} else {
// All keys should be covered.
assert(false);
}
}
sort_remove_duplicates(steps);
for (SLAPrintObjectStep step : steps)
invalidated |= this->invalidate_step(step);
return invalidated;
}
bool SLAPrintObject::invalidate_step(SLAPrintObjectStep step)
{
bool invalidated = Inherited::invalidate_step(step);
// propagate to dependent steps
if (step == slaposAssembly) {
invalidated |= this->invalidate_all_steps();
} else if (step == slaposHollowing) {
invalidated |= invalidated |= this->invalidate_steps({ slaposDrillHoles, slaposObjectSlice, slaposSupportPoints, slaposSupportTree, slaposPad, slaposSliceSupports });
} else if (step == slaposDrillHoles) {
invalidated |= this->invalidate_steps({ slaposObjectSlice, slaposSupportPoints, slaposSupportTree, slaposPad, slaposSliceSupports });
invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
} else if (step == slaposObjectSlice) {
invalidated |= this->invalidate_steps({ slaposSupportPoints, slaposSupportTree, slaposPad, slaposSliceSupports });
invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
} else if (step == slaposSupportPoints) {
invalidated |= this->invalidate_steps({ slaposSupportTree, slaposPad, slaposSliceSupports });
invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
} else if (step == slaposSupportTree) {
invalidated |= this->invalidate_steps({ slaposPad, slaposSliceSupports });
invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
} else if (step == slaposPad) {
invalidated |= this->invalidate_steps({slaposSliceSupports});
invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
} else if (step == slaposSliceSupports) {
invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
}
return invalidated;
}
bool SLAPrintObject::invalidate_all_steps()
{
return Inherited::invalidate_all_steps() || m_print->invalidate_all_steps();
}
double SLAPrintObject::get_elevation() const {
if (is_zero_elevation(m_config)) return 0.;
bool en = m_config.supports_enable.getBool();
double ret = en ? m_config.support_object_elevation.getFloat() : 0.;
if(m_config.pad_enable.getBool()) {
// Normally the elevation for the pad itself would be the thickness of
// its walls but currently it is half of its thickness. Whatever it
// will be in the future, we provide the config to the get_pad_elevation
// method and we will have the correct value
sla::PadConfig pcfg = make_pad_cfg(m_config);
if(!pcfg.embed_object) ret += pcfg.required_elevation();
}
return ret;
}
double SLAPrintObject::get_current_elevation() const
{
if (is_zero_elevation(m_config)) return 0.;
bool has_supports = is_step_done(slaposSupportTree);
bool has_pad = is_step_done(slaposPad);
if(!has_supports && !has_pad)
return 0;
else if(has_supports && !has_pad) {
return m_config.support_object_elevation.getFloat();
}
return get_elevation();
}
Vec3d SLAPrint::relative_correction() const
{
Vec3d corr(1., 1., 1.);
if(printer_config().relative_correction.values.size() >= 2) {
corr.x() = printer_config().relative_correction_x.value;
corr.y() = printer_config().relative_correction_y.value;
corr.z() = printer_config().relative_correction_z.value;
}
if(material_config().material_correction.values.size() >= 2) {
corr.x() *= material_config().material_correction_x.value;
corr.y() *= material_config().material_correction_y.value;
corr.z() *= material_config().material_correction_z.value;
}
return corr;
}
namespace { // dummy empty static containers for return values in some methods
const std::vector<ExPolygons> EMPTY_SLICES;
const TriangleMesh EMPTY_MESH;
const indexed_triangle_set EMPTY_TRIANGLE_SET;
const ExPolygons EMPTY_SLICE;
const std::vector<sla::SupportPoint> EMPTY_SUPPORT_POINTS;
}
const SliceRecord SliceRecord::EMPTY(0, std::nanf(""), 0.f);
const std::vector<sla::SupportPoint>& SLAPrintObject::get_support_points() const
{
return m_supportdata? m_supportdata->input.pts : EMPTY_SUPPORT_POINTS;
}
const std::vector<ExPolygons> &SLAPrintObject::get_support_slices() const
{
// assert(is_step_done(slaposSliceSupports));
if (!m_supportdata) return EMPTY_SLICES;
return m_supportdata->support_slices;
}
const ExPolygons &SliceRecord::get_slice(SliceOrigin o) const
{
size_t idx = o == soModel ? m_model_slices_idx : m_support_slices_idx;
if(m_po == nullptr) return EMPTY_SLICE;
const std::vector<ExPolygons>& v = o == soModel? m_po->get_model_slices() :
m_po->get_support_slices();
return idx >= v.size() ? EMPTY_SLICE : v[idx];
}
const TriangleMesh& SLAPrintObject::support_mesh() const
{
if (m_config.supports_enable.getBool() &&
is_step_done(slaposSupportTree) &&
m_supportdata)
return m_supportdata->tree_mesh;
return EMPTY_MESH;
}
const TriangleMesh& SLAPrintObject::pad_mesh() const
{
if(m_config.pad_enable.getBool() && is_step_done(slaposPad) && m_supportdata)
return m_supportdata->pad_mesh;
return EMPTY_MESH;
}
const std::shared_ptr<const indexed_triangle_set> &
SLAPrintObject::get_mesh_to_print() const
{
int s = last_completed_step();
while (s > 0 && ! m_preview_meshes[s])
--s;
return m_preview_meshes[s];
}
std::vector<csg::CSGPart> SLAPrintObject::get_parts_to_slice() const
{
return get_parts_to_slice(slaposCount);
}
std::vector<csg::CSGPart>
SLAPrintObject::get_parts_to_slice(SLAPrintObjectStep untilstep) const
{
auto laststep = last_completed_step();
SLAPrintObjectStep s = std::min(untilstep, laststep);
if (s == slaposCount)
return {};
std::vector<csg::CSGPart> ret;
for (unsigned int step = 0; step < s; ++step) {
auto r = m_mesh_to_slice.equal_range(SLAPrintObjectStep(step));
csg::copy_csgrange_shallow(Range{r.first, r.second}, std::back_inserter(ret));
}
return ret;
}
sla::SupportPoints SLAPrintObject::transformed_support_points() const
{
assert(model_object());
return sla::transformed_support_points(*model_object(), trafo());
}
sla::DrainHoles SLAPrintObject::transformed_drainhole_points() const
{
assert(model_object());
return sla::transformed_drainhole_points(*model_object(), trafo());
}
DynamicConfig SLAPrintStatistics::config() const
{
DynamicConfig config;
const std::string print_time = Slic3r::short_time(get_time_dhms(float(this->estimated_print_time)));
config.set_key_value("print_time", new ConfigOptionString(print_time));
config.set_key_value("objects_used_material", new ConfigOptionFloat(this->objects_used_material));
config.set_key_value("support_used_material", new ConfigOptionFloat(this->support_used_material));
config.set_key_value("total_cost", new ConfigOptionFloat(this->total_cost));
config.set_key_value("total_weight", new ConfigOptionFloat(this->total_weight));
return config;
}
DynamicConfig SLAPrintStatistics::placeholders()
{
DynamicConfig config;
for (const char *key : {
"print_time", "total_cost", "total_weight",
"objects_used_material", "support_used_material" })
config.set_key_value(key, new ConfigOptionString(std::string("{") + key + "}"));
return config;
}
std::string SLAPrintStatistics::finalize_output_path(const std::string &path_in) const
{
std::string final_path;
try {
boost::filesystem::path path(path_in);
DynamicConfig cfg = this->config();
PlaceholderParser pp;
std::string new_stem = pp.process(path.stem().string(), 0, &cfg);
final_path = (path.parent_path() / (new_stem + path.extension().string())).string();
}
catch (const std::exception &ex) {
BOOST_LOG_TRIVIAL(error) << "Failed to apply the print statistics to the export file name: " << ex.what();
final_path = path_in;
}
return final_path;
}
void SLAPrint::StatusReporter::operator()(SLAPrint & p,
double st,
const std::string &msg,
unsigned flags,
const std::string &logmsg)
{
m_st = st;
BOOST_LOG_TRIVIAL(info)
<< st << "% " << msg << (logmsg.empty() ? "" : ": ") << logmsg
<< log_memory_info();
p.set_status(int(std::round(st)), msg, flags);
}
namespace csg {
MeshBoolean::cgal::CGALMeshPtr get_cgalmesh(const CSGPartForStep &part)
{
if (!part.cgalcache && csg::get_mesh(part)) {
part.cgalcache = csg::get_cgalmesh(static_cast<const csg::CSGPart&>(part));
}
return part.cgalcache? clone(*part.cgalcache) : nullptr;
}
} // namespace csg
} // namespace Slic3r