mirror of
https://git.mirrors.martin98.com/https://github.com/prusa3d/PrusaSlicer.git
synced 2025-06-02 00:43:14 +08:00
126 lines
4.3 KiB
C++
126 lines
4.3 KiB
C++
#include <limits>
|
|
#include <exception>
|
|
|
|
#include <libnest2d/optimizers/nlopt/genetic.hpp>
|
|
#include "SLABoilerPlate.hpp"
|
|
#include "SLARotfinder.hpp"
|
|
#include "SLASupportTree.hpp"
|
|
#include "Model.hpp"
|
|
|
|
namespace Slic3r {
|
|
namespace sla {
|
|
|
|
std::array<double, 3> find_best_rotation(const ModelObject& modelobj,
|
|
float accuracy,
|
|
std::function<void(unsigned)> statuscb,
|
|
std::function<bool()> stopcond)
|
|
{
|
|
using libnest2d::opt::Method;
|
|
using libnest2d::opt::bound;
|
|
using libnest2d::opt::Optimizer;
|
|
using libnest2d::opt::TOptimizer;
|
|
using libnest2d::opt::StopCriteria;
|
|
|
|
static const unsigned MAX_TRIES = 100000;
|
|
|
|
// return value
|
|
std::array<double, 3> rot;
|
|
|
|
// We will use only one instance of this converted mesh to examine different
|
|
// rotations
|
|
EigenMesh3D emesh(modelobj.raw_mesh());
|
|
|
|
// For current iteration number
|
|
unsigned status = 0;
|
|
|
|
// The maximum number of iterations
|
|
auto max_tries = unsigned(accuracy * MAX_TRIES);
|
|
|
|
// call status callback with zero, because we are at the start
|
|
statuscb(status);
|
|
|
|
// So this is the object function which is called by the solver many times
|
|
// It has to yield a single value representing the current score. We will
|
|
// call the status callback in each iteration but the actual value may be
|
|
// the same for subsequent iterations (status goes from 0 to 100 but
|
|
// iterations can be many more)
|
|
auto objfunc = [&emesh, &status, &statuscb, &stopcond, max_tries]
|
|
(double rx, double ry, double rz)
|
|
{
|
|
EigenMesh3D& m = emesh;
|
|
|
|
// prepare the rotation transformation
|
|
Transform3d rt = Transform3d::Identity();
|
|
|
|
rt.rotate(Eigen::AngleAxisd(rz, Vec3d::UnitZ()));
|
|
rt.rotate(Eigen::AngleAxisd(ry, Vec3d::UnitY()));
|
|
rt.rotate(Eigen::AngleAxisd(rx, Vec3d::UnitX()));
|
|
|
|
double score = 0;
|
|
|
|
// For all triangles we calculate the normal and sum up the dot product
|
|
// (a scalar indicating how much are two vectors aligned) with each axis
|
|
// this will result in a value that is greater if a normal is aligned
|
|
// with all axes. If the normal is aligned than the triangle itself is
|
|
// orthogonal to the axes and that is good for print quality.
|
|
|
|
// TODO: some applications optimize for minimum z-axis cross section
|
|
// area. The current function is only an example of how to optimize.
|
|
|
|
// Later we can add more criteria like the number of overhangs, etc...
|
|
for(int i = 0; i < m.F().rows(); i++) {
|
|
auto idx = m.F().row(i);
|
|
|
|
Vec3d p1 = m.V().row(idx(0));
|
|
Vec3d p2 = m.V().row(idx(1));
|
|
Vec3d p3 = m.V().row(idx(2));
|
|
|
|
Eigen::Vector3d U = p2 - p1;
|
|
Eigen::Vector3d V = p3 - p1;
|
|
|
|
// So this is the normal
|
|
auto n = U.cross(V).normalized();
|
|
|
|
// rotate the normal with the current rotation given by the solver
|
|
n = rt * n;
|
|
|
|
// We should score against the alignment with the reference planes
|
|
score += std::abs(n.dot(Vec3d::UnitX()));
|
|
score += std::abs(n.dot(Vec3d::UnitY()));
|
|
score += std::abs(n.dot(Vec3d::UnitZ()));
|
|
}
|
|
|
|
// report status
|
|
if(!stopcond()) statuscb( unsigned(++status * 100.0/max_tries) );
|
|
|
|
return score;
|
|
};
|
|
|
|
// Firing up the genetic optimizer. For now it uses the nlopt library.
|
|
StopCriteria stc;
|
|
stc.max_iterations = max_tries;
|
|
stc.relative_score_difference = 1e-3;
|
|
stc.stop_condition = stopcond; // stop when stopcond returns true
|
|
TOptimizer<Method::G_GENETIC> solver(stc);
|
|
|
|
// We are searching rotations around the three axes x, y, z. Thus the
|
|
// problem becomes a 3 dimensional optimization task.
|
|
// We can specify the bounds for a dimension in the following way:
|
|
auto b = bound(-PI/2, PI/2);
|
|
|
|
// Now we start the optimization process with initial angles (0, 0, 0)
|
|
auto result = solver.optimize_max(objfunc,
|
|
libnest2d::opt::initvals(0.0, 0.0, 0.0),
|
|
b, b, b);
|
|
|
|
// Save the result and fck off
|
|
rot[0] = std::get<0>(result.optimum);
|
|
rot[1] = std::get<1>(result.optimum);
|
|
rot[2] = std::get<2>(result.optimum);
|
|
|
|
return rot;
|
|
}
|
|
|
|
}
|
|
}
|