PrusaSlicer/tests/libslic3r/test_support_spots_generator.cpp
Martin Šach 6164051d60 Use proper formula for second moment of area.
SupportSpotsGenerator originally used a heuristic formula. Current
formula is properly derived using known properties of
second moment of area. Several tests of this formula are added.
2023-09-22 13:30:05 +02:00

98 lines
3.4 KiB
C++

#include "libslic3r/Point.hpp"
#include <catch2/catch.hpp>
#include <libslic3r/SupportSpotsGenerator.hpp>
using namespace Slic3r;
using namespace SupportSpotsGenerator;
TEST_CASE("Numerical integral calculation compared with exact solution.", "[SupportSpotsGenerator]") {
const float width = 10;
const float height = 20;
const Polygon polygon = {
scaled(Vec2f{-width / 2, -height / 2}),
scaled(Vec2f{width / 2, -height / 2}),
scaled(Vec2f{width / 2, height / 2}),
scaled(Vec2f{-width / 2, height / 2})
};
const Integrals integrals{{polygon}};
CHECK(integrals.area == Approx(width * height));
CHECK(integrals.x_i.x() == Approx(0));
CHECK(integrals.x_i.y() == Approx(0));
CHECK(integrals.x_i_squared.x() == Approx(std::pow(width, 3) * height / 12));
CHECK(integrals.x_i_squared.y() == Approx(width * std::pow(height, 3) / 12));
}
TEST_CASE("Moment values and ratio check.", "[SupportSpotsGenerator]") {
const float width = 40;
const float height = 2;
// Moments are calculated at centroid.
// Polygon centroid must not be (0, 0).
const Polygon polygon = {
scaled(Vec2f{0, 0}),
scaled(Vec2f{width, 0}),
scaled(Vec2f{width, height}),
scaled(Vec2f{0, height})
};
const Integrals integrals{{polygon}};
const Vec2f x_axis{1, 0};
const float x_axis_moment = compute_second_moment(integrals, x_axis);
const Vec2f y_axis{0, 1};
const float y_axis_moment = compute_second_moment(integrals, y_axis);
const float moment_ratio = std::pow(width / height, 2);
// Ensure the object transaltion has no effect.
CHECK(x_axis_moment == Approx(width * std::pow(height, 3) / 12));
CHECK(y_axis_moment == Approx(std::pow(width, 3) * height / 12));
// If the object is "wide" the y axis moments should be large compared to x axis moment.
CHECK(y_axis_moment / x_axis_moment == Approx(moment_ratio));
}
TEST_CASE("Moments calculation for rotated axis.", "[SupportSpotsGenerator]") {
Polygon polygon = {
scaled(Vec2f{6.362284076172198, 138.9674202217155}),
scaled(Vec2f{97.48779843751677, 106.08136606617076}),
scaled(Vec2f{135.75221821532384, 66.84428834668765}),
scaled(Vec2f{191.5308049852741, 45.77905628725614}),
scaled(Vec2f{182.7525148049201, 74.01799041087513}),
scaled(Vec2f{296.83210979283473, 196.80022572637228}),
scaled(Vec2f{215.16434429179148, 187.45715418834143}),
scaled(Vec2f{64.64574271229334, 284.293883209721}),
scaled(Vec2f{110.76507036894843, 174.35633141113783}),
scaled(Vec2f{77.56229640885199, 189.33057746591336})
};
Integrals integrals{{polygon}};
std::mt19937 generator{std::random_device{}()};
std::uniform_real_distribution<float> angle_distribution{0, 2*M_PI};
// Meassured counterclockwise from (1, 0)
const float angle = angle_distribution(generator);
Vec2f axis{std::cos(angle), std::sin(angle)};
float moment_calculated_then_rotated = compute_second_moment(
integrals,
axis
);
// We want to rotate the object clockwise by angle to align the axis with (1, 0)
// Method .rotate is counterclockwise for positive angle
polygon.rotate(-angle);
Integrals integrals_rotated{{polygon}};
float moment_rotated_polygon = compute_second_moment(
integrals_rotated,
Vec2f{1, 0}
);
CHECK(moment_calculated_then_rotated == Approx(moment_rotated_polygon));
}