PrusaSlicer/src/libslic3r/Fill/FillBase.cpp
2021-02-09 19:23:58 +01:00

1467 lines
72 KiB
C++

#include <stdio.h>
#include <numeric>
#include "../ClipperUtils.hpp"
#include "../EdgeGrid.hpp"
#include "../Geometry.hpp"
#include "../Point.hpp"
#include "../PrintConfig.hpp"
#include "../Surface.hpp"
#include "../libslic3r.h"
#include "FillBase.hpp"
#include "FillConcentric.hpp"
#include "FillHoneycomb.hpp"
#include "Fill3DHoneycomb.hpp"
#include "FillGyroid.hpp"
#include "FillPlanePath.hpp"
#include "FillLine.hpp"
#include "FillRectilinear.hpp"
#include "FillAdaptive.hpp"
namespace Slic3r {
Fill* Fill::new_from_type(const InfillPattern type)
{
switch (type) {
case ipConcentric: return new FillConcentric();
case ipHoneycomb: return new FillHoneycomb();
case ip3DHoneycomb: return new Fill3DHoneycomb();
case ipGyroid: return new FillGyroid();
case ipRectilinear: return new FillRectilinear();
case ipAlignedRectilinear: return new FillAlignedRectilinear();
case ipMonotonic: return new FillMonotonic();
case ipLine: return new FillLine();
case ipGrid: return new FillGrid();
case ipTriangles: return new FillTriangles();
case ipStars: return new FillStars();
case ipCubic: return new FillCubic();
case ipArchimedeanChords: return new FillArchimedeanChords();
case ipHilbertCurve: return new FillHilbertCurve();
case ipOctagramSpiral: return new FillOctagramSpiral();
case ipAdaptiveCubic: return new FillAdaptive::Filler();
case ipSupportCubic: return new FillAdaptive::Filler();
default: throw Slic3r::InvalidArgument("unknown type");
}
}
Fill* Fill::new_from_type(const std::string &type)
{
const t_config_enum_values &enum_keys_map = ConfigOptionEnum<InfillPattern>::get_enum_values();
t_config_enum_values::const_iterator it = enum_keys_map.find(type);
return (it == enum_keys_map.end()) ? nullptr : new_from_type(InfillPattern(it->second));
}
// Force initialization of the Fill::use_bridge_flow() internal static map in a thread safe fashion even on compilers
// not supporting thread safe non-static data member initializers.
static bool use_bridge_flow_initializer = Fill::use_bridge_flow(ipGrid);
bool Fill::use_bridge_flow(const InfillPattern type)
{
static std::vector<unsigned char> cached;
if (cached.empty()) {
cached.assign(size_t(ipCount), 0);
for (size_t i = 0; i < cached.size(); ++ i) {
auto *fill = Fill::new_from_type((InfillPattern)i);
cached[i] = fill->use_bridge_flow();
delete fill;
}
}
return cached[type] != 0;
}
Polylines Fill::fill_surface(const Surface *surface, const FillParams &params)
{
// Perform offset.
Slic3r::ExPolygons expp = offset_ex(surface->expolygon, float(scale_(this->overlap - 0.5 * this->spacing)));
// Create the infills for each of the regions.
Polylines polylines_out;
for (size_t i = 0; i < expp.size(); ++ i)
_fill_surface_single(
params,
surface->thickness_layers,
_infill_direction(surface),
std::move(expp[i]),
polylines_out);
return polylines_out;
}
// Calculate a new spacing to fill width with possibly integer number of lines,
// the first and last line being centered at the interval ends.
// This function possibly increases the spacing, never decreases,
// and for a narrow width the increase in spacing may become severe,
// therefore the adjustment is limited to 20% increase.
coord_t Fill::_adjust_solid_spacing(const coord_t width, const coord_t distance)
{
assert(width >= 0);
assert(distance > 0);
// floor(width / distance)
const auto number_of_intervals = coord_t((width - EPSILON) / distance);
coord_t distance_new = (number_of_intervals == 0) ?
distance :
coord_t((width - EPSILON) / number_of_intervals);
const coordf_t factor = coordf_t(distance_new) / coordf_t(distance);
assert(factor > 1. - 1e-5);
// How much could the extrusion width be increased? By 20%.
const coordf_t factor_max = 1.2;
if (factor > factor_max)
distance_new = coord_t(floor((coordf_t(distance) * factor_max + 0.5)));
return distance_new;
}
// Returns orientation of the infill and the reference point of the infill pattern.
// For a normal print, the reference point is the center of a bounding box of the STL.
std::pair<float, Point> Fill::_infill_direction(const Surface *surface) const
{
// set infill angle
float out_angle = this->angle;
if (out_angle == FLT_MAX) {
//FIXME Vojtech: Add a warning?
printf("Using undefined infill angle\n");
out_angle = 0.f;
}
// Bounding box is the bounding box of a perl object Slic3r::Print::Object (c++ object Slic3r::PrintObject)
// The bounding box is only undefined in unit tests.
Point out_shift = empty(this->bounding_box) ?
surface->expolygon.contour.bounding_box().center() :
this->bounding_box.center();
#if 0
if (empty(this->bounding_box)) {
printf("Fill::_infill_direction: empty bounding box!");
} else {
printf("Fill::_infill_direction: reference point %d, %d\n", out_shift.x, out_shift.y);
}
#endif
if (surface->bridge_angle >= 0) {
// use bridge angle
//FIXME Vojtech: Add a debugf?
// Slic3r::debugf "Filling bridge with angle %d\n", rad2deg($surface->bridge_angle);
#ifdef SLIC3R_DEBUG
printf("Filling bridge with angle %f\n", surface->bridge_angle);
#endif /* SLIC3R_DEBUG */
out_angle = float(surface->bridge_angle);
} else if (this->layer_id != size_t(-1)) {
// alternate fill direction
out_angle += this->_layer_angle(this->layer_id / surface->thickness_layers);
} else {
// printf("Layer_ID undefined!\n");
}
out_angle += float(M_PI/2.);
return std::pair<float, Point>(out_angle, out_shift);
}
// A single T joint of an infill line to a closed contour or one of its holes.
struct ContourIntersectionPoint {
// Contour and point on a contour where an infill line is connected to.
size_t contour_idx;
size_t point_idx;
// Eucleidean parameter of point_idx along its contour.
double param;
// Other intersection points along the same contour. If there is only a single T-joint on a contour
// with an intersection line, then the prev_on_contour and next_on_contour remain nulls.
ContourIntersectionPoint* prev_on_contour { nullptr };
ContourIntersectionPoint* next_on_contour { nullptr };
// Length of the contour not yet allocated to some extrusion path going back (clockwise), or masked out by some overlapping infill line.
double contour_not_taken_length_prev { std::numeric_limits<double>::max() };
// Length of the contour not yet allocated to some extrusion path going forward (counter-clockwise), or masked out by some overlapping infill line.
double contour_not_taken_length_next { std::numeric_limits<double>::max() };
// End point is consumed if an infill line connected to this T-joint was already connected left or right along the contour,
// or if the infill line was processed, but it was not possible to connect it left or right along the contour.
bool consumed { false };
// Whether the contour was trimmed by an overlapping infill line, or whether part of this contour was connected to some infill line.
bool prev_trimmed { false };
bool next_trimmed { false };
void consume_prev() { this->contour_not_taken_length_prev = 0.; this->prev_trimmed = true; this->consumed = true; }
void consume_next() { this->contour_not_taken_length_next = 0.; this->next_trimmed = true; this->consumed = true; }
void trim_prev(const double new_len) {
if (new_len < this->contour_not_taken_length_prev) {
this->contour_not_taken_length_prev = new_len;
this->prev_trimmed = true;
}
}
void trim_next(const double new_len) {
if (new_len < this->contour_not_taken_length_next) {
this->contour_not_taken_length_next = new_len;
this->next_trimmed = true;
}
}
// The end point of an infill line connected to this T-joint was not processed yet and a piece of the contour could be extruded going backwards.
bool could_take_prev() const throw() { return ! this->consumed && this->contour_not_taken_length_prev > SCALED_EPSILON; }
// The end point of an infill line connected to this T-joint was not processed yet and a piece of the contour could be extruded going forward.
bool could_take_next() const throw() { return ! this->consumed && this->contour_not_taken_length_next > SCALED_EPSILON; }
// Could extrude a complete segment from this to this->prev_on_contour.
bool could_connect_prev() const throw()
{ return ! this->consumed && this->prev_on_contour != this && ! this->prev_on_contour->consumed && ! this->prev_trimmed && ! this->prev_on_contour->next_trimmed; }
// Could extrude a complete segment from this to this->next_on_contour.
bool could_connect_next() const throw()
{ return ! this->consumed && this->next_on_contour != this && ! this->next_on_contour->consumed && ! this->next_trimmed && ! this->next_on_contour->prev_trimmed; }
};
// Distance from param1 to param2 when going counter-clockwise.
static inline double closed_contour_distance_ccw(double param1, double param2, double contour_length)
{
assert(param1 >= 0. && param1 <= contour_length);
assert(param2 >= 0. && param2 <= contour_length);
double d = param2 - param1;
if (d < 0.)
d += contour_length;
return d;
}
// Distance from param1 to param2 when going clockwise.
static inline double closed_contour_distance_cw(double param1, double param2, double contour_length)
{
return closed_contour_distance_ccw(param2, param1, contour_length);
}
// Length along the contour from cp1 to cp2 going counter-clockwise.
double path_length_along_contour_ccw(const ContourIntersectionPoint *cp1, const ContourIntersectionPoint *cp2, double contour_length)
{
assert(cp1 != nullptr);
assert(cp2 != nullptr);
assert(cp1->contour_idx == cp2->contour_idx);
assert(cp1 != cp2);
return closed_contour_distance_ccw(cp1->param, cp2->param, contour_length);
}
// Lengths along the contour from cp1 to cp2 going CCW and going CW.
std::pair<double, double> path_lengths_along_contour(const ContourIntersectionPoint *cp1, const ContourIntersectionPoint *cp2, double contour_length)
{
// Zero'th param is the length of the contour.
double param_lo = cp1->param;
double param_hi = cp2->param;
assert(param_lo >= 0. && param_lo <= contour_length);
assert(param_hi >= 0. && param_hi <= contour_length);
bool reversed = false;
if (param_lo > param_hi) {
std::swap(param_lo, param_hi);
reversed = true;
}
auto out = std::make_pair(param_hi - param_lo, param_lo + contour_length - param_hi);
if (reversed)
std::swap(out.first, out.second);
return out;
}
// Add contour points from interval (idx_start, idx_end> to polyline.
static inline void take_cw_full(Polyline &pl, const Points& contour, size_t idx_start, size_t idx_end)
{
assert(! pl.empty() && pl.points.back() == contour[idx_start]);
size_t i = (idx_end == 0) ? contour.size() - 1 : idx_start - 1;
while (i != idx_end) {
pl.points.emplace_back(contour[i]);
if (i == 0)
i = contour.size();
--i;
}
pl.points.emplace_back(contour[i]);
}
// Add contour points from interval (idx_start, idx_end> to polyline, limited by the Eucleidean length taken.
static inline double take_cw_limited(Polyline &pl, const Points &contour, const std::vector<double> &params, size_t idx_start, size_t idx_end, double length_to_take)
{
// If appending to an infill line, then the start point of a perimeter line shall match the end point of an infill line.
assert(pl.empty() || pl.points.back() == contour[idx_start]);
assert(contour.size() + 1 == params.size());
assert(length_to_take > SCALED_EPSILON);
// Length of the contour.
double length = params.back();
// Parameter (length from contour.front()) for the first point.
double p0 = params[idx_start];
// Current (2nd) point of the contour.
size_t i = (idx_start == 0) ? contour.size() - 1 : idx_start - 1;
// Previous point of the contour.
size_t iprev = idx_start;
// Length of the contour curve taken for iprev.
double lprev = 0.;
for (;;) {
double l = closed_contour_distance_cw(p0, params[i], length);
if (l >= length_to_take) {
// Trim the last segment.
double t = double(length_to_take - lprev) / (l - lprev);
pl.points.emplace_back(lerp(contour[iprev], contour[i], t));
return length_to_take;
}
// Continue with the other segments.
pl.points.emplace_back(contour[i]);
if (i == idx_end)
return l;
iprev = i;
lprev = l;
if (i == 0)
i = contour.size();
-- i;
}
assert(false);
return 0;
}
// Add contour points from interval (idx_start, idx_end> to polyline.
static inline void take_ccw_full(Polyline &pl, const Points &contour, size_t idx_start, size_t idx_end)
{
assert(! pl.empty() && pl.points.back() == contour[idx_start]);
size_t i = idx_start;
if (++ i == contour.size())
i = 0;
while (i != idx_end) {
pl.points.emplace_back(contour[i]);
if (++ i == contour.size())
i = 0;
}
pl.points.emplace_back(contour[i]);
}
// Add contour points from interval (idx_start, idx_end> to polyline, limited by the Eucleidean length taken.
// Returns length of the contour taken.
static inline double take_ccw_limited(Polyline &pl, const Points &contour, const std::vector<double> &params, size_t idx_start, size_t idx_end, double length_to_take)
{
// If appending to an infill line, then the start point of a perimeter line shall match the end point of an infill line.
assert(pl.empty() || pl.points.back() == contour[idx_start]);
assert(contour.size() + 1 == params.size());
assert(length_to_take > SCALED_EPSILON);
// Length of the contour.
double length = params.back();
// Parameter (length from contour.front()) for the first point.
double p0 = params[idx_start];
// Current (2nd) point of the contour.
size_t i = idx_start;
if (++ i == contour.size())
i = 0;
// Previous point of the contour.
size_t iprev = idx_start;
// Length of the contour curve taken at iprev.
double lprev = 0;
for (;;) {
double l = closed_contour_distance_ccw(p0, params[i], length);
if (l >= length_to_take) {
// Trim the last segment.
double t = double(length_to_take - lprev) / (l - lprev);
pl.points.emplace_back(lerp(contour[iprev], contour[i], t));
return length_to_take;
}
// Continue with the other segments.
pl.points.emplace_back(contour[i]);
if (i == idx_end)
return l;
iprev = i;
lprev = l;
if (++ i == contour.size())
i = 0;
}
assert(false);
return 0;
}
// Connect end of pl1 to the start of pl2 using the perimeter contour.
// If clockwise, then a clockwise segment from idx_start to idx_end is taken, otherwise a counter-clockwise segment is being taken.
static void take(Polyline &pl1, const Polyline &pl2, const Points &contour, size_t idx_start, size_t idx_end, bool clockwise)
{
#ifndef NDEBUG
assert(idx_start != idx_end);
assert(pl1.size() >= 2);
assert(pl2.size() >= 2);
#endif /* NDEBUG */
{
// Reserve memory at pl1 for the connecting contour and pl2.
int new_points = int(idx_end) - int(idx_start) - 1;
if (new_points < 0)
new_points += int(contour.size());
pl1.points.reserve(pl1.points.size() + size_t(new_points) + pl2.points.size());
}
if (clockwise)
take_cw_full(pl1, contour, idx_start, idx_end);
else
take_ccw_full(pl1, contour, idx_start, idx_end);
pl1.points.insert(pl1.points.end(), pl2.points.begin() + 1, pl2.points.end());
}
static void take(Polyline &pl1, const Polyline &pl2, const Points &contour, ContourIntersectionPoint *cp_start, ContourIntersectionPoint *cp_end, bool clockwise)
{
assert(cp_start->prev_on_contour != nullptr);
assert(cp_start->next_on_contour != nullptr);
assert(cp_end ->prev_on_contour != nullptr);
assert(cp_end ->next_on_contour != nullptr);
assert(cp_start != cp_end);
take(pl1, pl2, contour, cp_start->point_idx, cp_end->point_idx, clockwise);
// Mark the contour segments in between cp_start and cp_end as consumed.
if (clockwise)
std::swap(cp_start, cp_end);
if (cp_start->next_on_contour != cp_end)
for (auto *cp = cp_start->next_on_contour; cp->next_on_contour != cp_end; cp = cp->next_on_contour) {
cp->consume_prev();
cp->consume_next();
}
cp_start->consume_next();
cp_end->consume_prev();
}
static void take_limited(
Polyline &pl1, const Points &contour, const std::vector<double> &params,
ContourIntersectionPoint *cp_start, ContourIntersectionPoint *cp_end, bool clockwise, double take_max_length, double line_half_width)
{
#ifndef NDEBUG
// This is a valid case, where a single infill line connect to two different contours (outer contour + hole or two holes).
// assert(cp_start != cp_end);
assert(cp_start->prev_on_contour != nullptr);
assert(cp_start->next_on_contour != nullptr);
assert(cp_end ->prev_on_contour != nullptr);
assert(cp_end ->next_on_contour != nullptr);
assert(pl1.size() >= 2);
assert(contour.size() + 1 == params.size());
#endif /* NDEBUG */
if (! (clockwise ? cp_start->could_take_prev() : cp_start->could_take_next()))
return;
assert(pl1.points.front() == contour[cp_start->point_idx] || pl1.points.back() == contour[cp_start->point_idx]);
bool add_at_start = pl1.points.front() == contour[cp_start->point_idx];
Points pl_tmp;
if (add_at_start) {
pl_tmp = std::move(pl1.points);
pl1.points.clear();
}
{
// Reserve memory at pl1 for the perimeter segment.
// Pessimizing - take the complete segment.
int new_points = int(cp_end->point_idx) - int(cp_start->point_idx) - 1;
if (new_points < 0)
new_points += int(contour.size());
pl1.points.reserve(pl1.points.size() + pl_tmp.size() + size_t(new_points));
}
double length = params.back();
double length_to_go = take_max_length;
cp_start->consumed = true;
if (cp_start == cp_end) {
length_to_go = std::max(0., std::min(length_to_go, length - line_half_width));
length_to_go = std::min(length_to_go, clockwise ? cp_start->contour_not_taken_length_prev : cp_start->contour_not_taken_length_next);
cp_start->consume_prev();
cp_start->consume_next();
if (length_to_go > SCALED_EPSILON)
clockwise ?
take_cw_limited (pl1, contour, params, cp_start->point_idx, cp_start->point_idx, length_to_go) :
take_ccw_limited(pl1, contour, params, cp_start->point_idx, cp_start->point_idx, length_to_go);
} else if (clockwise) {
// Going clockwise from cp_start to cp_end.
assert(cp_start != cp_end);
for (ContourIntersectionPoint *cp = cp_start; cp != cp_end; cp = cp->prev_on_contour) {
// Length of the segment from cp to cp->prev_on_contour.
double l = closed_contour_distance_cw(cp->param, cp->prev_on_contour->param, length);
length_to_go = std::min(length_to_go, cp->contour_not_taken_length_prev);
//if (cp->prev_on_contour->consumed)
// Don't overlap with an already extruded infill line.
length_to_go = std::max(0., std::min(length_to_go, l - line_half_width));
cp->consume_prev();
if (l >= length_to_go) {
if (length_to_go > SCALED_EPSILON) {
cp->prev_on_contour->trim_next(l - length_to_go);
take_cw_limited(pl1, contour, params, cp->point_idx, cp->prev_on_contour->point_idx, length_to_go);
}
break;
} else {
cp->prev_on_contour->trim_next(0.);
take_cw_full(pl1, contour, cp->point_idx, cp->prev_on_contour->point_idx);
length_to_go -= l;
}
}
} else {
assert(cp_start != cp_end);
for (ContourIntersectionPoint *cp = cp_start; cp != cp_end; cp = cp->next_on_contour) {
double l = closed_contour_distance_ccw(cp->param, cp->next_on_contour->param, length);
length_to_go = std::min(length_to_go, cp->contour_not_taken_length_next);
//if (cp->next_on_contour->consumed)
// Don't overlap with an already extruded infill line.
length_to_go = std::max(0., std::min(length_to_go, l - line_half_width));
cp->consume_next();
if (l >= length_to_go) {
if (length_to_go > SCALED_EPSILON) {
cp->next_on_contour->trim_prev(l - length_to_go);
take_ccw_limited(pl1, contour, params, cp->point_idx, cp->next_on_contour->point_idx, length_to_go);
}
break;
} else {
cp->next_on_contour->trim_prev(0.);
take_ccw_full(pl1, contour, cp->point_idx, cp->next_on_contour->point_idx);
length_to_go -= l;
}
}
}
if (add_at_start) {
pl1.reverse();
append(pl1.points, pl_tmp);
}
}
// Return an index of start of a segment and a point of the clipping point at distance from the end of polyline.
struct SegmentPoint {
// Segment index, defining a line <idx_segment, idx_segment + 1).
size_t idx_segment = std::numeric_limits<size_t>::max();
// Parameter of point in <0, 1) along the line <idx_segment, idx_segment + 1)
double t;
Vec2d point;
bool valid() const { return idx_segment != std::numeric_limits<size_t>::max(); }
};
static inline SegmentPoint clip_start_segment_and_point(const Points &polyline, double distance)
{
assert(polyline.size() >= 2);
assert(distance > 0.);
// Initialized to "invalid".
SegmentPoint out;
if (polyline.size() >= 2) {
Vec2d pt_prev = polyline.front().cast<double>();
for (size_t i = 1; i < polyline.size(); ++ i) {
Vec2d pt = polyline[i].cast<double>();
Vec2d v = pt - pt_prev;
double l = v.norm();
if (l > distance) {
out.idx_segment = i - 1;
out.t = distance / l;
out.point = pt_prev + out.t * v;
break;
}
distance -= l;
pt_prev = pt;
}
}
return out;
}
static inline SegmentPoint clip_end_segment_and_point(const Points &polyline, double distance)
{
assert(polyline.size() >= 2);
assert(distance > 0.);
// Initialized to "invalid".
SegmentPoint out;
if (polyline.size() >= 2) {
Vec2d pt_next = polyline.back().cast<double>();
for (int i = int(polyline.size()) - 2; i >= 0; -- i) {
Vec2d pt = polyline[i].cast<double>();
Vec2d v = pt - pt_next;
double l = v.norm();
if (l > distance) {
out.idx_segment = i;
out.t = distance / l;
out.point = pt_next + out.t * v;
// Store the parameter referenced to the starting point of a segment.
out.t = 1. - out.t;
break;
}
distance -= l;
pt_next = pt;
}
}
return out;
}
// Calculate intersection of a line with a thick segment.
// Returns Eucledian parameters of the line / thick segment overlap.
static inline bool line_rounded_thick_segment_collision(
const Vec2d &line_a, const Vec2d &line_b,
const Vec2d &segment_a, const Vec2d &segment_b, const double offset,
std::pair<double, double> &out_interval)
{
const Vec2d line_v0 = line_b - line_a;
double lv = line_v0.squaredNorm();
const Vec2d segment_v = segment_b - segment_a;
const double segment_l = segment_v.norm();
const double offset2 = offset * offset;
bool intersects = false;
if (lv < SCALED_EPSILON * SCALED_EPSILON)
{
// Very short line vector. Just test whether the center point is inside the offset line.
Vec2d lpt = 0.5 * (line_a + line_b);
if (segment_l > SCALED_EPSILON) {
struct Linef { Vec2d a, b; };
intersects = line_alg::distance_to_squared(Linef{ segment_a, segment_b }, lpt) < offset2;
} else
intersects = (0.5 * (segment_a + segment_b) - lpt).squaredNorm() < offset2;
if (intersects) {
out_interval.first = 0.;
out_interval.second = sqrt(lv);
}
}
else
{
// Output interval.
double tmin = std::numeric_limits<double>::max();
double tmax = -tmin;
auto extend_interval = [&tmin, &tmax](double atmin, double atmax) {
tmin = std::min(tmin, atmin);
tmax = std::max(tmax, atmax);
};
// Intersections with the inflated segment end points.
auto ray_circle_intersection_interval_extend = [&extend_interval, &line_v0](const Vec2d &segment_pt, const double offset2, const Vec2d &line_pt, const Vec2d &line_vec) {
std::pair<Vec2d, Vec2d> pts;
Vec2d p0 = line_pt - segment_pt;
double c = - line_pt.dot(p0);
if (Geometry::ray_circle_intersections_r2_lv2_c(offset2, line_vec.x(), line_vec.y(), line_vec.squaredNorm(), c, pts)) {
double tmin = (pts.first - p0).dot(line_v0);
double tmax = (pts.second - p0).dot(line_v0);
if (tmin > tmax)
std::swap(tmin, tmax);
tmin = std::max(tmin, 0.);
tmax = std::min(tmax, 1.);
if (tmin <= tmax)
extend_interval(tmin, tmax);
}
};
// Intersections with the inflated segment.
if (segment_l > SCALED_EPSILON) {
ray_circle_intersection_interval_extend(segment_a, offset2, line_a, line_v0);
ray_circle_intersection_interval_extend(segment_b, offset2, line_a, line_v0);
// Clip the line segment transformed into a coordinate space of the segment,
// where the segment spans (0, 0) to (segment_l, 0).
const Vec2d dir_x = segment_v / segment_l;
const Vec2d dir_y(- dir_x.y(), dir_x.x());
const Vec2d line_p0(line_a - segment_a);
std::pair<double, double> interval;
if (Geometry::liang_barsky_line_clipping_interval(
Vec2d(line_p0.dot(dir_x), line_p0.dot(dir_y)),
Vec2d(line_v0.dot(dir_x), line_v0.dot(dir_y)),
BoundingBoxf(Vec2d(0., - offset), Vec2d(segment_l, offset)),
interval))
extend_interval(interval.first, interval.second);
} else
ray_circle_intersection_interval_extend(0.5 * (segment_a + segment_b), offset, line_a, line_v0);
intersects = tmin <= tmax;
if (intersects) {
lv = sqrt(lv);
out_interval.first = tmin * lv;
out_interval.second = tmax * lv;
}
}
#if 0
{
BoundingBox bbox;
bbox.merge(line_a.cast<coord_t>());
bbox.merge(line_a.cast<coord_t>());
bbox.merge(segment_a.cast<coord_t>());
bbox.merge(segment_b.cast<coord_t>());
static int iRun = 0;
::Slic3r::SVG svg(debug_out_path("%s-%03d.svg", "line-thick-segment-intersect", iRun ++), bbox);
svg.draw(Line(line_a.cast<coord_t>(), line_b.cast<coord_t>()), "black");
svg.draw(Line(segment_a.cast<coord_t>(), segment_b.cast<coord_t>()), "blue", offset * 2.);
svg.draw(segment_a.cast<coord_t>(), "blue", offset);
svg.draw(segment_b.cast<coord_t>(), "blue", offset);
svg.draw(Line(segment_a.cast<coord_t>(), segment_b.cast<coord_t>()), "black");
if (intersects)
svg.draw(Line((line_a + (line_b - line_a).normalized() * out_interval.first).cast<coord_t>(),
(line_a + (line_b - line_a).normalized() * out_interval.second).cast<coord_t>()), "red");
}
#endif
return intersects;
}
static inline bool inside_interval(double low, double high, double p)
{
return p >= low && p <= high;
}
static inline bool interval_inside_interval(double outer_low, double outer_high, double inner_low, double inner_high, double epsilon)
{
outer_low -= epsilon;
outer_high += epsilon;
return inside_interval(outer_low, outer_high, inner_low) && inside_interval(outer_low, outer_high, inner_high);
}
#if 0
static inline bool cyclic_interval_inside_interval(double outer_low, double outer_high, double inner_low, double inner_high, double length)
{
if (outer_low > outer_high)
outer_high += length;
if (inner_low > inner_high)
inner_high += length;
else if (inner_high < outer_low) {
inner_low += length;
inner_high += length;
}
return interval_inside_interval(outer_low, outer_high, inner_low, inner_high, double(SCALED_EPSILON));
}
#endif
// #define INFILL_DEBUG_OUTPUT
#ifdef INFILL_DEBUG_OUTPUT
static void export_infill_to_svg(
// Boundary contour, along which the perimeter extrusions will be drawn.
const std::vector<Points> &boundary,
// Parametrization of boundary with Euclidian length.
const std::vector<std::vector<double>> &boundary_parameters,
// Intersections (T-joints) of the infill lines with the boundary.
std::vector<std::vector<ContourIntersectionPoint*>> &boundary_intersections,
// Infill lines, either completely inside the boundary, or touching the boundary.
const Polylines &infill,
const coord_t scaled_spacing,
const std::string &path,
const Polylines &overlap_lines = Polylines(),
const Polylines &polylines = Polylines(),
const Points &pts = Points())
{
Polygons polygons;
std::transform(boundary.begin(), boundary.end(), std::back_inserter(polygons), [](auto &pts) { return Polygon(pts); });
ExPolygons expolygons = union_ex(polygons);
BoundingBox bbox = get_extents(polygons);
bbox.offset(scale_(3.));
::Slic3r::SVG svg(path, bbox);
// Draw the filled infill polygons.
svg.draw(expolygons);
// Draw the pieces of boundary allowed to be used as anchors of infill lines, not yet consumed.
const std::string color_boundary_trimmed = "blue";
const std::string color_boundary_not_trimmed = "yellow";
const coordf_t boundary_line_width = scaled_spacing;
svg.draw_outline(polygons, "red", boundary_line_width);
for (const std::vector<ContourIntersectionPoint*> &intersections : boundary_intersections) {
const size_t boundary_idx = &intersections - boundary_intersections.data();
const Points &contour = boundary[boundary_idx];
const std::vector<double> &contour_param = boundary_parameters[boundary_idx];
for (const ContourIntersectionPoint *ip : intersections) {
assert(ip->next_trimmed == ip->next_on_contour->prev_trimmed);
assert(ip->prev_trimmed == ip->prev_on_contour->next_trimmed);
{
Polyline pl { contour[ip->point_idx] };
if (ip->next_trimmed) {
if (ip->contour_not_taken_length_next > SCALED_EPSILON) {
take_ccw_limited(pl, contour, contour_param, ip->point_idx, ip->next_on_contour->point_idx, ip->contour_not_taken_length_next);
svg.draw(pl, color_boundary_trimmed, boundary_line_width);
}
} else {
take_ccw_full(pl, contour, ip->point_idx, ip->next_on_contour->point_idx);
svg.draw(pl, color_boundary_not_trimmed, boundary_line_width);
}
}
{
Polyline pl { contour[ip->point_idx] };
if (ip->prev_trimmed) {
if (ip->contour_not_taken_length_prev > SCALED_EPSILON) {
take_cw_limited(pl, contour, contour_param, ip->point_idx, ip->prev_on_contour->point_idx, ip->contour_not_taken_length_prev);
svg.draw(pl, color_boundary_trimmed, boundary_line_width);
}
} else {
take_cw_full(pl, contour, ip->point_idx, ip->prev_on_contour->point_idx);
svg.draw(pl, color_boundary_not_trimmed, boundary_line_width);
}
}
}
}
// Draw the full infill polygon boundary.
svg.draw_outline(polygons, "green");
// Draw the infill lines, first the full length with red color, then a slightly shortened length with black color.
svg.draw(infill, "brown");
static constexpr double trim_length = scale_(0.15);
for (Polyline polyline : infill)
if (! polyline.empty()) {
Vec2d a = polyline.points.front().cast<double>();
Vec2d d = polyline.points.back().cast<double>();
if (polyline.size() == 2) {
Vec2d v = d - a;
double l = v.norm();
if (l > 2. * trim_length) {
a += v * trim_length / l;
d -= v * trim_length / l;
polyline.points.front() = a.cast<coord_t>();
polyline.points.back() = d.cast<coord_t>();
} else
polyline.points.clear();
} else if (polyline.size() > 2) {
Vec2d b = polyline.points[1].cast<double>();
Vec2d c = polyline.points[polyline.points.size() - 2].cast<double>();
Vec2d v = b - a;
double l = v.norm();
if (l > trim_length) {
a += v * trim_length / l;
polyline.points.front() = a.cast<coord_t>();
} else
polyline.points.erase(polyline.points.begin());
v = d - c;
l = v.norm();
if (l > trim_length)
polyline.points.back() = (d - v * trim_length / l).cast<coord_t>();
else
polyline.points.pop_back();
}
svg.draw(polyline, "black");
}
svg.draw(overlap_lines, "red", scale_(0.05));
svg.draw(polylines, "magenta", scale_(0.05));
svg.draw(pts, "magenta");
}
#endif // INFILL_DEBUG_OUTPUT
#ifndef NDEBUG
bool validate_boundary_intersections(const std::vector<std::vector<ContourIntersectionPoint*>> &boundary_intersections)
{
for (const std::vector<ContourIntersectionPoint*>& contour : boundary_intersections) {
for (ContourIntersectionPoint* ip : contour) {
assert(ip->next_trimmed == ip->next_on_contour->prev_trimmed);
assert(ip->prev_trimmed == ip->prev_on_contour->next_trimmed);
}
}
return true;
}
#endif // NDEBUG
// Mark the segments of split boundary as consumed if they are very close to some of the infill line.
void mark_boundary_segments_touching_infill(
// Boundary contour, along which the perimeter extrusions will be drawn.
const std::vector<Points> &boundary,
// Parametrization of boundary with Euclidian length.
const std::vector<std::vector<double>> &boundary_parameters,
// Intersections (T-joints) of the infill lines with the boundary.
std::vector<std::vector<ContourIntersectionPoint*>> &boundary_intersections,
// Bounding box around the boundary.
const BoundingBox &boundary_bbox,
// Infill lines, either completely inside the boundary, or touching the boundary.
const Polylines &infill,
// How much of the infill ends should be ignored when marking the boundary segments?
const double clip_distance,
// Roughly width of the infill line.
const double distance_colliding)
{
assert(boundary.size() == boundary_parameters.size());
#ifndef NDEBUG
for (size_t i = 0; i < boundary.size(); ++ i)
assert(boundary[i].size() + 1 == boundary_parameters[i].size());
assert(validate_boundary_intersections(boundary_intersections));
#endif
#ifdef INFILL_DEBUG_OUTPUT
static int iRun = 0;
++ iRun;
int iStep = 0;
export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-start", iRun));
Polylines perimeter_overlaps;
#endif // INFILL_DEBUG_OUTPUT
EdgeGrid::Grid grid;
// Make sure that the the grid is big enough for queries against the thick segment.
grid.set_bbox(boundary_bbox.inflated(distance_colliding * 1.43));
// Inflate the bounding box by a thick line width.
grid.create(boundary, coord_t(std::max(clip_distance, distance_colliding) + scale_(10.)));
// Visitor for the EdgeGrid to trim boundary_intersections with existing infill lines.
struct Visitor {
Visitor(const EdgeGrid::Grid &grid,
const std::vector<Points> &boundary, const std::vector<std::vector<double>> &boundary_parameters, std::vector<std::vector<ContourIntersectionPoint*>> &boundary_intersections,
const double radius) :
grid(grid), boundary(boundary), boundary_parameters(boundary_parameters), boundary_intersections(boundary_intersections), radius(radius), trim_l_threshold(0.5 * radius) {}
// Init with a segment of an infill line.
void init(const Vec2d &infill_pt1, const Vec2d &infill_pt2) {
this->infill_pt1 = &infill_pt1;
this->infill_pt2 = &infill_pt2;
this->infill_bbox.reset();
this->infill_bbox.merge(infill_pt1);
this->infill_bbox.merge(infill_pt2);
this->infill_bbox.offset(this->radius + SCALED_EPSILON);
}
bool operator()(coord_t iy, coord_t ix) {
// Called with a row and colum of the grid cell, which is intersected by a line.
auto cell_data_range = this->grid.cell_data_range(iy, ix);
for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++ it_contour_and_segment) {
// End points of the line segment and their vector.
auto segment = this->grid.segment(*it_contour_and_segment);
std::vector<ContourIntersectionPoint*> &intersections = boundary_intersections[it_contour_and_segment->first];
if (intersections.empty())
// There is no infil line touching this contour, thus effort will be saved to calculate overlap with other infill lines.
continue;
const Vec2d seg_pt1 = segment.first.cast<double>();
const Vec2d seg_pt2 = segment.second.cast<double>();
std::pair<double, double> interval;
BoundingBoxf bbox_seg;
bbox_seg.merge(seg_pt1);
bbox_seg.merge(seg_pt2);
#ifdef INFILL_DEBUG_OUTPUT
//if (this->infill_bbox.overlap(bbox_seg)) this->perimeter_overlaps.push_back({ segment.first, segment.second });
#endif // INFILL_DEBUG_OUTPUT
if (this->infill_bbox.overlap(bbox_seg) && line_rounded_thick_segment_collision(seg_pt1, seg_pt2, *this->infill_pt1, *this->infill_pt2, this->radius, interval)) {
// The boundary segment intersects with the infill segment thickened by radius.
// Interval is specified in Euclidian length from seg_pt1 to seg_pt2.
// 1) Find the Euclidian parameters of seg_pt1 and seg_pt2 on its boundary contour.
const std::vector<double> &contour_parameters = boundary_parameters[it_contour_and_segment->first];
const double contour_length = contour_parameters.back();
const double param_seg_pt1 = contour_parameters[it_contour_and_segment->second];
const double param_seg_pt2 = contour_parameters[it_contour_and_segment->second + 1];
#ifdef INFILL_DEBUG_OUTPUT
this->perimeter_overlaps.push_back({ Point((seg_pt1 + (seg_pt2 - seg_pt1).normalized() * interval.first).cast<coord_t>()),
Point((seg_pt1 + (seg_pt2 - seg_pt1).normalized() * interval.second).cast<coord_t>()) });
#endif // INFILL_DEBUG_OUTPUT
assert(interval.first >= 0.);
assert(interval.second >= 0.);
assert(interval.first <= interval.second);
const auto param_overlap1 = std::min(param_seg_pt2, param_seg_pt1 + interval.first);
const auto param_overlap2 = std::min(param_seg_pt2, param_seg_pt1 + interval.second);
// 2) Find the ContourIntersectionPoints before param_overlap1 and after param_overlap2.
// Find the span of ContourIntersectionPoints, that is trimmed by the interval (param_overlap1, param_overlap2).
ContourIntersectionPoint *ip_low, *ip_high;
if (intersections.size() == 1) {
// Only a single infill line touches this contour.
ip_low = ip_high = intersections.front();
} else {
assert(intersections.size() > 1);
auto it_low = Slic3r::lower_bound_by_predicate(intersections.begin(), intersections.end(), [param_overlap1](const ContourIntersectionPoint *l) { return l->param < param_overlap1; });
auto it_high = Slic3r::lower_bound_by_predicate(intersections.begin(), intersections.end(), [param_overlap2](const ContourIntersectionPoint *l) { return l->param < param_overlap2; });
ip_low = it_low == intersections.end() ? intersections.front() : *it_low;
ip_high = it_high == intersections.end() ? intersections.front() : *it_high;
if (ip_low->param != param_overlap1)
ip_low = ip_low->prev_on_contour;
assert(ip_low != ip_high);
// Verify that the interval (param_overlap1, param_overlap2) is inside the interval (ip_low->param, ip_high->param).
assert(cyclic_interval_inside_interval(ip_low->param, ip_high->param, param_overlap1, param_overlap2, contour_length));
}
assert(validate_boundary_intersections(boundary_intersections));
// Mark all ContourIntersectionPoints between ip_low and ip_high as consumed.
if (ip_low->next_on_contour != ip_high)
for (ContourIntersectionPoint *ip = ip_low->next_on_contour; ip != ip_high; ip = ip->next_on_contour) {
ip->consume_prev();
ip->consume_next();
}
// Subtract the interval from the first and last segments.
double trim_l = closed_contour_distance_ccw(ip_low->param, param_overlap1, contour_length);
//if (trim_l > trim_l_threshold)
ip_low->trim_next(trim_l);
trim_l = closed_contour_distance_ccw(param_overlap2, ip_high->param, contour_length);
//if (trim_l > trim_l_threshold)
ip_high->trim_prev(trim_l);
assert(ip_low->next_trimmed == ip_high->prev_trimmed);
assert(validate_boundary_intersections(boundary_intersections));
//FIXME mark point as consumed?
//FIXME verify the sequence between prev and next?
#ifdef INFILL_DEBUG_OUTPUT
{
#if 0
static size_t iRun = 0;
ExPolygon expoly(Polygon(*grid.contours().front()));
for (size_t i = 1; i < grid.contours().size(); ++i)
expoly.holes.emplace_back(Polygon(*grid.contours()[i]));
SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill", iRun ++).c_str(), get_extents(expoly));
svg.draw(expoly, "green");
svg.draw(Line(segment.first, segment.second), "red");
svg.draw(Line(this->infill_pt1->cast<coord_t>(), this->infill_pt2->cast<coord_t>()), "magenta");
#endif
}
#endif // INFILL_DEBUG_OUTPUT
}
}
// Continue traversing the grid along the edge.
return true;
}
const EdgeGrid::Grid &grid;
const std::vector<Points> &boundary;
const std::vector<std::vector<double>> &boundary_parameters;
std::vector<std::vector<ContourIntersectionPoint*>> &boundary_intersections;
// Maximum distance between the boundary and the infill line allowed to consider the boundary not touching the infill line.
const double radius;
// Region around the contour / infill line intersection point, where the intersections are ignored.
const double trim_l_threshold;
const Vec2d *infill_pt1;
const Vec2d *infill_pt2;
BoundingBoxf infill_bbox;
#ifdef INFILL_DEBUG_OUTPUT
Polylines perimeter_overlaps;
#endif // INFILL_DEBUG_OUTPUT
} visitor(grid, boundary, boundary_parameters, boundary_intersections, distance_colliding);
for (const Polyline &polyline : infill) {
#ifdef INFILL_DEBUG_OUTPUT
++ iStep;
#endif // INFILL_DEBUG_OUTPUT
// Clip the infill polyline by the Eucledian distance along the polyline.
SegmentPoint start_point = clip_start_segment_and_point(polyline.points, clip_distance);
SegmentPoint end_point = clip_end_segment_and_point(polyline.points, clip_distance);
if (start_point.valid() && end_point.valid() &&
(start_point.idx_segment < end_point.idx_segment || (start_point.idx_segment == end_point.idx_segment && start_point.t < end_point.t))) {
// The clipped polyline is non-empty.
#ifdef INFILL_DEBUG_OUTPUT
visitor.perimeter_overlaps.clear();
#endif // INFILL_DEBUG_OUTPUT
for (size_t point_idx = start_point.idx_segment; point_idx <= end_point.idx_segment; ++ point_idx) {
//FIXME extend the EdgeGrid to suport tracing a thick line.
#if 0
Point pt1, pt2;
Vec2d pt1d, pt2d;
if (point_idx == start_point.idx_segment) {
pt1d = start_point.point;
pt1 = pt1d.cast<coord_t>();
} else {
pt1 = polyline.points[point_idx];
pt1d = pt1.cast<double>();
}
if (point_idx == start_point.idx_segment) {
pt2d = end_point.point;
pt2 = pt1d.cast<coord_t>();
} else {
pt2 = polyline.points[point_idx];
pt2d = pt2.cast<double>();
}
visitor.init(pt1d, pt2d);
grid.visit_cells_intersecting_thick_line(pt1, pt2, distance_colliding, visitor);
#else
Vec2d pt1 = (point_idx == start_point.idx_segment) ? start_point.point : polyline.points[point_idx ].cast<double>();
Vec2d pt2 = (point_idx == end_point .idx_segment) ? end_point .point : polyline.points[point_idx + 1].cast<double>();
#if 0
{
static size_t iRun = 0;
ExPolygon expoly(Polygon(*grid.contours().front()));
for (size_t i = 1; i < grid.contours().size(); ++i)
expoly.holes.emplace_back(Polygon(*grid.contours()[i]));
SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill0", iRun ++).c_str(), get_extents(expoly));
svg.draw(expoly, "green");
svg.draw(polyline, "blue");
svg.draw(Line(pt1.cast<coord_t>(), pt2.cast<coord_t>()), "magenta", scale_(0.1));
}
#endif
visitor.init(pt1, pt2);
// Simulate tracing of a thick line. This only works reliably if distance_colliding <= grid cell size.
Vec2d v = (pt2 - pt1).normalized() * distance_colliding;
Vec2d vperp = perp(v);
Vec2d a = pt1 - v - vperp;
Vec2d b = pt2 + v - vperp;
assert(grid.bbox().contains(a.cast<coord_t>()));
assert(grid.bbox().contains(b.cast<coord_t>()));
grid.visit_cells_intersecting_line(a.cast<coord_t>(), b.cast<coord_t>(), visitor);
a = pt1 - v + vperp;
b = pt2 + v + vperp;
assert(grid.bbox().contains(a.cast<coord_t>()));
assert(grid.bbox().contains(b.cast<coord_t>()));
grid.visit_cells_intersecting_line(a.cast<coord_t>(), b.cast<coord_t>(), visitor);
#endif
#ifdef INFILL_DEBUG_OUTPUT
// export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d-%03d-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-step", iRun, iStep, int(point_idx)), { polyline });
#endif // INFILL_DEBUG_OUTPUT
}
#ifdef INFILL_DEBUG_OUTPUT
Polylines perimeter_overlaps;
export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-step", iRun, iStep), visitor.perimeter_overlaps, { polyline });
append(perimeter_overlaps, std::move(visitor.perimeter_overlaps));
perimeter_overlaps.clear();
#endif // INFILL_DEBUG_OUTPUT
}
}
#ifdef INFILL_DEBUG_OUTPUT
export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-end", iRun), perimeter_overlaps);
#endif // INFILL_DEBUG_OUTPUT
assert(validate_boundary_intersections(boundary_intersections));
}
void Fill::connect_infill(Polylines &&infill_ordered, const ExPolygon &boundary_src, Polylines &polylines_out, const double spacing, const FillParams &params)
{
assert(! boundary_src.contour.points.empty());
auto polygons_src = reserve_vector<const Polygon*>(boundary_src.holes.size() + 1);
polygons_src.emplace_back(&boundary_src.contour);
for (const Polygon &polygon : boundary_src.holes)
polygons_src.emplace_back(&polygon);
connect_infill(std::move(infill_ordered), polygons_src, get_extents(boundary_src.contour), polylines_out, spacing, params);
}
void Fill::connect_infill(Polylines &&infill_ordered, const Polygons &boundary_src, const BoundingBox &bbox, Polylines &polylines_out, const double spacing, const FillParams &params)
{
auto polygons_src = reserve_vector<const Polygon*>(boundary_src.size());
for (const Polygon &polygon : boundary_src)
polygons_src.emplace_back(&polygon);
connect_infill(std::move(infill_ordered), polygons_src, bbox, polylines_out, spacing, params);
}
void Fill::connect_infill(Polylines &&infill_ordered, const std::vector<const Polygon*> &boundary_src, const BoundingBox &bbox, Polylines &polylines_out, const double spacing, const FillParams &params)
{
assert(! infill_ordered.empty());
assert(params.anchor_length >= 0.);
assert(params.anchor_length_max >= 0.01f);
assert(params.anchor_length_max >= params.anchor_length);
const double anchor_length = scale_(params.anchor_length);
const double anchor_length_max = scale_(params.anchor_length_max);
#if 0
append(polylines_out, infill_ordered);
return;
#endif
// 1) Add the end points of infill_ordered to boundary_src.
std::vector<Points> boundary;
std::vector<std::vector<double>> boundary_params;
boundary.assign(boundary_src.size(), Points());
boundary_params.assign(boundary_src.size(), std::vector<double>());
// Mapping the infill_ordered end point to a (contour, point) of boundary.
static constexpr auto boundary_idx_unconnected = std::numeric_limits<size_t>::max();
std::vector<ContourIntersectionPoint> map_infill_end_point_to_boundary(infill_ordered.size() * 2, ContourIntersectionPoint{ boundary_idx_unconnected, boundary_idx_unconnected });
{
// Project the infill_ordered end points onto boundary_src.
std::vector<std::pair<EdgeGrid::Grid::ClosestPointResult, size_t>> intersection_points;
{
EdgeGrid::Grid grid;
grid.set_bbox(bbox.inflated(SCALED_EPSILON));
grid.create(boundary_src, coord_t(scale_(10.)));
intersection_points.reserve(infill_ordered.size() * 2);
for (const Polyline &pl : infill_ordered)
for (const Point *pt : { &pl.points.front(), &pl.points.back() }) {
EdgeGrid::Grid::ClosestPointResult cp = grid.closest_point_signed_distance(*pt, coord_t(SCALED_EPSILON));
if (cp.valid()) {
// The infill end point shall lie on the contour.
assert(cp.distance <= 3.);
intersection_points.emplace_back(cp, (&pl - infill_ordered.data()) * 2 + (pt == &pl.points.front() ? 0 : 1));
}
}
std::sort(intersection_points.begin(), intersection_points.end(), [](const std::pair<EdgeGrid::Grid::ClosestPointResult, size_t> &cp1, const std::pair<EdgeGrid::Grid::ClosestPointResult, size_t> &cp2) {
return cp1.first.contour_idx < cp2.first.contour_idx ||
(cp1.first.contour_idx == cp2.first.contour_idx &&
(cp1.first.start_point_idx < cp2.first.start_point_idx ||
(cp1.first.start_point_idx == cp2.first.start_point_idx && cp1.first.t < cp2.first.t)));
});
}
auto it = intersection_points.begin();
auto it_end = intersection_points.end();
std::vector<std::vector<ContourIntersectionPoint*>> boundary_intersection_points(boundary.size(), std::vector<ContourIntersectionPoint*>());
for (size_t idx_contour = 0; idx_contour < boundary_src.size(); ++ idx_contour) {
// Copy contour_src to contour_dst while adding intersection points.
// Map infill end points map_infill_end_point_to_boundary to the newly inserted boundary points of contour_dst.
// chain the points of map_infill_end_point_to_boundary along their respective contours.
const Polygon &contour_src = *boundary_src[idx_contour];
Points &contour_dst = boundary[idx_contour];
std::vector<ContourIntersectionPoint*> &contour_intersection_points = boundary_intersection_points[idx_contour];
ContourIntersectionPoint *pfirst = nullptr;
ContourIntersectionPoint *pprev = nullptr;
{
// Reserve intersection points.
size_t n_intersection_points = 0;
for (auto itx = it; itx != it_end && itx->first.contour_idx == idx_contour; ++ itx)
++ n_intersection_points;
contour_intersection_points.reserve(n_intersection_points);
}
for (size_t idx_point = 0; idx_point < contour_src.points.size(); ++ idx_point) {
const Point &ipt = contour_src.points[idx_point];
if (contour_dst.empty() || contour_dst.back() != ipt)
contour_dst.emplace_back(ipt);
for (; it != it_end && it->first.contour_idx == idx_contour && it->first.start_point_idx == idx_point; ++ it) {
// Add these points to the destination contour.
const Polyline &infill_line = infill_ordered[it->second / 2];
const Point &pt = (it->second & 1) ? infill_line.points.back() : infill_line.points.front();
//#ifndef NDEBUG
// {
// const Vec2d pt1 = ipt.cast<double>();
// const Vec2d pt2 = (idx_point + 1 == contour_src.size() ? contour_src.points.front() : contour_src.points[idx_point + 1]).cast<double>();
// const Vec2d ptx = lerp(pt1, pt2, it->first.t);
// assert(std::abs(ptx.x() - pt.x()) < SCALED_EPSILON);
// assert(std::abs(ptx.y() - pt.y()) < SCALED_EPSILON);
// }
//#endif // NDEBUG
size_t idx_tjoint_pt = 0;
if (idx_point + 1 < contour_src.size() || pt != contour_dst.front()) {
if (pt != contour_dst.back())
contour_dst.emplace_back(pt);
idx_tjoint_pt = contour_dst.size() - 1;
}
map_infill_end_point_to_boundary[it->second] = ContourIntersectionPoint{ idx_contour, idx_tjoint_pt };
ContourIntersectionPoint *pthis = &map_infill_end_point_to_boundary[it->second];
if (pprev) {
pprev->next_on_contour = pthis;
pthis->prev_on_contour = pprev;
} else
pfirst = pthis;
contour_intersection_points.emplace_back(pthis);
pprev = pthis;
}
if (pfirst) {
pprev->next_on_contour = pfirst;
pfirst->prev_on_contour = pprev;
}
}
// Parametrize the new boundary with the intersection points inserted.
std::vector<double> &contour_params = boundary_params[idx_contour];
contour_params.assign(contour_dst.size() + 1, 0.);
for (size_t i = 1; i < contour_dst.size(); ++i) {
contour_params[i] = contour_params[i - 1] + (contour_dst[i].cast<double>() - contour_dst[i - 1].cast<double>()).norm();
assert(contour_params[i] > contour_params[i - 1]);
}
contour_params.back() = contour_params[contour_params.size() - 2] + (contour_dst.back().cast<double>() - contour_dst.front().cast<double>()).norm();
assert(contour_params.back() > contour_params[contour_params.size() - 2]);
// Map parameters from contour_params to boundary_intersection_points.
for (ContourIntersectionPoint *ip : contour_intersection_points)
ip->param = contour_params[ip->point_idx];
// and measure distance to the previous and next intersection point.
const double contour_length = contour_params.back();
for (ContourIntersectionPoint *ip : contour_intersection_points)
if (ip->next_on_contour == ip) {
assert(ip->prev_on_contour == ip);
ip->contour_not_taken_length_prev = ip->contour_not_taken_length_next = contour_length;
} else {
assert(ip->prev_on_contour != ip);
ip->contour_not_taken_length_prev = closed_contour_distance_ccw(ip->prev_on_contour->param, ip->param, contour_length);
ip->contour_not_taken_length_next = closed_contour_distance_ccw(ip->param, ip->next_on_contour->param, contour_length);
}
}
assert(boundary.size() == boundary_src.size());
#if 0
// Adaptive Cubic Infill produces infill lines, which not always end at the outer boundary.
assert(std::all_of(map_infill_end_point_to_boundary.begin(), map_infill_end_point_to_boundary.end(),
[&boundary](const ContourIntersectionPoint &contour_point) {
return contour_point.contour_idx < boundary.size() && contour_point.point_idx < boundary[contour_point.contour_idx].size();
}));
#endif
// Mark the points and segments of split boundary as consumed if they are very close to some of the infill line.
{
// @supermerill used 2. * scale_(spacing)
const double clip_distance = 1.7 * scale_(spacing);
// Allow a bit of overlap. This value must be slightly higher than the overlap of FillAdaptive, otherwise
// the anchors of the adaptive infill will mask the other side of the perimeter line.
// (see connect_lines_using_hooks() in FillAdaptive.cpp)
const double distance_colliding = 0.8 * scale_(spacing);
mark_boundary_segments_touching_infill(boundary, boundary_params, boundary_intersection_points, bbox, infill_ordered, clip_distance, distance_colliding);
}
}
// Connection from end of one infill line to the start of another infill line.
//const double length_max = scale_(spacing);
// const auto length_max = double(scale_((2. / params.density) * spacing));
const auto length_max = double(scale_((1000. / params.density) * spacing));
std::vector<size_t> merged_with(infill_ordered.size());
std::iota(merged_with.begin(), merged_with.end(), 0);
struct ConnectionCost {
ConnectionCost(size_t idx_first, double cost, bool reversed) : idx_first(idx_first), cost(cost), reversed(reversed) {}
size_t idx_first;
double cost;
bool reversed;
};
std::vector<ConnectionCost> connections_sorted;
connections_sorted.reserve(infill_ordered.size() * 2 - 2);
for (size_t idx_chain = 1; idx_chain < infill_ordered.size(); ++ idx_chain) {
const ContourIntersectionPoint *cp1 = &map_infill_end_point_to_boundary[(idx_chain - 1) * 2 + 1];
const ContourIntersectionPoint *cp2 = &map_infill_end_point_to_boundary[idx_chain * 2];
if (cp1->contour_idx != boundary_idx_unconnected && cp1->contour_idx == cp2->contour_idx) {
// End points on the same contour. Try to connect them.
std::pair<double, double> len = path_lengths_along_contour(cp1, cp2, boundary_params[cp1->contour_idx].back());
if (len.first < length_max)
connections_sorted.emplace_back(idx_chain - 1, len.first, false);
if (len.second < length_max)
connections_sorted.emplace_back(idx_chain - 1, len.second, true);
}
}
std::sort(connections_sorted.begin(), connections_sorted.end(), [](const ConnectionCost& l, const ConnectionCost& r) { return l.cost < r.cost; });
auto get_and_update_merged_with = [&merged_with](size_t polyline_idx) -> size_t {
for (size_t last = polyline_idx;;) {
size_t lower = merged_with[last];
assert(lower <= last);
if (lower == last) {
merged_with[polyline_idx] = last;
return last;
}
last = lower;
}
assert(false);
return std::numeric_limits<size_t>::max();
};
const double line_half_width = 0.5 * scale_(spacing);
#if 0
for (ConnectionCost &connection_cost : connections_sorted) {
ContourIntersectionPoint *cp1 = &map_infill_end_point_to_boundary[connection_cost.idx_first * 2 + 1];
ContourIntersectionPoint *cp2 = &map_infill_end_point_to_boundary[(connection_cost.idx_first + 1) * 2];
assert(cp1 != cp2);
assert(cp1->contour_idx == cp2->contour_idx && cp1->contour_idx != boundary_idx_unconnected);
if (cp1->consumed || cp2->consumed)
continue;
const double length = connection_cost.cost;
bool could_connect;
{
// cp1, cp2 sorted CCW.
ContourIntersectionPoint *cp_low = connection_cost.reversed ? cp2 : cp1;
ContourIntersectionPoint *cp_high = connection_cost.reversed ? cp1 : cp2;
assert(std::abs(length - closed_contour_distance_ccw(cp_low->param, cp_high->param, boundary_params[cp1->contour_idx].back())) < SCALED_EPSILON);
could_connect = ! cp_low->next_trimmed && ! cp_high->prev_trimmed;
if (could_connect && cp_low->next_on_contour != cp_high) {
// Other end of cp1, may or may not be on the same contour as cp1.
const ContourIntersectionPoint *cp1prev = cp1 - 1;
// Other end of cp2, may or may not be on the same contour as cp2.
const ContourIntersectionPoint *cp2next = cp2 + 1;
for (auto *cp = cp_low->next_on_contour; cp != cp_high; cp = cp->next_on_contour)
if (cp->consumed || cp == cp1prev || cp == cp2next || cp->prev_trimmed || cp->next_trimmed) {
could_connect = false;
break;
}
}
}
// Indices of the polylines to be connected by a perimeter segment.
size_t idx_first = connection_cost.idx_first;
size_t idx_second = idx_first + 1;
idx_first = get_and_update_merged_with(idx_first);
assert(idx_first < idx_second);
assert(idx_second == merged_with[idx_second]);
if (could_connect && length < anchor_length_max) {
// Take the complete contour.
// Connect the two polygons using the boundary contour.
take(infill_ordered[idx_first], infill_ordered[idx_second], boundary[cp1->contour_idx], cp1, cp2, connection_cost.reversed);
// Mark the second polygon as merged with the first one.
merged_with[idx_second] = merged_with[idx_first];
infill_ordered[idx_second].points.clear();
} else {
// Try to connect cp1 resp. cp2 with a piece of perimeter line.
take_limited(infill_ordered[idx_first], boundary[cp1->contour_idx], boundary_params[cp1->contour_idx], cp1, cp2, connection_cost.reversed, anchor_length, line_half_width);
take_limited(infill_ordered[idx_second], boundary[cp1->contour_idx], boundary_params[cp1->contour_idx], cp2, cp1, ! connection_cost.reversed, anchor_length, line_half_width);
}
}
#endif
struct Arc {
ContourIntersectionPoint *intersection;
double arc_length;
};
std::vector<Arc> arches;
arches.reserve(map_infill_end_point_to_boundary.size());
for (ContourIntersectionPoint &cp : map_infill_end_point_to_boundary)
if (cp.contour_idx != boundary_idx_unconnected && cp.next_on_contour != &cp && cp.could_connect_next())
arches.push_back({ &cp, path_length_along_contour_ccw(&cp, cp.next_on_contour, boundary_params[cp.contour_idx].back()) });
std::sort(arches.begin(), arches.end(), [](const auto &l, const auto &r) { return l.arc_length < r.arc_length; });
//FIXME improve the Traveling Salesman problem with 2-opt and 3-opt local optimization.
for (Arc &arc : arches)
if (! arc.intersection->consumed && ! arc.intersection->next_on_contour->consumed) {
// Indices of the polylines to be connected by a perimeter segment.
ContourIntersectionPoint *cp1 = arc.intersection;
ContourIntersectionPoint *cp2 = arc.intersection->next_on_contour;
size_t polyline_idx1 = get_and_update_merged_with(((cp1 - map_infill_end_point_to_boundary.data()) / 2));
size_t polyline_idx2 = get_and_update_merged_with(((cp2 - map_infill_end_point_to_boundary.data()) / 2));
const Points &contour = boundary[cp1->contour_idx];
const std::vector<double> &contour_params = boundary_params[cp1->contour_idx];
if (polyline_idx1 != polyline_idx2) {
Polyline &polyline1 = infill_ordered[polyline_idx1];
Polyline &polyline2 = infill_ordered[polyline_idx2];
if (arc.arc_length < anchor_length_max) {
// Not closing a loop, connecting the lines.
assert(contour[cp1->point_idx] == polyline1.points.front() || contour[cp1->point_idx] == polyline1.points.back());
if (contour[cp1->point_idx] == polyline1.points.front())
polyline1.reverse();
assert(contour[cp2->point_idx] == polyline2.points.front() || contour[cp2->point_idx] == polyline2.points.back());
if (contour[cp2->point_idx] == polyline2.points.back())
polyline2.reverse();
take(polyline1, polyline2, contour, cp1, cp2, false);
// Mark the second polygon as merged with the first one.
if (polyline_idx2 < polyline_idx1) {
polyline2 = std::move(polyline1);
polyline1.points.clear();
merged_with[polyline_idx1] = merged_with[polyline_idx2];
} else {
polyline2.points.clear();
merged_with[polyline_idx2] = merged_with[polyline_idx1];
}
} else if (anchor_length > SCALED_EPSILON) {
// Move along the perimeter, but don't take the whole arc.
take_limited(polyline1, contour, contour_params, cp1, cp2, false, anchor_length, line_half_width);
take_limited(polyline2, contour, contour_params, cp2, cp1, true, anchor_length, line_half_width);
}
}
}
// Connect the remaining open infill lines to the perimeter lines if possible.
for (ContourIntersectionPoint &contour_point : map_infill_end_point_to_boundary)
if (! contour_point.consumed && contour_point.contour_idx != boundary_idx_unconnected) {
const Points &contour = boundary[contour_point.contour_idx];
const std::vector<double> &contour_params = boundary_params[contour_point.contour_idx];
double lprev = contour_point.could_connect_prev() ?
path_length_along_contour_ccw(contour_point.prev_on_contour, &contour_point, contour_params.back()) :
std::numeric_limits<double>::max();
double lnext = contour_point.could_connect_next() ?
path_length_along_contour_ccw(&contour_point, contour_point.next_on_contour, contour_params.back()) :
std::numeric_limits<double>::max();
size_t polyline_idx = get_and_update_merged_with(((&contour_point - map_infill_end_point_to_boundary.data()) / 2));
Polyline &polyline = infill_ordered[polyline_idx];
assert(! polyline.empty());
assert(contour[contour_point.point_idx] == polyline.points.front() || contour[contour_point.point_idx] == polyline.points.back());
bool connected = false;
for (double l : { std::min(lprev, lnext), std::max(lprev, lnext) }) {
if (l == std::numeric_limits<double>::max() || l > anchor_length_max)
break;
// Take the complete contour.
bool reversed = l == lprev;
ContourIntersectionPoint *cp2 = reversed ? contour_point.prev_on_contour : contour_point.next_on_contour;
// Identify which end of the polyline touches the boundary.
size_t polyline_idx2 = get_and_update_merged_with(((cp2 - map_infill_end_point_to_boundary.data()) / 2));
if (polyline_idx == polyline_idx2)
// Try the other side.
continue;
// Not closing a loop.
if (contour[contour_point.point_idx] == polyline.points.front())
polyline.reverse();
Polyline &polyline2 = infill_ordered[polyline_idx2];
assert(! polyline.empty());
assert(contour[cp2->point_idx] == polyline2.points.front() || contour[cp2->point_idx] == polyline2.points.back());
if (contour[cp2->point_idx] == polyline2.points.back())
polyline2.reverse();
take(polyline, polyline2, contour, &contour_point, cp2, reversed);
if (polyline_idx < polyline_idx2) {
// Mark the second polyline as merged with the first one.
merged_with[polyline_idx2] = polyline_idx;
polyline2.points.clear();
} else {
// Mark the first polyline as merged with the second one.
merged_with[polyline_idx] = polyline_idx2;
polyline2 = std::move(polyline);
polyline.points.clear();
}
connected = true;
break;
}
if (! connected && anchor_length > SCALED_EPSILON) {
// Which to take? One could optimize for:
// 1) Shortest path
// 2) Hook length
// ...
// Let's take the longer now, as this improves the chance of another hook to be placed on the other side of this contour point.
double l = std::max(contour_point.contour_not_taken_length_prev, contour_point.contour_not_taken_length_next);
if (l > SCALED_EPSILON) {
if (contour_point.contour_not_taken_length_prev > contour_point.contour_not_taken_length_next)
take_limited(polyline, contour, contour_params, &contour_point, contour_point.prev_on_contour, true, anchor_length, line_half_width);
else
take_limited(polyline, contour, contour_params, &contour_point, contour_point.next_on_contour, false, anchor_length, line_half_width);
}
}
}
polylines_out.reserve(polylines_out.size() + std::count_if(infill_ordered.begin(), infill_ordered.end(), [](const Polyline &pl) { return ! pl.empty(); }));
for (Polyline &pl : infill_ordered)
if (! pl.empty())
polylines_out.emplace_back(std::move(pl));
}
} // namespace Slic3r