PrusaSlicer/src/libslic3r/PrintApply.cpp
Pavel Mikus 66a4b5b82a Refactored stability alert step from object step into print step,
implemented stability issues grouping based on number of issues and objects,
maximum of single warning message emitted
2023-01-29 20:11:50 +01:00

1487 lines
86 KiB
C++

#include "Model.hpp"
#include "Print.hpp"
#include <cfloat>
namespace Slic3r {
// Add or remove support modifier ModelVolumes from model_object_dst to match the ModelVolumes of model_object_new
// in the exact order and with the same IDs.
// It is expected, that the model_object_dst already contains the non-support volumes of model_object_new in the correct order.
// Friend to ModelVolume to allow copying.
// static is not accepted by gcc if declared as a friend of ModelObject.
/* static */ void model_volume_list_update_supports(ModelObject &model_object_dst, const ModelObject &model_object_new)
{
typedef std::pair<const ModelVolume*, bool> ModelVolumeWithStatus;
std::vector<ModelVolumeWithStatus> old_volumes;
old_volumes.reserve(model_object_dst.volumes.size());
for (const ModelVolume *model_volume : model_object_dst.volumes)
old_volumes.emplace_back(ModelVolumeWithStatus(model_volume, false));
auto model_volume_lower = [](const ModelVolumeWithStatus &mv1, const ModelVolumeWithStatus &mv2){ return mv1.first->id() < mv2.first->id(); };
auto model_volume_equal = [](const ModelVolumeWithStatus &mv1, const ModelVolumeWithStatus &mv2){ return mv1.first->id() == mv2.first->id(); };
std::sort(old_volumes.begin(), old_volumes.end(), model_volume_lower);
model_object_dst.volumes.clear();
model_object_dst.volumes.reserve(model_object_new.volumes.size());
for (const ModelVolume *model_volume_src : model_object_new.volumes) {
ModelVolumeWithStatus key(model_volume_src, false);
auto it = std::lower_bound(old_volumes.begin(), old_volumes.end(), key, model_volume_lower);
if (it != old_volumes.end() && model_volume_equal(*it, key)) {
// The volume was found in the old list. Just copy it.
assert(! it->second); // not consumed yet
it->second = true;
ModelVolume *model_volume_dst = const_cast<ModelVolume*>(it->first);
// For support modifiers, the type may have been switched from blocker to enforcer and vice versa.
assert((model_volume_dst->is_support_modifier() && model_volume_src->is_support_modifier()) || model_volume_dst->type() == model_volume_src->type());
model_object_dst.volumes.emplace_back(model_volume_dst);
if (model_volume_dst->is_support_modifier()) {
// For support modifiers, the type may have been switched from blocker to enforcer and vice versa.
model_volume_dst->set_type(model_volume_src->type());
model_volume_dst->set_transformation(model_volume_src->get_transformation());
}
assert(model_volume_dst->get_matrix().isApprox(model_volume_src->get_matrix()));
} else {
// The volume was not found in the old list. Create a new copy.
assert(model_volume_src->is_support_modifier());
model_object_dst.volumes.emplace_back(new ModelVolume(*model_volume_src));
model_object_dst.volumes.back()->set_model_object(&model_object_dst);
}
}
// Release the non-consumed old volumes (those were deleted from the new list).
for (ModelVolumeWithStatus &mv_with_status : old_volumes)
if (! mv_with_status.second)
delete mv_with_status.first;
}
static inline void model_volume_list_copy_configs(ModelObject &model_object_dst, const ModelObject &model_object_src, const ModelVolumeType type)
{
size_t i_src, i_dst;
for (i_src = 0, i_dst = 0; i_src < model_object_src.volumes.size() && i_dst < model_object_dst.volumes.size();) {
const ModelVolume &mv_src = *model_object_src.volumes[i_src];
ModelVolume &mv_dst = *model_object_dst.volumes[i_dst];
if (mv_src.type() != type) {
++ i_src;
continue;
}
if (mv_dst.type() != type) {
++ i_dst;
continue;
}
assert(mv_src.id() == mv_dst.id());
// Copy the ModelVolume data.
mv_dst.name = mv_src.name;
mv_dst.config.assign_config(mv_src.config);
assert(mv_dst.supported_facets.id() == mv_src.supported_facets.id());
mv_dst.supported_facets.assign(mv_src.supported_facets);
assert(mv_dst.seam_facets.id() == mv_src.seam_facets.id());
mv_dst.seam_facets.assign(mv_src.seam_facets);
assert(mv_dst.mmu_segmentation_facets.id() == mv_src.mmu_segmentation_facets.id());
mv_dst.mmu_segmentation_facets.assign(mv_src.mmu_segmentation_facets);
//FIXME what to do with the materials?
// mv_dst.m_material_id = mv_src.m_material_id;
++ i_src;
++ i_dst;
}
}
static inline void layer_height_ranges_copy_configs(t_layer_config_ranges &lr_dst, const t_layer_config_ranges &lr_src)
{
assert(lr_dst.size() == lr_src.size());
auto it_src = lr_src.cbegin();
for (auto &kvp_dst : lr_dst) {
const auto &kvp_src = *it_src ++;
assert(std::abs(kvp_dst.first.first - kvp_src.first.first ) <= EPSILON);
assert(std::abs(kvp_dst.first.second - kvp_src.first.second) <= EPSILON);
// Layer heights are allowed do differ in case the layer height table is being overriden by the smooth profile.
// assert(std::abs(kvp_dst.second.option("layer_height")->getFloat() - kvp_src.second.option("layer_height")->getFloat()) <= EPSILON);
kvp_dst.second = kvp_src.second;
}
}
static inline bool transform3d_lower(const Transform3d &lhs, const Transform3d &rhs)
{
typedef Transform3d::Scalar T;
const T *lv = lhs.data();
const T *rv = rhs.data();
for (size_t i = 0; i < 16; ++ i, ++ lv, ++ rv) {
if (*lv < *rv)
return true;
else if (*lv > *rv)
return false;
}
return false;
}
static inline bool transform3d_equal(const Transform3d &lhs, const Transform3d &rhs)
{
typedef Transform3d::Scalar T;
const T *lv = lhs.data();
const T *rv = rhs.data();
for (size_t i = 0; i < 16; ++ i, ++ lv, ++ rv)
if (*lv != *rv)
return false;
return true;
}
struct PrintObjectTrafoAndInstances
{
Transform3d trafo;
PrintInstances instances;
bool operator<(const PrintObjectTrafoAndInstances &rhs) const { return transform3d_lower(this->trafo, rhs.trafo); }
};
// Generate a list of trafos and XY offsets for instances of a ModelObject
static std::vector<PrintObjectTrafoAndInstances> print_objects_from_model_object(const ModelObject &model_object)
{
std::set<PrintObjectTrafoAndInstances> trafos;
PrintObjectTrafoAndInstances trafo;
for (ModelInstance *model_instance : model_object.instances)
if (model_instance->is_printable()) {
trafo.trafo = model_instance->get_matrix();
auto shift = Point::new_scale(trafo.trafo.data()[12], trafo.trafo.data()[13]);
// Reset the XY axes of the transformation.
trafo.trafo.data()[12] = 0;
trafo.trafo.data()[13] = 0;
// Search or insert a trafo.
auto it = trafos.emplace(trafo).first;
const_cast<PrintObjectTrafoAndInstances&>(*it).instances.emplace_back(PrintInstance{ nullptr, model_instance, shift });
}
return std::vector<PrintObjectTrafoAndInstances>(trafos.begin(), trafos.end());
}
// Compare just the layer ranges and their layer heights, not the associated configs.
// Ignore the layer heights if check_layer_heights is false.
static bool layer_height_ranges_equal(const t_layer_config_ranges &lr1, const t_layer_config_ranges &lr2, bool check_layer_height)
{
if (lr1.size() != lr2.size())
return false;
auto it2 = lr2.begin();
for (const auto &kvp1 : lr1) {
const auto &kvp2 = *it2 ++;
if (std::abs(kvp1.first.first - kvp2.first.first ) > EPSILON ||
std::abs(kvp1.first.second - kvp2.first.second) > EPSILON ||
(check_layer_height && std::abs(kvp1.second.option("layer_height")->getFloat() - kvp2.second.option("layer_height")->getFloat()) > EPSILON))
return false;
}
return true;
}
// Returns true if va == vb when all CustomGCode items that are not ToolChangeCode are ignored.
static bool custom_per_printz_gcodes_tool_changes_differ(const std::vector<CustomGCode::Item> &va, const std::vector<CustomGCode::Item> &vb)
{
auto it_a = va.begin();
auto it_b = vb.begin();
while (it_a != va.end() || it_b != vb.end()) {
if (it_a != va.end() && it_a->type != CustomGCode::ToolChange) {
// Skip any CustomGCode items, which are not tool changes.
++ it_a;
continue;
}
if (it_b != vb.end() && it_b->type != CustomGCode::ToolChange) {
// Skip any CustomGCode items, which are not tool changes.
++ it_b;
continue;
}
if (it_a == va.end() || it_b == vb.end())
// va or vb contains more Tool Changes than the other.
return true;
assert(it_a->type == CustomGCode::ToolChange);
assert(it_b->type == CustomGCode::ToolChange);
if (*it_a != *it_b)
// The two Tool Changes differ.
return true;
++ it_a;
++ it_b;
}
// There is no change in custom Tool Changes.
return false;
}
// Collect changes to print config, account for overrides of extruder retract values by filament presets.
static t_config_option_keys print_config_diffs(
const PrintConfig &current_config,
const DynamicPrintConfig &new_full_config,
DynamicPrintConfig &filament_overrides)
{
const std::vector<std::string> &extruder_retract_keys = print_config_def.extruder_retract_keys();
const std::string filament_prefix = "filament_";
t_config_option_keys print_diff;
for (const t_config_option_key &opt_key : current_config.keys()) {
const ConfigOption *opt_old = current_config.option(opt_key);
assert(opt_old != nullptr);
const ConfigOption *opt_new = new_full_config.option(opt_key);
// assert(opt_new != nullptr);
if (opt_new == nullptr)
//FIXME This may happen when executing some test cases.
continue;
const ConfigOption *opt_new_filament = std::binary_search(extruder_retract_keys.begin(), extruder_retract_keys.end(), opt_key) ? new_full_config.option(filament_prefix + opt_key) : nullptr;
if (opt_new_filament != nullptr && ! opt_new_filament->is_nil()) {
// An extruder retract override is available at some of the filament presets.
bool overriden = opt_new->overriden_by(opt_new_filament);
if (overriden || *opt_old != *opt_new) {
auto opt_copy = opt_new->clone();
opt_copy->apply_override(opt_new_filament);
bool changed = *opt_old != *opt_copy;
if (changed)
print_diff.emplace_back(opt_key);
if (changed || overriden) {
// filament_overrides will be applied to the placeholder parser, which layers these parameters over full_print_config.
filament_overrides.set_key_value(opt_key, opt_copy);
} else
delete opt_copy;
}
} else if (*opt_new != *opt_old)
print_diff.emplace_back(opt_key);
}
return print_diff;
}
// Prepare for storing of the full print config into new_full_config to be exported into the G-code and to be used by the PlaceholderParser.
static t_config_option_keys full_print_config_diffs(const DynamicPrintConfig &current_full_config, const DynamicPrintConfig &new_full_config)
{
t_config_option_keys full_config_diff;
for (const t_config_option_key &opt_key : new_full_config.keys()) {
const ConfigOption *opt_old = current_full_config.option(opt_key);
const ConfigOption *opt_new = new_full_config.option(opt_key);
if (opt_old == nullptr || *opt_new != *opt_old)
full_config_diff.emplace_back(opt_key);
}
return full_config_diff;
}
// Repository for solving partial overlaps of ModelObject::layer_config_ranges.
// Here the const DynamicPrintConfig* point to the config in ModelObject::layer_config_ranges.
class LayerRanges
{
public:
struct LayerRange {
t_layer_height_range layer_height_range;
// Config is owned by the associated ModelObject.
const DynamicPrintConfig* config { nullptr };
bool operator<(const LayerRange &rhs) const throw() { return this->layer_height_range < rhs.layer_height_range; }
};
LayerRanges() = default;
LayerRanges(const t_layer_config_ranges &in) { this->assign(in); }
// Convert input config ranges into continuous non-overlapping sorted vector of intervals and their configs.
void assign(const t_layer_config_ranges &in) {
m_ranges.clear();
m_ranges.reserve(in.size());
// Input ranges are sorted lexicographically. First range trims the other ranges.
coordf_t last_z = 0;
for (const std::pair<const t_layer_height_range, ModelConfig> &range : in)
if (range.first.second > last_z) {
coordf_t min_z = std::max(range.first.first, 0.);
if (min_z > last_z + EPSILON) {
m_ranges.push_back({ t_layer_height_range(last_z, min_z) });
last_z = min_z;
}
if (range.first.second > last_z + EPSILON) {
const DynamicPrintConfig *cfg = &range.second.get();
m_ranges.push_back({ t_layer_height_range(last_z, range.first.second), cfg });
last_z = range.first.second;
}
}
if (m_ranges.empty())
m_ranges.push_back({ t_layer_height_range(0, DBL_MAX) });
else if (m_ranges.back().config == nullptr)
m_ranges.back().layer_height_range.second = DBL_MAX;
else
m_ranges.push_back({ t_layer_height_range(m_ranges.back().layer_height_range.second, DBL_MAX) });
}
const DynamicPrintConfig* config(const t_layer_height_range &range) const {
auto it = std::lower_bound(m_ranges.begin(), m_ranges.end(), LayerRange{ { range.first - EPSILON, range.second - EPSILON } });
// #ys_FIXME_COLOR
// assert(it != m_ranges.end());
// assert(it == m_ranges.end() || std::abs(it->first.first - range.first ) < EPSILON);
// assert(it == m_ranges.end() || std::abs(it->first.second - range.second) < EPSILON);
if (it == m_ranges.end() ||
std::abs(it->layer_height_range.first - range.first) > EPSILON ||
std::abs(it->layer_height_range.second - range.second) > EPSILON )
return nullptr; // desired range doesn't found
return it == m_ranges.end() ? nullptr : it->config;
}
std::vector<LayerRange>::const_iterator begin() const { return m_ranges.cbegin(); }
std::vector<LayerRange>::const_iterator end () const { return m_ranges.cend(); }
size_t size () const { return m_ranges.size(); }
private:
// Layer ranges with their config overrides and list of volumes with their snug bounding boxes in a given layer range.
std::vector<LayerRange> m_ranges;
};
// To track Model / ModelObject updates between the front end and back end, including layer height ranges, their configs,
// and snug bounding boxes of ModelVolumes.
struct ModelObjectStatus {
enum Status {
Unknown,
Old,
New,
Moved,
Deleted,
};
enum class PrintObjectRegionsStatus {
Invalid,
Valid,
PartiallyValid,
};
ModelObjectStatus(ObjectID id, Status status = Unknown) : id(id), status(status) {}
~ModelObjectStatus() { if (print_object_regions) print_object_regions->ref_cnt_dec(); }
// Key of the set.
ObjectID id;
// Status of this ModelObject with id on apply().
Status status;
// PrintObjects to be generated for this ModelObject including their base transformation.
std::vector<PrintObjectTrafoAndInstances> print_instances;
// Regions shared by the associated PrintObjects.
PrintObjectRegions *print_object_regions { nullptr };
// Status of the above.
PrintObjectRegionsStatus print_object_regions_status { PrintObjectRegionsStatus::Invalid };
// Search by id.
bool operator<(const ModelObjectStatus &rhs) const { return id < rhs.id; }
};
struct ModelObjectStatusDB
{
void add(const ModelObject &model_object, const ModelObjectStatus::Status status) {
assert(db.find(ModelObjectStatus(model_object.id())) == db.end());
db.emplace(model_object.id(), status);
}
bool add_if_new(const ModelObject &model_object, const ModelObjectStatus::Status status) {
auto it = db.find(ModelObjectStatus(model_object.id()));
if (it == db.end()) {
db.emplace_hint(it, model_object.id(), status);
return true;
}
return false;
}
const ModelObjectStatus& get(const ModelObject &model_object) {
auto it = db.find(ModelObjectStatus(model_object.id()));
assert(it != db.end());
return *it;
}
const ModelObjectStatus& reuse(const ModelObject &model_object) {
const ModelObjectStatus &result = this->get(model_object);
assert(result.status != ModelObjectStatus::Deleted);
return result;
}
std::set<ModelObjectStatus> db;
};
struct PrintObjectStatus {
enum Status {
Unknown,
Deleted,
Reused,
New
};
PrintObjectStatus(PrintObject *print_object, Status status = Unknown) :
id(print_object->model_object()->id()),
print_object(print_object),
trafo(print_object->trafo()),
status(status) {}
PrintObjectStatus(ObjectID id) : id(id), print_object(nullptr), trafo(Transform3d::Identity()), status(Unknown) {}
// ID of the ModelObject & PrintObject
ObjectID id;
// Pointer to the old PrintObject
PrintObject *print_object;
// Trafo generated with model_object->world_matrix(true)
Transform3d trafo;
Status status;
// Search by id.
bool operator<(const PrintObjectStatus &rhs) const { return id < rhs.id; }
};
class PrintObjectStatusDB {
public:
using iterator = std::multiset<PrintObjectStatus>::iterator;
using const_iterator = std::multiset<PrintObjectStatus>::const_iterator;
PrintObjectStatusDB(const PrintObjectPtrs &print_objects) {
for (PrintObject *print_object : print_objects)
m_db.emplace(PrintObjectStatus(print_object));
}
struct iterator_range : std::pair<const_iterator, const_iterator>
{
using std::pair<const_iterator, const_iterator>::pair;
iterator_range(const std::pair<const_iterator, const_iterator> in) : std::pair<const_iterator, const_iterator>(in) {}
const_iterator begin() throw() { return this->first; }
const_iterator end() throw() { return this->second; }
};
iterator_range get_range(const ModelObject &model_object) const {
return m_db.equal_range(PrintObjectStatus(model_object.id()));
}
iterator_range get_range(const ModelObjectStatus &model_object_status) const {
return m_db.equal_range(PrintObjectStatus(model_object_status.id));
}
size_t count(const ModelObject &model_object) {
return m_db.count(PrintObjectStatus(model_object.id()));
}
std::multiset<PrintObjectStatus>::iterator begin() { return m_db.begin(); }
std::multiset<PrintObjectStatus>::iterator end() { return m_db.end(); }
void clear() {
m_db.clear();
}
private:
std::multiset<PrintObjectStatus> m_db;
};
static inline bool model_volume_solid_or_modifier(const ModelVolume &mv)
{
ModelVolumeType type = mv.type();
return type == ModelVolumeType::MODEL_PART || type == ModelVolumeType::NEGATIVE_VOLUME || type == ModelVolumeType::PARAMETER_MODIFIER;
}
static inline Transform3f trafo_for_bbox(const Transform3d &object_trafo, const Transform3d &volume_trafo)
{
Transform3d m = object_trafo * volume_trafo;
m.translation().x() = 0.;
m.translation().y() = 0.;
return m.cast<float>();
}
static inline bool trafos_differ_in_rotation_by_z_and_mirroring_by_xy_only(const Transform3d &t1, const Transform3d &t2)
{
if (std::abs(t1.translation().z() - t2.translation().z()) > EPSILON)
// One of the object is higher than the other above the build plate (or below the build plate).
return false;
Matrix3d m1 = t1.matrix().block<3, 3>(0, 0);
Matrix3d m2 = t2.matrix().block<3, 3>(0, 0);
Matrix3d m = m2.inverse() * m1;
Vec3d z = m.block<3, 1>(0, 2);
if (std::abs(z.x()) > EPSILON || std::abs(z.y()) > EPSILON || std::abs(z.z() - 1.) > EPSILON)
// Z direction or length changed.
return false;
// Z still points in the same direction and it has the same length.
Vec3d x = m.block<3, 1>(0, 0);
Vec3d y = m.block<3, 1>(0, 1);
if (std::abs(x.z()) > EPSILON || std::abs(y.z()) > EPSILON)
return false;
double lx2 = x.squaredNorm();
double ly2 = y.squaredNorm();
if (lx2 - 1. > EPSILON * EPSILON || ly2 - 1. > EPSILON * EPSILON)
return false;
// Verify whether the vectors x, y are still perpendicular.
double d = x.dot(y);
return std::abs(d * d) < EPSILON * lx2 * ly2;
}
static PrintObjectRegions::BoundingBox transformed_its_bbox2d(const indexed_triangle_set &its, const Transform3f &m, float offset)
{
assert(! its.indices.empty());
PrintObjectRegions::BoundingBox bbox(m * its.vertices[its.indices.front()(0)]);
for (const stl_triangle_vertex_indices &tri : its.indices)
for (int i = 0; i < 3; ++ i)
bbox.extend(m * its.vertices[tri(i)]);
bbox.min() -= Vec3f(offset, offset, float(EPSILON));
bbox.max() += Vec3f(offset, offset, float(EPSILON));
return bbox;
}
static void transformed_its_bboxes_in_z_ranges(
const indexed_triangle_set &its,
const Transform3f &m,
const std::vector<t_layer_height_range> &z_ranges,
std::vector<std::pair<PrintObjectRegions::BoundingBox, bool>> &bboxes,
const float offset)
{
bboxes.assign(z_ranges.size(), std::make_pair(PrintObjectRegions::BoundingBox(), false));
for (const stl_triangle_vertex_indices &tri : its.indices) {
const Vec3f pts[3] = { m * its.vertices[tri(0)], m * its.vertices[tri(1)], m * its.vertices[tri(2)] };
for (size_t irange = 0; irange < z_ranges.size(); ++ irange) {
const t_layer_height_range &z_range = z_ranges[irange];
std::pair<PrintObjectRegions::BoundingBox, bool> &bbox = bboxes[irange];
auto bbox_extend = [&bbox](const Vec3f& p) {
if (bbox.second) {
bbox.first.extend(p);
} else {
bbox.first.min() = bbox.first.max() = p;
bbox.second = true;
}
};
int iprev = 2;
for (int iedge = 0; iedge < 3; ++ iedge) {
const Vec3f *p1 = &pts[iprev];
const Vec3f *p2 = &pts[iedge];
// Sort the edge points by Z.
if (p1->z() > p2->z())
std::swap(p1, p2);
if (p2->z() <= z_range.first || p1->z() >= z_range.second) {
// Out of this slab.
} else if (p1->z() < z_range.first) {
if (p1->z() > z_range.second) {
// Two intersections.
float zspan = p2->z() - p1->z();
float t1 = (z_range.first - p1->z()) / zspan;
float t2 = (z_range.second - p1->z()) / zspan;
Vec2f p = to_2d(*p1);
Vec2f v(p2->x() - p1->x(), p2->y() - p1->y());
bbox_extend(to_3d((p + v * t1).eval(), float(z_range.first)));
bbox_extend(to_3d((p + v * t2).eval(), float(z_range.second)));
} else {
// Single intersection with the lower limit.
float t = (z_range.first - p1->z()) / (p2->z() - p1->z());
Vec2f v(p2->x() - p1->x(), p2->y() - p1->y());
bbox_extend(to_3d((to_2d(*p1) + v * t).eval(), float(z_range.first)));
bbox_extend(*p2);
}
} else if (p2->z() > z_range.second) {
// Single intersection with the upper limit.
float t = (z_range.second - p1->z()) / (p2->z() - p1->z());
Vec2f v(p2->x() - p1->x(), p2->y() - p1->y());
bbox_extend(to_3d((to_2d(*p1) + v * t).eval(), float(z_range.second)));
bbox_extend(*p1);
} else {
// Both points are inside.
bbox_extend(*p1);
bbox_extend(*p2);
}
iprev = iedge;
}
}
}
for (std::pair<PrintObjectRegions::BoundingBox, bool> &bbox : bboxes) {
bbox.first.min() -= Vec3f(offset, offset, float(EPSILON));
bbox.first.max() += Vec3f(offset, offset, float(EPSILON));
}
}
// Last PrintObject for this print_object_regions has been fully invalidated (deleted).
// Keep print_object_regions, but delete those volumes, which were either removed from new_volumes, or which rotated or scaled, so they need
// their bounding boxes to be recalculated.
void print_objects_regions_invalidate_keep_some_volumes(PrintObjectRegions &print_object_regions, ModelVolumePtrs old_volumes, ModelVolumePtrs new_volumes)
{
print_object_regions.all_regions.clear();
model_volumes_sort_by_id(old_volumes);
model_volumes_sort_by_id(new_volumes);
size_t i_cached_volume = 0;
size_t last_cached_volume = 0;
size_t i_old = 0;
for (size_t i_new = 0; i_new < new_volumes.size(); ++ i_new)
if (model_volume_solid_or_modifier(*new_volumes[i_new])) {
for (; i_old < old_volumes.size(); ++ i_old)
if (old_volumes[i_old]->id() >= new_volumes[i_new]->id())
break;
if (i_old != old_volumes.size() && old_volumes[i_old]->id() == new_volumes[i_new]->id()) {
if (old_volumes[i_old]->get_matrix().isApprox(new_volumes[i_new]->get_matrix())) {
// Reuse the volume.
for (; print_object_regions.cached_volume_ids[i_cached_volume] < old_volumes[i_old]->id(); ++ i_cached_volume)
assert(i_cached_volume < print_object_regions.cached_volume_ids.size());
assert(i_cached_volume < print_object_regions.cached_volume_ids.size() && print_object_regions.cached_volume_ids[i_cached_volume] == old_volumes[i_old]->id());
print_object_regions.cached_volume_ids[last_cached_volume ++] = print_object_regions.cached_volume_ids[i_cached_volume ++];
} else {
// Don't reuse the volume.
}
}
}
print_object_regions.cached_volume_ids.erase(print_object_regions.cached_volume_ids.begin() + last_cached_volume, print_object_regions.cached_volume_ids.end());
}
// Find a bounding box of a volume's part intersecting layer_range. Such a bounding box will likely be smaller in XY than the full bounding box,
// thus it will intersect with lower number of other volumes.
const PrintObjectRegions::BoundingBox* find_volume_extents(const PrintObjectRegions::LayerRangeRegions &layer_range, const ModelVolume &volume)
{
auto it = lower_bound_by_predicate(layer_range.volumes.begin(), layer_range.volumes.end(), [&volume](const PrintObjectRegions::VolumeExtents &l){ return l.volume_id < volume.id(); });
return it != layer_range.volumes.end() && it->volume_id == volume.id() ? &it->bbox : nullptr;
}
// Find a bounding box of a topmost printable volume referenced by this modifier given this_region_id.
PrintObjectRegions::BoundingBox find_modifier_volume_extents(const PrintObjectRegions::LayerRangeRegions &layer_range, const int this_region_id)
{
// Find the top-most printable volume of this modifier, or the printable volume itself.
const PrintObjectRegions::VolumeRegion &this_region = layer_range.volume_regions[this_region_id];
const PrintObjectRegions::BoundingBox *this_extents = find_volume_extents(layer_range, *this_region.model_volume);
assert(this_extents);
PrintObjectRegions::BoundingBox out { *this_extents };
if (! this_region.model_volume->is_model_part())
for (int parent_region_id = this_region.parent;;) {
assert(parent_region_id >= 0);
const PrintObjectRegions::VolumeRegion &parent_region = layer_range.volume_regions[parent_region_id];
const PrintObjectRegions::BoundingBox *parent_extents = find_volume_extents(layer_range, *parent_region.model_volume);
assert(parent_extents);
out.clamp(*parent_extents);
assert(! out.isEmpty());
if (parent_region.model_volume->is_model_part())
break;
parent_region_id = parent_region.parent;
}
return out;
}
PrintRegionConfig region_config_from_model_volume(const PrintRegionConfig &default_or_parent_region_config, const DynamicPrintConfig *layer_range_config, const ModelVolume &volume, size_t num_extruders);
void print_region_ref_inc(PrintRegion &r) { ++ r.m_ref_cnt; }
void print_region_ref_reset(PrintRegion &r) { r.m_ref_cnt = 0; }
int print_region_ref_cnt(const PrintRegion &r) { return r.m_ref_cnt; }
// Verify whether the PrintRegions of a PrintObject are still valid, possibly after updating the region configs.
// Before region configs are updated, callback_invalidate() is called to possibly stop background processing.
// Returns false if this object needs to be resliced because regions were merged or split.
bool verify_update_print_object_regions(
ModelVolumePtrs model_volumes,
const PrintRegionConfig &default_region_config,
size_t num_extruders,
const std::vector<unsigned int> &painting_extruders,
PrintObjectRegions &print_object_regions,
const std::function<void(const PrintRegionConfig&, const PrintRegionConfig&, const t_config_option_keys&)> &callback_invalidate)
{
// Sort by ModelVolume ID.
model_volumes_sort_by_id(model_volumes);
for (std::unique_ptr<PrintRegion> &region : print_object_regions.all_regions)
print_region_ref_reset(*region);
// Verify and / or update PrintRegions produced by ModelVolumes, layer range modifiers, modifier volumes.
for (PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
// Each modifier ModelVolume intersecting this layer_range shall be referenced here at least once if it intersects some
// printable ModelVolume at this layer_range even if it does not modify its overlapping printable ModelVolume configuration yet.
// VolumeRegions reference ModelVolumes in layer_range.volume_regions the order they are stored in ModelObject volumes.
// Remember whether a given modifier ModelVolume was visited already.
auto it_model_volume_modifier_last = model_volumes.end();
for (PrintObjectRegions::VolumeRegion &region : layer_range.volume_regions)
if (region.model_volume->is_model_part() || region.model_volume->is_modifier()) {
auto it_model_volume = lower_bound_by_predicate(model_volumes.begin(), model_volumes.end(), [&region](const ModelVolume *l){ return l->id() < region.model_volume->id(); });
assert(it_model_volume != model_volumes.end() && (*it_model_volume)->id() == region.model_volume->id());
if (region.model_volume->is_modifier() && it_model_volume != it_model_volume_modifier_last) {
// A modifier ModelVolume is visited for the first time.
// A visited modifier may not have had parent volume_regions created overlapping with some model parts or modifiers,
// if the visited modifier did not modify their properties. Now the visited modifier's configuration may have changed,
// which may require new regions to be created.
it_model_volume_modifier_last = it_model_volume;
int next_region_id = int(&region - layer_range.volume_regions.data());
const PrintObjectRegions::BoundingBox *bbox = find_volume_extents(layer_range, *region.model_volume);
assert(bbox);
for (int parent_region_id = next_region_id - 1; parent_region_id >= 0; -- parent_region_id) {
const PrintObjectRegions::VolumeRegion &parent_region = layer_range.volume_regions[parent_region_id];
assert(parent_region.model_volume != region.model_volume);
if (parent_region.model_volume->is_model_part() || parent_region.model_volume->is_modifier()) {
// volume_regions are produced in decreasing order of parent volume_regions ids.
// Some regions may not have been generated the last time by generate_print_object_regions().
assert(next_region_id == int(layer_range.volume_regions.size()) ||
layer_range.volume_regions[next_region_id].model_volume != region.model_volume ||
layer_range.volume_regions[next_region_id].parent <= parent_region_id);
if (next_region_id < int(layer_range.volume_regions.size()) &&
layer_range.volume_regions[next_region_id].model_volume == region.model_volume &&
layer_range.volume_regions[next_region_id].parent == parent_region_id) {
// A parent region is already overridden.
++ next_region_id;
} else if (PrintObjectRegions::BoundingBox parent_bbox = find_modifier_volume_extents(layer_range, parent_region_id); parent_bbox.intersects(*bbox))
// Such parent region does not exist. If it is needed, then we need to reslice.
// Only create new region for a modifier, which actually modifies config of it's parent.
if (PrintRegionConfig config = region_config_from_model_volume(parent_region.region->config(), nullptr, **it_model_volume, num_extruders);
config != parent_region.region->config())
// This modifier newly overrides a region, which it did not before. We need to reslice.
return false;
}
}
}
PrintRegionConfig cfg = region.parent == -1 ?
region_config_from_model_volume(default_region_config, layer_range.config, **it_model_volume, num_extruders) :
region_config_from_model_volume(layer_range.volume_regions[region.parent].region->config(), nullptr, **it_model_volume, num_extruders);
if (cfg != region.region->config()) {
// Region configuration changed.
if (print_region_ref_cnt(*region.region) == 0) {
// Region is referenced for the first time. Just change its parameters.
// Stop the background process before assigning new configuration to the regions.
t_config_option_keys diff = region.region->config().diff(cfg);
callback_invalidate(region.region->config(), cfg, diff);
region.region->config_apply_only(cfg, diff, false);
} else {
// Region is referenced multiple times, thus the region is being split. We need to reslice.
return false;
}
}
print_region_ref_inc(*region.region);
}
}
// Verify and / or update PrintRegions produced by color painting.
for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges)
for (const PrintObjectRegions::PaintedRegion &region : layer_range.painted_regions) {
const PrintObjectRegions::VolumeRegion &parent_region = layer_range.volume_regions[region.parent];
PrintRegionConfig cfg = parent_region.region->config();
cfg.perimeter_extruder.value = region.extruder_id;
cfg.solid_infill_extruder.value = region.extruder_id;
cfg.infill_extruder.value = region.extruder_id;
if (cfg != region.region->config()) {
// Region configuration changed.
if (print_region_ref_cnt(*region.region) == 0) {
// Region is referenced for the first time. Just change its parameters.
// Stop the background process before assigning new configuration to the regions.
t_config_option_keys diff = region.region->config().diff(cfg);
callback_invalidate(region.region->config(), cfg, diff);
region.region->config_apply_only(cfg, diff, false);
} else {
// Region is referenced multiple times, thus the region is being split. We need to reslice.
return false;
}
}
print_region_ref_inc(*region.region);
}
// Lastly verify, whether some regions were not merged.
{
std::vector<const PrintRegion*> regions;
regions.reserve(print_object_regions.all_regions.size());
for (std::unique_ptr<PrintRegion> &region : print_object_regions.all_regions) {
assert(print_region_ref_cnt(*region) > 0);
regions.emplace_back(&(*region.get()));
}
std::sort(regions.begin(), regions.end(), [](const PrintRegion *l, const PrintRegion *r){ return l->config_hash() < r->config_hash(); });
for (size_t i = 0; i < regions.size(); ++ i) {
size_t hash = regions[i]->config_hash();
size_t j = i;
for (++ j; j < regions.size() && regions[j]->config_hash() == hash; ++ j)
if (regions[i]->config() == regions[j]->config()) {
// Regions were merged. We need to reslice.
return false;
}
}
}
return true;
}
// Update caches of volume bounding boxes.
void update_volume_bboxes(
std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges,
std::vector<ObjectID> &cached_volume_ids,
ModelVolumePtrs model_volumes,
const Transform3d &object_trafo,
const float offset)
{
// output will be sorted by the order of model_volumes sorted by their ObjectIDs.
model_volumes_sort_by_id(model_volumes);
if (layer_ranges.size() == 1) {
PrintObjectRegions::LayerRangeRegions &layer_range = layer_ranges.front();
std::vector<PrintObjectRegions::VolumeExtents> volumes_old(std::move(layer_range.volumes));
layer_range.volumes.reserve(model_volumes.size());
for (const ModelVolume *model_volume : model_volumes)
if (model_volume_solid_or_modifier(*model_volume)) {
if (std::binary_search(cached_volume_ids.begin(), cached_volume_ids.end(), model_volume->id())) {
auto it = lower_bound_by_predicate(volumes_old.begin(), volumes_old.end(), [model_volume](PrintObjectRegions::VolumeExtents &l) { return l.volume_id < model_volume->id(); });
if (it != volumes_old.end() && it->volume_id == model_volume->id())
layer_range.volumes.emplace_back(*it);
} else
#if ENABLE_WORLD_COORDINATE
layer_range.volumes.push_back({ model_volume->id(),
transformed_its_bbox2d(model_volume->mesh().its, trafo_for_bbox(object_trafo, model_volume->get_matrix()), offset) });
#else
layer_range.volumes.push_back({ model_volume->id(),
transformed_its_bbox2d(model_volume->mesh().its, trafo_for_bbox(object_trafo, model_volume->get_matrix(false)), offset) });
#endif // ENABLE_WORLD_COORDINATE
}
} else {
std::vector<std::vector<PrintObjectRegions::VolumeExtents>> volumes_old;
if (cached_volume_ids.empty())
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges)
layer_range.volumes.clear();
else {
volumes_old.reserve(layer_ranges.size());
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges)
volumes_old.emplace_back(std::move(layer_range.volumes));
}
std::vector<std::pair<PrintObjectRegions::BoundingBox, bool>> bboxes;
std::vector<t_layer_height_range> ranges;
ranges.reserve(layer_ranges.size());
for (const PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges) {
t_layer_height_range r = layer_range.layer_height_range;
r.first -= EPSILON;
r.second += EPSILON;
ranges.emplace_back(r);
}
for (const ModelVolume *model_volume : model_volumes)
if (model_volume_solid_or_modifier(*model_volume)) {
if (std::binary_search(cached_volume_ids.begin(), cached_volume_ids.end(), model_volume->id())) {
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges) {
const auto &vold = volumes_old[&layer_range - layer_ranges.data()];
auto it = lower_bound_by_predicate(vold.begin(), vold.end(), [model_volume](const PrintObjectRegions::VolumeExtents &l) { return l.volume_id < model_volume->id(); });
if (it != vold.end() && it->volume_id == model_volume->id())
layer_range.volumes.emplace_back(*it);
}
} else {
#if ENABLE_WORLD_COORDINATE
transformed_its_bboxes_in_z_ranges(model_volume->mesh().its, trafo_for_bbox(object_trafo, model_volume->get_matrix()), ranges, bboxes, offset);
#else
transformed_its_bboxes_in_z_ranges(model_volume->mesh().its, trafo_for_bbox(object_trafo, model_volume->get_matrix(false)), ranges, bboxes, offset);
#endif // ENABLE_WORLD_COORDINATE
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges)
if (auto &bbox = bboxes[&layer_range - layer_ranges.data()]; bbox.second)
layer_range.volumes.push_back({ model_volume->id(), bbox.first });
}
}
}
cached_volume_ids.clear();
cached_volume_ids.reserve(model_volumes.size());
for (const ModelVolume *v : model_volumes)
if (model_volume_solid_or_modifier(*v))
cached_volume_ids.emplace_back(v->id());
}
// Either a fresh PrintObject, or PrintObject regions were invalidated (merged, split).
// Generate PrintRegions from scratch.
static PrintObjectRegions* generate_print_object_regions(
PrintObjectRegions *print_object_regions_old,
const ModelVolumePtrs &model_volumes,
const LayerRanges &model_layer_ranges,
const PrintRegionConfig &default_region_config,
const Transform3d &trafo,
size_t num_extruders,
const float xy_size_compensation,
const std::vector<unsigned int> &painting_extruders)
{
// Reuse the old object or generate a new one.
auto out = print_object_regions_old ? std::unique_ptr<PrintObjectRegions>(print_object_regions_old) : std::make_unique<PrintObjectRegions>();
auto &all_regions = out->all_regions;
auto &layer_ranges_regions = out->layer_ranges;
all_regions.clear();
bool reuse_old = print_object_regions_old && !print_object_regions_old->layer_ranges.empty();
if (reuse_old) {
// Reuse old bounding boxes of some ModelVolumes and their ranges.
// Verify that the old ranges match the new ranges.
assert(model_layer_ranges.size() == layer_ranges_regions.size());
for (const auto &range : model_layer_ranges) {
PrintObjectRegions::LayerRangeRegions &r = layer_ranges_regions[&range - &*model_layer_ranges.begin()];
assert(range.layer_height_range == r.layer_height_range);
// If model::assign_copy() is called, layer_ranges_regions is copied thus the pointers to configs are lost.
r.config = range.config;
r.volume_regions.clear();
r.painted_regions.clear();
}
} else {
out->trafo_bboxes = trafo;
layer_ranges_regions.reserve(model_layer_ranges.size());
for (const auto &range : model_layer_ranges)
layer_ranges_regions.push_back({ range.layer_height_range, range.config });
}
const bool is_mm_painted = num_extruders > 1 && std::any_of(model_volumes.cbegin(), model_volumes.cend(), [](const ModelVolume *mv) { return mv->is_mm_painted(); });
update_volume_bboxes(layer_ranges_regions, out->cached_volume_ids, model_volumes, out->trafo_bboxes, is_mm_painted ? 0.f : std::max(0.f, xy_size_compensation));
std::vector<PrintRegion*> region_set;
auto get_create_region = [&region_set, &all_regions](PrintRegionConfig &&config) -> PrintRegion* {
size_t hash = config.hash();
auto it = Slic3r::lower_bound_by_predicate(region_set.begin(), region_set.end(), [&config, hash](const PrintRegion* l) {
return l->config_hash() < hash || (l->config_hash() == hash && l->config() < config); });
if (it != region_set.end() && (*it)->config_hash() == hash && (*it)->config() == config)
return *it;
// Insert into a sorted array, it has O(n) complexity, but the calling algorithm has an O(n^2*log(n)) complexity anyways.
all_regions.emplace_back(std::make_unique<PrintRegion>(std::move(config), hash, int(all_regions.size())));
PrintRegion *region = all_regions.back().get();
region_set.emplace(it, region);
return region;
};
// Chain the regions in the order they are stored in the volumes list.
for (int volume_id = 0; volume_id < int(model_volumes.size()); ++ volume_id) {
const ModelVolume &volume = *model_volumes[volume_id];
if (model_volume_solid_or_modifier(volume)) {
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges_regions)
if (const PrintObjectRegions::BoundingBox *bbox = find_volume_extents(layer_range, volume); bbox) {
if (volume.is_model_part()) {
// Add a model volume, assign an existing region or generate a new one.
layer_range.volume_regions.push_back({
&volume, -1,
get_create_region(region_config_from_model_volume(default_region_config, layer_range.config, volume, num_extruders)),
bbox
});
} else if (volume.is_negative_volume()) {
// Add a negative (subtractor) volume. Such volume has neither region nor parent volume assigned.
layer_range.volume_regions.push_back({ &volume, -1, nullptr, bbox });
} else {
assert(volume.is_modifier());
// Modifiers may be chained one over the other. Check for overlap, merge DynamicPrintConfigs.
bool added = false;
int parent_model_part_id = -1;
for (int parent_region_id = int(layer_range.volume_regions.size()) - 1; parent_region_id >= 0; -- parent_region_id) {
const PrintObjectRegions::VolumeRegion &parent_region = layer_range.volume_regions[parent_region_id];
const ModelVolume &parent_volume = *parent_region.model_volume;
if (parent_volume.is_model_part() || parent_volume.is_modifier())
if (PrintObjectRegions::BoundingBox parent_bbox = find_modifier_volume_extents(layer_range, parent_region_id); parent_bbox.intersects(*bbox)) {
// Only create new region for a modifier, which actually modifies config of it's parent.
if (PrintRegionConfig config = region_config_from_model_volume(parent_region.region->config(), nullptr, volume, num_extruders);
config != parent_region.region->config()) {
added = true;
layer_range.volume_regions.push_back({ &volume, parent_region_id, get_create_region(std::move(config)), bbox });
} else if (parent_model_part_id == -1 && parent_volume.is_model_part())
parent_model_part_id = parent_region_id;
}
}
if (! added && parent_model_part_id >= 0)
// This modifier does not override any printable volume's configuration, however it may in the future.
// Store it so that verify_update_print_object_regions() will handle this modifier correctly if its configuration changes.
layer_range.volume_regions.push_back({ &volume, parent_model_part_id, layer_range.volume_regions[parent_model_part_id].region, bbox });
}
}
}
}
// Finally add painting regions.
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges_regions) {
for (unsigned int painted_extruder_id : painting_extruders)
for (int parent_region_id = 0; parent_region_id < int(layer_range.volume_regions.size()); ++ parent_region_id)
if (const PrintObjectRegions::VolumeRegion &parent_region = layer_range.volume_regions[parent_region_id];
parent_region.model_volume->is_model_part() || parent_region.model_volume->is_modifier()) {
PrintRegionConfig cfg = parent_region.region->config();
cfg.perimeter_extruder.value = painted_extruder_id;
cfg.solid_infill_extruder.value = painted_extruder_id;
cfg.infill_extruder.value = painted_extruder_id;
layer_range.painted_regions.push_back({ painted_extruder_id, parent_region_id, get_create_region(std::move(cfg))});
}
// Sort the regions by parent region::print_object_region_id() and extruder_id to help the slicing algorithm when applying MMU segmentation.
std::sort(layer_range.painted_regions.begin(), layer_range.painted_regions.end(), [&layer_range](auto &l, auto &r) {
int lid = layer_range.volume_regions[l.parent].region->print_object_region_id();
int rid = layer_range.volume_regions[r.parent].region->print_object_region_id();
return lid < rid || (lid == rid && l.extruder_id < r.extruder_id); });
}
return out.release();
}
Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_config)
{
#ifdef _DEBUG
check_model_ids_validity(model);
#endif /* _DEBUG */
// Normalize the config.
new_full_config.option("print_settings_id", true);
new_full_config.option("filament_settings_id", true);
new_full_config.option("printer_settings_id", true);
new_full_config.option("physical_printer_settings_id", true);
new_full_config.normalize_fdm();
// Find modified keys of the various configs. Resolve overrides extruder retract values by filament profiles.
DynamicPrintConfig filament_overrides;
t_config_option_keys print_diff = print_config_diffs(m_config, new_full_config, filament_overrides);
t_config_option_keys full_config_diff = full_print_config_diffs(m_full_print_config, new_full_config);
// If just a physical printer was changed, but printer preset is the same, then there is no need to apply whole print
// see https://github.com/prusa3d/PrusaSlicer/issues/8800
if (full_config_diff.size() == 1 && full_config_diff[0] == "physical_printer_settings_id")
full_config_diff.clear();
// Collect changes to object and region configs.
t_config_option_keys object_diff = m_default_object_config.diff(new_full_config);
t_config_option_keys region_diff = m_default_region_config.diff(new_full_config);
// Do not use the ApplyStatus as we will use the max function when updating apply_status.
unsigned int apply_status = APPLY_STATUS_UNCHANGED;
auto update_apply_status = [&apply_status](bool invalidated)
{ apply_status = std::max<unsigned int>(apply_status, invalidated ? APPLY_STATUS_INVALIDATED : APPLY_STATUS_CHANGED); };
if (! (print_diff.empty() && object_diff.empty() && region_diff.empty()))
update_apply_status(false);
// Grab the lock for the Print / PrintObject milestones.
std::scoped_lock<std::mutex> lock(this->state_mutex());
// The following call may stop the background processing.
if (! print_diff.empty())
update_apply_status(this->invalidate_state_by_config_options(new_full_config, print_diff));
// Apply variables to placeholder parser. The placeholder parser is used by G-code export,
// which should be stopped if print_diff is not empty.
size_t num_extruders = m_config.nozzle_diameter.size();
bool num_extruders_changed = false;
if (! full_config_diff.empty()) {
update_apply_status(this->invalidate_step(psGCodeExport));
m_placeholder_parser.clear_config();
// Set the profile aliases for the PrintBase::output_filename()
m_placeholder_parser.set("print_preset", new_full_config.option("print_settings_id")->clone());
m_placeholder_parser.set("filament_preset", new_full_config.option("filament_settings_id")->clone());
m_placeholder_parser.set("printer_preset", new_full_config.option("printer_settings_id")->clone());
m_placeholder_parser.set("physical_printer_preset", new_full_config.option("physical_printer_settings_id")->clone());
// We want the filament overrides to be applied over their respective extruder parameters by the PlaceholderParser.
// see "Placeholders do not respect filament overrides." GH issue #3649
m_placeholder_parser.apply_config(filament_overrides);
// It is also safe to change m_config now after this->invalidate_state_by_config_options() call.
m_config.apply_only(new_full_config, print_diff, true);
//FIXME use move semantics once ConfigBase supports it.
// Some filament_overrides may contain values different from new_full_config, but equal to m_config.
// As long as these config options don't reallocate memory when copying, we are safe overriding a value, which is in use by a worker thread.
m_config.apply(filament_overrides);
// Handle changes to object config defaults
m_default_object_config.apply_only(new_full_config, object_diff, true);
// Handle changes to regions config defaults
m_default_region_config.apply_only(new_full_config, region_diff, true);
m_full_print_config = std::move(new_full_config);
if (num_extruders != m_config.nozzle_diameter.size()) {
num_extruders = m_config.nozzle_diameter.size();
num_extruders_changed = true;
}
}
ModelObjectStatusDB model_object_status_db;
// 1) Synchronize model objects.
bool print_regions_reshuffled = false;
if (model.id() != m_model.id()) {
// Kill everything, initialize from scratch.
// Stop background processing.
this->call_cancel_callback();
update_apply_status(this->invalidate_all_steps());
for (PrintObject *object : m_objects) {
model_object_status_db.add(*object->model_object(), ModelObjectStatus::Deleted);
update_apply_status(object->invalidate_all_steps());
delete object;
}
m_objects.clear();
print_regions_reshuffled = true;
m_model.assign_copy(model);
for (const ModelObject *model_object : m_model.objects)
model_object_status_db.add(*model_object, ModelObjectStatus::New);
} else {
if (m_model.custom_gcode_per_print_z != model.custom_gcode_per_print_z) {
update_apply_status(num_extruders_changed ||
// Tool change G-codes are applied as color changes for a single extruder printer, no need to invalidate tool ordering.
//FIXME The tool ordering may be invalidated unnecessarily if the custom_gcode_per_print_z.mode is not applicable
// to the active print / model state, and then it is reset, so it is being applicable, but empty, thus the effect is the same.
(num_extruders > 1 && custom_per_printz_gcodes_tool_changes_differ(m_model.custom_gcode_per_print_z.gcodes, model.custom_gcode_per_print_z.gcodes)) ?
// The Tool Ordering and the Wipe Tower are no more valid.
this->invalidate_steps({ psWipeTower, psGCodeExport }) :
// There is no change in Tool Changes stored in custom_gcode_per_print_z, therefore there is no need to update Tool Ordering.
this->invalidate_step(psGCodeExport));
m_model.custom_gcode_per_print_z = model.custom_gcode_per_print_z;
}
if (model_object_list_equal(m_model, model)) {
// The object list did not change.
for (const ModelObject *model_object : m_model.objects)
model_object_status_db.add(*model_object, ModelObjectStatus::Old);
} else if (model_object_list_extended(m_model, model)) {
// Add new objects. Their volumes and configs will be synchronized later.
update_apply_status(this->invalidate_step(psGCodeExport));
for (const ModelObject *model_object : m_model.objects)
model_object_status_db.add(*model_object, ModelObjectStatus::Old);
for (size_t i = m_model.objects.size(); i < model.objects.size(); ++ i) {
model_object_status_db.add(*model.objects[i], ModelObjectStatus::New);
m_model.objects.emplace_back(ModelObject::new_copy(*model.objects[i]));
m_model.objects.back()->set_model(&m_model);
}
} else {
// Reorder the objects, add new objects.
// First stop background processing before shuffling or deleting the PrintObjects in the object list.
this->call_cancel_callback();
update_apply_status(this->invalidate_step(psGCodeExport));
// Second create a new list of objects.
std::vector<ModelObject*> model_objects_old(std::move(m_model.objects));
m_model.objects.clear();
m_model.objects.reserve(model.objects.size());
auto by_id_lower = [](const ModelObject *lhs, const ModelObject *rhs){ return lhs->id() < rhs->id(); };
std::sort(model_objects_old.begin(), model_objects_old.end(), by_id_lower);
for (const ModelObject *mobj : model.objects) {
auto it = std::lower_bound(model_objects_old.begin(), model_objects_old.end(), mobj, by_id_lower);
if (it == model_objects_old.end() || (*it)->id() != mobj->id()) {
// New ModelObject added.
m_model.objects.emplace_back(ModelObject::new_copy(*mobj));
m_model.objects.back()->set_model(&m_model);
model_object_status_db.add(*mobj, ModelObjectStatus::New);
} else {
// Existing ModelObject re-added (possibly moved in the list).
m_model.objects.emplace_back(*it);
model_object_status_db.add(*mobj, ModelObjectStatus::Moved);
}
}
bool deleted_any = false;
for (ModelObject *&model_object : model_objects_old)
if (model_object_status_db.add_if_new(*model_object, ModelObjectStatus::Deleted))
deleted_any = true;
else
// Do not delete this ModelObject instance.
model_object = nullptr;
if (deleted_any) {
// Delete PrintObjects of the deleted ModelObjects.
PrintObjectPtrs print_objects_old = std::move(m_objects);
m_objects.clear();
m_objects.reserve(print_objects_old.size());
for (PrintObject *print_object : print_objects_old) {
const ModelObjectStatus &status = model_object_status_db.get(*print_object->model_object());
if (status.status == ModelObjectStatus::Deleted) {
update_apply_status(print_object->invalidate_all_steps());
delete print_object;
} else
m_objects.emplace_back(print_object);
}
for (ModelObject *model_object : model_objects_old)
delete model_object;
print_regions_reshuffled = true;
}
}
}
// 2) Map print objects including their transformation matrices.
PrintObjectStatusDB print_object_status_db(m_objects);
// 3) Synchronize ModelObjects & PrintObjects.
const std::initializer_list<ModelVolumeType> solid_or_modifier_types { ModelVolumeType::MODEL_PART, ModelVolumeType::NEGATIVE_VOLUME, ModelVolumeType::PARAMETER_MODIFIER };
for (size_t idx_model_object = 0; idx_model_object < model.objects.size(); ++ idx_model_object) {
ModelObject &model_object = *m_model.objects[idx_model_object];
ModelObjectStatus &model_object_status = const_cast<ModelObjectStatus&>(model_object_status_db.reuse(model_object));
const ModelObject &model_object_new = *model.objects[idx_model_object];
if (model_object_status.status == ModelObjectStatus::New)
// PrintObject instances will be added in the next loop.
continue;
// Update the ModelObject instance, possibly invalidate the linked PrintObjects.
assert(model_object_status.status == ModelObjectStatus::Old || model_object_status.status == ModelObjectStatus::Moved);
// Check whether a model part volume was added or removed, their transformations or order changed.
// Only volume IDs, volume types, transformation matrices and their order are checked, configuration and other parameters are NOT checked.
bool solid_or_modifier_differ = model_volume_list_changed(model_object, model_object_new, solid_or_modifier_types) ||
model_mmu_segmentation_data_changed(model_object, model_object_new) ||
(model_object_new.is_mm_painted() && num_extruders_changed);
bool supports_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::SUPPORT_BLOCKER) ||
model_volume_list_changed(model_object, model_object_new, ModelVolumeType::SUPPORT_ENFORCER);
bool layer_height_ranges_differ = ! layer_height_ranges_equal(model_object.layer_config_ranges, model_object_new.layer_config_ranges, model_object_new.layer_height_profile.empty());
bool model_origin_translation_differ = model_object.origin_translation != model_object_new.origin_translation;
auto print_objects_range = print_object_status_db.get_range(model_object);
// The list actually can be empty if all instances are out of the print bed.
//assert(print_objects_range.begin() != print_objects_range.end());
// All PrintObjects in print_objects_range shall point to the same prints_objects_regions
if (print_objects_range.begin() != print_objects_range.end()) {
model_object_status.print_object_regions = print_objects_range.begin()->print_object->m_shared_regions;
model_object_status.print_object_regions->ref_cnt_inc();
}
if (solid_or_modifier_differ || model_origin_translation_differ || layer_height_ranges_differ ||
! model_object.layer_height_profile.timestamp_matches(model_object_new.layer_height_profile)) {
// The very first step (the slicing step) is invalidated. One may freely remove all associated PrintObjects.
model_object_status.print_object_regions_status =
model_object_status.print_object_regions == nullptr || model_origin_translation_differ || layer_height_ranges_differ ?
// Drop print_objects_regions.
ModelObjectStatus::PrintObjectRegionsStatus::Invalid :
// Reuse bounding boxes of print_objects_regions for ModelVolumes with unmodified transformation.
ModelObjectStatus::PrintObjectRegionsStatus::PartiallyValid;
for (const PrintObjectStatus &print_object_status : print_objects_range) {
update_apply_status(print_object_status.print_object->invalidate_all_steps());
const_cast<PrintObjectStatus&>(print_object_status).status = PrintObjectStatus::Deleted;
}
if (model_object_status.print_object_regions_status == ModelObjectStatus::PrintObjectRegionsStatus::PartiallyValid)
// Drop everything from PrintObjectRegions but those VolumeExtents (of their particular ModelVolumes) that are still valid.
print_objects_regions_invalidate_keep_some_volumes(*model_object_status.print_object_regions, model_object.volumes, model_object_new.volumes);
else if (model_object_status.print_object_regions != nullptr)
model_object_status.print_object_regions->clear();
// Copy content of the ModelObject including its ID, do not change the parent.
model_object.assign_copy(model_object_new);
} else {
model_object_status.print_object_regions_status = ModelObjectStatus::PrintObjectRegionsStatus::Valid;
if (supports_differ || model_custom_supports_data_changed(model_object, model_object_new)) {
// First stop background processing before shuffling or deleting the ModelVolumes in the ModelObject's list.
if (supports_differ) {
this->call_cancel_callback();
update_apply_status(false);
}
// Invalidate just the supports step.
for (const PrintObjectStatus &print_object_status : print_objects_range) {
update_apply_status(print_object_status.print_object->invalidate_step(posSupportMaterial));
}
if (supports_differ) {
// Copy just the support volumes.
model_volume_list_update_supports(model_object, model_object_new);
}
} else if (model_custom_seam_data_changed(model_object, model_object_new)) {
update_apply_status(this->invalidate_step(psGCodeExport));
}
}
if (! solid_or_modifier_differ) {
// Synchronize Object's config.
bool object_config_changed = ! model_object.config.timestamp_matches(model_object_new.config);
if (object_config_changed)
model_object.config.assign_config(model_object_new.config);
if (! object_diff.empty() || object_config_changed || num_extruders_changed) {
PrintObjectConfig new_config = PrintObject::object_config_from_model_object(m_default_object_config, model_object, num_extruders);
for (const PrintObjectStatus &print_object_status : print_object_status_db.get_range(model_object)) {
t_config_option_keys diff = print_object_status.print_object->config().diff(new_config);
if (! diff.empty()) {
update_apply_status(print_object_status.print_object->invalidate_state_by_config_options(print_object_status.print_object->config(), new_config, diff));
print_object_status.print_object->config_apply_only(new_config, diff, true);
}
}
}
// Synchronize (just copy) the remaining data of ModelVolumes (name, config, custom supports data).
//FIXME What to do with m_material_id?
model_volume_list_copy_configs(model_object /* dst */, model_object_new /* src */, ModelVolumeType::MODEL_PART);
model_volume_list_copy_configs(model_object /* dst */, model_object_new /* src */, ModelVolumeType::PARAMETER_MODIFIER);
layer_height_ranges_copy_configs(model_object.layer_config_ranges /* dst */, model_object_new.layer_config_ranges /* src */);
// Copy the ModelObject name, input_file and instances. The instances will be compared against PrintObject instances in the next step.
model_object.name = model_object_new.name;
model_object.input_file = model_object_new.input_file;
// Only refresh ModelInstances if there is any change.
if (model_object.instances.size() != model_object_new.instances.size() ||
! std::equal(model_object.instances.begin(), model_object.instances.end(), model_object_new.instances.begin(), [](auto l, auto r){ return l->id() == r->id(); })) {
// G-code generator accesses model_object.instances to generate sequential print ordering matching the Plater object list.
update_apply_status(this->invalidate_step(psGCodeExport));
model_object.clear_instances();
model_object.instances.reserve(model_object_new.instances.size());
for (const ModelInstance *model_instance : model_object_new.instances) {
model_object.instances.emplace_back(new ModelInstance(*model_instance));
model_object.instances.back()->set_model_object(&model_object);
}
} else if (! std::equal(model_object.instances.begin(), model_object.instances.end(), model_object_new.instances.begin(),
[](auto l, auto r){ return l->print_volume_state == r->print_volume_state && l->printable == r->printable &&
l->get_transformation().get_matrix().isApprox(r->get_transformation().get_matrix()); })) {
// If some of the instances changed, the bounding box of the updated ModelObject is likely no more valid.
// This is safe as the ModelObject's bounding box is only accessed from this function, which is called from the main thread only.
model_object.invalidate_bounding_box();
// Synchronize the content of instances.
auto new_instance = model_object_new.instances.begin();
for (auto old_instance = model_object.instances.begin(); old_instance != model_object.instances.end(); ++ old_instance, ++ new_instance) {
(*old_instance)->set_transformation((*new_instance)->get_transformation());
(*old_instance)->print_volume_state = (*new_instance)->print_volume_state;
(*old_instance)->printable = (*new_instance)->printable;
}
}
}
}
// 4) Generate PrintObjects from ModelObjects and their instances.
{
PrintObjectPtrs print_objects_new;
print_objects_new.reserve(std::max(m_objects.size(), m_model.objects.size()));
bool new_objects = false;
// Walk over all new model objects and check, whether there are matching PrintObjects.
for (ModelObject *model_object : m_model.objects) {
ModelObjectStatus &model_object_status = const_cast<ModelObjectStatus&>(model_object_status_db.reuse(*model_object));
model_object_status.print_instances = print_objects_from_model_object(*model_object);
std::vector<const PrintObjectStatus*> old;
old.reserve(print_object_status_db.count(*model_object));
for (const PrintObjectStatus &print_object_status : print_object_status_db.get_range(*model_object))
if (print_object_status.status != PrintObjectStatus::Deleted)
old.emplace_back(&print_object_status);
// Generate a list of trafos and XY offsets for instances of a ModelObject
// Producing the config for PrintObject on demand, caching it at print_object_last.
const PrintObject *print_object_last = nullptr;
auto print_object_apply_config = [this, &print_object_last, model_object, num_extruders](PrintObject *print_object) {
print_object->config_apply(print_object_last ?
print_object_last->config() :
PrintObject::object_config_from_model_object(m_default_object_config, *model_object, num_extruders));
print_object_last = print_object;
};
if (old.empty()) {
// Simple case, just generate new instances.
for (PrintObjectTrafoAndInstances &print_instances : model_object_status.print_instances) {
PrintObject *print_object = new PrintObject(this, model_object, print_instances.trafo, std::move(print_instances.instances));
print_object_apply_config(print_object);
print_objects_new.emplace_back(print_object);
// print_object_status.emplace(PrintObjectStatus(print_object, PrintObjectStatus::New));
new_objects = true;
}
continue;
}
// Complex case, try to merge the two lists.
// Sort the old lexicographically by their trafos.
std::sort(old.begin(), old.end(), [](const PrintObjectStatus *lhs, const PrintObjectStatus *rhs){ return transform3d_lower(lhs->trafo, rhs->trafo); });
// Merge the old / new lists.
auto it_old = old.begin();
for (PrintObjectTrafoAndInstances &new_instances : model_object_status.print_instances) {
for (; it_old != old.end() && transform3d_lower((*it_old)->trafo, new_instances.trafo); ++ it_old);
if (it_old == old.end() || ! transform3d_equal((*it_old)->trafo, new_instances.trafo)) {
// This is a new instance (or a set of instances with the same trafo). Just add it.
PrintObject *print_object = new PrintObject(this, model_object, new_instances.trafo, std::move(new_instances.instances));
print_object_apply_config(print_object);
print_objects_new.emplace_back(print_object);
// print_object_status.emplace(PrintObjectStatus(print_object, PrintObjectStatus::New));
new_objects = true;
if (it_old != old.end())
const_cast<PrintObjectStatus*>(*it_old)->status = PrintObjectStatus::Deleted;
} else {
// The PrintObject already exists and the copies differ.
PrintBase::ApplyStatus status = (*it_old)->print_object->set_instances(std::move(new_instances.instances));
if (status != PrintBase::APPLY_STATUS_UNCHANGED)
update_apply_status(status == PrintBase::APPLY_STATUS_INVALIDATED);
print_objects_new.emplace_back((*it_old)->print_object);
const_cast<PrintObjectStatus*>(*it_old)->status = PrintObjectStatus::Reused;
}
}
}
if (m_objects != print_objects_new) {
this->call_cancel_callback();
update_apply_status(this->invalidate_all_steps());
m_objects = print_objects_new;
// Delete the PrintObjects marked as Unknown or Deleted.
bool deleted_objects = false;
for (const PrintObjectStatus &pos : print_object_status_db)
if (pos.status == PrintObjectStatus::Unknown || pos.status == PrintObjectStatus::Deleted) {
update_apply_status(pos.print_object->invalidate_all_steps());
delete pos.print_object;
deleted_objects = true;
}
if (new_objects || deleted_objects)
update_apply_status(this->invalidate_steps({ psAlertWhenSupportsNeeded, psSkirtBrim, psWipeTower, psGCodeExport }));
if (new_objects)
update_apply_status(false);
print_regions_reshuffled = true;
}
print_object_status_db.clear();
}
// All regions now have distinct settings.
// Check whether applying the new region config defaults we would get different regions,
// update regions or create regions from scratch.
for (auto it_print_object = m_objects.begin(); it_print_object != m_objects.end();) {
// Find the range of PrintObjects sharing the same associated ModelObject.
auto it_print_object_end = it_print_object;
PrintObject &print_object = *(*it_print_object);
const ModelObject &model_object = *print_object.model_object();
ModelObjectStatus &model_object_status = const_cast<ModelObjectStatus&>(model_object_status_db.reuse(model_object));
PrintObjectRegions *print_object_regions = model_object_status.print_object_regions;
for (++ it_print_object_end; it_print_object_end != m_objects.end() && (*it_print_object)->model_object() == (*it_print_object_end)->model_object(); ++ it_print_object_end)
assert((*it_print_object_end)->m_shared_regions == nullptr || (*it_print_object_end)->m_shared_regions == print_object_regions);
if (print_object_regions == nullptr) {
print_object_regions = new PrintObjectRegions{};
model_object_status.print_object_regions = print_object_regions;
print_object_regions->ref_cnt_inc();
}
std::vector<unsigned int> painting_extruders;
if (const auto &volumes = print_object.model_object()->volumes;
num_extruders > 1 &&
std::find_if(volumes.begin(), volumes.end(), [](const ModelVolume *v) { return ! v->mmu_segmentation_facets.empty(); }) != volumes.end()) {
//FIXME be more specific! Don't enumerate extruders that are not used for painting!
painting_extruders.assign(num_extruders, 0);
std::iota(painting_extruders.begin(), painting_extruders.end(), 1);
}
if (model_object_status.print_object_regions_status == ModelObjectStatus::PrintObjectRegionsStatus::Valid) {
// Verify that the trafo for regions & volume bounding boxes thus for regions is still applicable.
auto invalidate = [it_print_object, it_print_object_end, update_apply_status]() {
for (auto it = it_print_object; it != it_print_object_end; ++ it)
if ((*it)->m_shared_regions != nullptr)
update_apply_status((*it)->invalidate_all_steps());
};
if (print_object_regions && ! trafos_differ_in_rotation_by_z_and_mirroring_by_xy_only(print_object_regions->trafo_bboxes, model_object_status.print_instances.front().trafo)) {
invalidate();
print_object_regions->clear();
model_object_status.print_object_regions_status = ModelObjectStatus::PrintObjectRegionsStatus::Invalid;
print_regions_reshuffled = true;
} else if (print_object_regions &&
verify_update_print_object_regions(
print_object.model_object()->volumes,
m_default_region_config,
num_extruders,
painting_extruders,
*print_object_regions,
[it_print_object, it_print_object_end, &update_apply_status](const PrintRegionConfig &old_config, const PrintRegionConfig &new_config, const t_config_option_keys &diff_keys) {
for (auto it = it_print_object; it != it_print_object_end; ++it)
if ((*it)->m_shared_regions != nullptr)
update_apply_status((*it)->invalidate_state_by_config_options(old_config, new_config, diff_keys));
})) {
// Regions are valid, just keep them.
} else {
// Regions were reshuffled.
invalidate();
// At least reuse layer ranges and bounding boxes of ModelVolumes.
model_object_status.print_object_regions_status = ModelObjectStatus::PrintObjectRegionsStatus::PartiallyValid;
print_regions_reshuffled = true;
}
}
if (print_object_regions == nullptr || model_object_status.print_object_regions_status != ModelObjectStatus::PrintObjectRegionsStatus::Valid) {
// Layer ranges with their associated configurations. Remove overlaps between the ranges
// and create the regions from scratch.
print_object_regions = generate_print_object_regions(
print_object_regions,
print_object.model_object()->volumes,
LayerRanges(print_object.model_object()->layer_config_ranges),
m_default_region_config,
model_object_status.print_instances.front().trafo,
num_extruders,
print_object.is_mm_painted() ? 0.f : float(print_object.config().xy_size_compensation.value),
painting_extruders);
}
for (auto it = it_print_object; it != it_print_object_end; ++it)
if ((*it)->m_shared_regions) {
assert((*it)->m_shared_regions == print_object_regions);
} else {
(*it)->m_shared_regions = print_object_regions;
print_object_regions->ref_cnt_inc();
}
it_print_object = it_print_object_end;
}
if (print_regions_reshuffled) {
// Update Print::m_print_regions from objects.
struct cmp { bool operator() (const PrintRegion *l, const PrintRegion *r) const { return l->config_hash() == r->config_hash() && l->config() == r->config(); } };
std::set<const PrintRegion*, cmp> region_set;
m_print_regions.clear();
PrintObjectRegions *print_object_regions = nullptr;
for (PrintObject *print_object : m_objects)
if (print_object_regions != print_object->m_shared_regions) {
print_object_regions = print_object->m_shared_regions;
for (std::unique_ptr<Slic3r::PrintRegion> &print_region : print_object_regions->all_regions)
if (auto it = region_set.find(print_region.get()); it == region_set.end()) {
int print_region_id = int(m_print_regions.size());
m_print_regions.emplace_back(print_region.get());
print_region->m_print_region_id = print_region_id;
} else {
print_region->m_print_region_id = (*it)->print_region_id();
}
}
}
// Update SlicingParameters for each object where the SlicingParameters is not valid.
// If it is not valid, then it is ensured that PrintObject.m_slicing_params is not in use
// (posSlicing and posSupportMaterial was invalidated).
for (PrintObject *object : m_objects)
object->update_slicing_parameters();
if (apply_status == APPLY_STATUS_CHANGED || apply_status == APPLY_STATUS_INVALIDATED)
this->cleanup();
#ifdef _DEBUG
check_model_ids_equal(m_model, model);
#endif /* _DEBUG */
return static_cast<ApplyStatus>(apply_status);
}
void Print::cleanup()
{
// Invalidate data of a single ModelObject shared by multiple PrintObjects.
// Find spans of PrintObjects sharing the same PrintObjectRegions.
std::vector<PrintObject*> all_objects(m_objects);
std::sort(all_objects.begin(), all_objects.end(), [](const PrintObject *l, const PrintObject *r){ return l->shared_regions() < r->shared_regions(); } );
for (auto it = all_objects.begin(); it != all_objects.end();) {
PrintObjectRegions *shared_regions = (*it)->m_shared_regions;
auto it_begin = it;
for (; it != all_objects.end() && shared_regions == (*it)->shared_regions(); ++ it)
// Let the PrintObject clean up its data with invalidated milestones.
(*it)->cleanup();
auto this_objects = SpanOfConstPtrs<PrintObject>(const_cast<const PrintObject* const* const>(&(*it_begin)), it - it_begin);
if (! Print::is_shared_print_object_step_valid_unguarded(this_objects, posSupportSpotsSearch))
shared_regions->generated_support_points.reset();
}
}
bool Print::is_shared_print_object_step_valid_unguarded(SpanOfConstPtrs<PrintObject> print_objects, PrintObjectStep print_object_step)
{
return std::any_of(print_objects.begin(), print_objects.end(), [print_object_step](auto po){ return po->is_step_done_unguarded(print_object_step); });
}
} // namespace Slic3r