PrusaSlicer/src/libslic3r/Fill/FillAdaptive.cpp
Vojtech Bubnik 7b318e1698 Refactoring of adaptive cubic infill:
Don't create an octree for the infill if it is not needed.
2020-09-09 15:55:06 +02:00

352 lines
13 KiB
C++

#include "../ClipperUtils.hpp"
#include "../ExPolygon.hpp"
#include "../Surface.hpp"
#include "../Geometry.hpp"
#include "../AABBTreeIndirect.hpp"
#include "../Layer.hpp"
#include "../Print.hpp"
#include "../ShortestPath.hpp"
#include "FillAdaptive.hpp"
namespace Slic3r {
std::pair<double, double> adaptive_fill_line_spacing(const PrintObject &print_object)
{
// Output, spacing for icAdaptiveCubic and icSupportCubic
double adaptive_line_spacing = 0.;
double support_line_spacing = 0.;
enum class Tristate {
Yes,
No,
Maybe
};
struct RegionFillData {
Tristate has_adaptive_infill;
Tristate has_support_infill;
double density;
double extrusion_width;
};
std::vector<RegionFillData> region_fill_data;
region_fill_data.reserve(print_object.print()->regions().size());
bool build_octree = false;
for (const PrintRegion *region : print_object.print()->regions()) {
const PrintRegionConfig &config = region->config();
bool nonempty = config.fill_density > 0;
bool has_adaptive_infill = nonempty && config.fill_pattern == ipAdaptiveCubic;
bool has_support_infill = nonempty && false; // config.fill_pattern == icSupportCubic;
region_fill_data.push_back(RegionFillData({
has_adaptive_infill ? Tristate::Maybe : Tristate::No,
has_support_infill ? Tristate::Maybe : Tristate::No,
config.fill_density,
config.infill_extrusion_width
}));
build_octree |= has_adaptive_infill || has_support_infill;
}
if (build_octree) {
// Compute the average of above parameters over all layers
for (const Layer *layer : print_object.layers())
for (size_t region_id = 0; region_id < layer->regions().size(); ++ region_id) {
RegionFillData &rd = region_fill_data[region_id];
if (rd.has_adaptive_infill == Tristate::Maybe && ! layer->regions()[region_id]->fill_surfaces.empty())
rd.has_adaptive_infill = Tristate::Yes;
if (rd.has_support_infill == Tristate::Maybe && ! layer->regions()[region_id]->fill_surfaces.empty())
rd.has_support_infill = Tristate::Yes;
}
double adaptive_fill_density = 0.;
double adaptive_infill_extrusion_width = 0.;
int adaptive_cnt = 0;
double support_fill_density = 0.;
double support_infill_extrusion_width = 0.;
int support_cnt = 0;
for (const RegionFillData &rd : region_fill_data) {
if (rd.has_adaptive_infill == Tristate::Yes) {
adaptive_fill_density += rd.density;
adaptive_infill_extrusion_width += rd.extrusion_width;
++ adaptive_cnt;
} else if (rd.has_support_infill == Tristate::Yes) {
support_fill_density += rd.density;
support_infill_extrusion_width += rd.extrusion_width;
++ support_cnt;
}
}
auto to_line_spacing = [](int cnt, double density, double extrusion_width) {
if (cnt) {
density /= double(cnt);
extrusion_width /= double(cnt);
return extrusion_width / ((density / 100.0f) * 0.333333333f);
} else
return 0.;
};
adaptive_line_spacing = to_line_spacing(adaptive_cnt, adaptive_fill_density, adaptive_infill_extrusion_width);
support_line_spacing = to_line_spacing(support_cnt, support_fill_density, support_infill_extrusion_width);
}
return std::make_pair(adaptive_line_spacing, support_line_spacing);
}
void FillAdaptive::_fill_surface_single(
const FillParams &params,
unsigned int thickness_layers,
const std::pair<float, Point> &direction,
ExPolygon &expolygon,
Polylines &polylines_out)
{
// Store grouped lines by its direction (multiple of 120°)
std::vector<Lines> infill_lines_dir(3);
this->generate_infill_lines(this->adapt_fill_octree->root_cube.get(),
this->z, this->adapt_fill_octree->origin,infill_lines_dir,
this->adapt_fill_octree->cubes_properties,
int(this->adapt_fill_octree->cubes_properties.size()) - 1);
Polylines all_polylines;
all_polylines.reserve(infill_lines_dir[0].size() * 3);
for (Lines &infill_lines : infill_lines_dir)
{
for (const Line &line : infill_lines)
{
all_polylines.emplace_back(line.a, line.b);
}
}
if (params.dont_connect)
{
// Crop all polylines
polylines_out = intersection_pl(all_polylines, to_polygons(expolygon));
}
else
{
// Crop all polylines
all_polylines = intersection_pl(all_polylines, to_polygons(expolygon));
Polylines boundary_polylines;
Polylines non_boundary_polylines;
for (const Polyline &polyline : all_polylines)
{
// connect_infill required all polylines to touch the boundary.
if(polyline.lines().size() == 1 && expolygon.has_boundary_point(polyline.lines().front().a) && expolygon.has_boundary_point(polyline.lines().front().b))
{
boundary_polylines.push_back(polyline);
}
else
{
non_boundary_polylines.push_back(polyline);
}
}
if(!boundary_polylines.empty())
{
boundary_polylines = chain_polylines(boundary_polylines);
FillAdaptive::connect_infill(std::move(boundary_polylines), expolygon, polylines_out, this->spacing, params);
}
polylines_out.insert(polylines_out.end(), non_boundary_polylines.begin(), non_boundary_polylines.end());
}
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
static int iRuna = 0;
BoundingBox bbox_svg = this->bounding_box;
{
::Slic3r::SVG svg(debug_out_path("FillAdaptive-%d.svg", iRuna), bbox_svg);
for (const Polyline &polyline : polylines_out)
{
for (const Line &line : polyline.lines())
{
Point from = line.a;
Point to = line.b;
Point diff = to - from;
float shrink_length = scale_(0.4);
float line_slope = (float)diff.y() / diff.x();
float shrink_x = shrink_length / (float)std::sqrt(1.0 + (line_slope * line_slope));
float shrink_y = line_slope * shrink_x;
to.x() -= shrink_x;
to.y() -= shrink_y;
from.x() += shrink_x;
from.y() += shrink_y;
svg.draw(Line(from, to));
}
}
}
iRuna++;
}
#endif /* SLIC3R_DEBUG */
}
void FillAdaptive::generate_infill_lines(
FillAdaptive_Internal::Cube *cube,
double z_position,
const Vec3d &origin,
std::vector<Lines> &dir_lines_out,
const std::vector<FillAdaptive_Internal::CubeProperties> &cubes_properties,
int depth)
{
using namespace FillAdaptive_Internal;
if(cube == nullptr)
{
return;
}
double z_diff = std::abs(z_position - cube->center.z());
if (z_diff > cubes_properties[depth].height / 2)
{
return;
}
if (z_diff < cubes_properties[depth].line_z_distance)
{
Point from(
scale_((cubes_properties[depth].diagonal_length / 2) * (cubes_properties[depth].line_z_distance - z_diff) / cubes_properties[depth].line_z_distance),
scale_(cubes_properties[depth].line_xy_distance - ((z_position - (cube->center.z() - cubes_properties[depth].line_z_distance)) / sqrt(2))));
Point to(-from.x(), from.y());
// Relative to cube center
double rotation_angle = (2.0 * M_PI) / 3.0;
for (Lines &lines : dir_lines_out)
{
Vec3d offset = cube->center - origin;
Point from_abs(from), to_abs(to);
from_abs.x() += int(scale_(offset.x()));
from_abs.y() += int(scale_(offset.y()));
to_abs.x() += int(scale_(offset.x()));
to_abs.y() += int(scale_(offset.y()));
// lines.emplace_back(from_abs, to_abs);
this->connect_lines(lines, Line(from_abs, to_abs));
from.rotate(rotation_angle);
to.rotate(rotation_angle);
}
}
for(const std::unique_ptr<Cube> &child : cube->children)
{
if(child != nullptr)
{
generate_infill_lines(child.get(), z_position, origin, dir_lines_out, cubes_properties, depth - 1);
}
}
}
void FillAdaptive::connect_lines(Lines &lines, Line new_line)
{
auto eps = int(scale_(0.10));
for (size_t i = 0; i < lines.size(); ++i)
{
if (std::abs(new_line.a.x() - lines[i].b.x()) < eps && std::abs(new_line.a.y() - lines[i].b.y()) < eps)
{
new_line.a = lines[i].a;
lines.erase(lines.begin() + i);
--i;
continue;
}
if (std::abs(new_line.b.x() - lines[i].a.x()) < eps && std::abs(new_line.b.y() - lines[i].a.y()) < eps)
{
new_line.b = lines[i].b;
lines.erase(lines.begin() + i);
--i;
continue;
}
}
lines.emplace_back(new_line.a, new_line.b);
}
std::unique_ptr<FillAdaptive_Internal::Octree> FillAdaptive::build_octree(
TriangleMesh &triangle_mesh,
coordf_t line_spacing,
const Vec3d &cube_center)
{
using namespace FillAdaptive_Internal;
if(line_spacing <= 0 || std::isnan(line_spacing))
{
return nullptr;
}
Vec3d bb_size = triangle_mesh.bounding_box().size();
// The furthest point from the center of the bottom of the mesh bounding box.
double furthest_point = std::sqrt(((bb_size.x() * bb_size.x()) / 4.0) +
((bb_size.y() * bb_size.y()) / 4.0) +
(bb_size.z() * bb_size.z()));
double max_cube_edge_length = furthest_point * 2;
std::vector<CubeProperties> cubes_properties;
for (double edge_length = (line_spacing * 2); edge_length < (max_cube_edge_length * 2); edge_length *= 2)
{
CubeProperties props{};
props.edge_length = edge_length;
props.height = edge_length * sqrt(3);
props.diagonal_length = edge_length * sqrt(2);
props.line_z_distance = edge_length / sqrt(3);
props.line_xy_distance = edge_length / sqrt(6);
cubes_properties.push_back(props);
}
if (triangle_mesh.its.vertices.empty())
{
triangle_mesh.require_shared_vertices();
}
Vec3d rotation = Vec3d((5.0 * M_PI) / 4.0, Geometry::deg2rad(215.264), M_PI / 6.0);
Transform3d rotation_matrix = Geometry::assemble_transform(Vec3d::Zero(), rotation, Vec3d::Ones(), Vec3d::Ones());
AABBTreeIndirect::Tree3f aabbTree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(
triangle_mesh.its.vertices, triangle_mesh.its.indices);
auto octree = std::make_unique<Octree>(std::make_unique<Cube>(cube_center), cube_center, cubes_properties);
FillAdaptive::expand_cube(octree->root_cube.get(), cubes_properties, rotation_matrix, aabbTree, triangle_mesh, int(cubes_properties.size()) - 1);
return octree;
}
void FillAdaptive::expand_cube(
FillAdaptive_Internal::Cube *cube,
const std::vector<FillAdaptive_Internal::CubeProperties> &cubes_properties,
const Transform3d &rotation_matrix,
const AABBTreeIndirect::Tree3f &distance_tree,
const TriangleMesh &triangle_mesh, int depth)
{
using namespace FillAdaptive_Internal;
if (cube == nullptr || depth == 0)
{
return;
}
std::vector<Vec3d> child_centers = {
Vec3d(-1, -1, -1), Vec3d( 1, -1, -1), Vec3d(-1, 1, -1), Vec3d(-1, -1, 1),
Vec3d( 1, 1, 1), Vec3d(-1, 1, 1), Vec3d( 1, -1, 1), Vec3d( 1, 1, -1)
};
double cube_radius_squared = (cubes_properties[depth].height * cubes_properties[depth].height) / 16;
for (size_t i = 0; i < 8; ++i)
{
const Vec3d &child_center = child_centers[i];
Vec3d child_center_transformed = cube->center + rotation_matrix * (child_center * (cubes_properties[depth].edge_length / 4));
if(AABBTreeIndirect::is_any_triangle_in_radius(triangle_mesh.its.vertices, triangle_mesh.its.indices,
distance_tree, child_center_transformed, cube_radius_squared))
{
cube->children[i] = std::make_unique<Cube>(child_center_transformed);
FillAdaptive::expand_cube(cube->children[i].get(), cubes_properties, rotation_matrix, distance_tree, triangle_mesh, depth - 1);
}
}
}
} // namespace Slic3r