mirror of
https://git.mirrors.martin98.com/https://github.com/prusa3d/PrusaSlicer.git
synced 2025-07-19 20:04:30 +08:00
751 lines
26 KiB
C++
751 lines
26 KiB
C++
#include <functional>
|
|
#include <optional>
|
|
#include <numeric>
|
|
#include <unordered_set>
|
|
|
|
#include <libslic3r/OpenVDBUtils.hpp>
|
|
#include <libslic3r/TriangleMesh.hpp>
|
|
#include <libslic3r/TriangleMeshSlicer.hpp>
|
|
#include <libslic3r/SLA/Hollowing.hpp>
|
|
#include <libslic3r/AABBMesh.hpp>
|
|
#include <libslic3r/ClipperUtils.hpp>
|
|
#include <libslic3r/QuadricEdgeCollapse.hpp>
|
|
#include <libslic3r/SLA/SupportTreeMesher.hpp>
|
|
#include <libslic3r/Execution/ExecutionSeq.hpp>
|
|
#include <libslic3r/Model.hpp>
|
|
|
|
#include <boost/log/trivial.hpp>
|
|
|
|
#include <libslic3r/MTUtils.hpp>
|
|
#include <libslic3r/I18N.hpp>
|
|
|
|
//! macro used to mark string used at localization,
|
|
//! return same string
|
|
#define L(s) Slic3r::I18N::translate(s)
|
|
|
|
namespace Slic3r {
|
|
namespace sla {
|
|
|
|
struct Interior {
|
|
indexed_triangle_set mesh;
|
|
VoxelGridPtr gridptr;
|
|
|
|
double iso_surface = 0.;
|
|
double thickness = 0.;
|
|
double full_narrowb = 2.;
|
|
|
|
void reset_accessor() const // This resets the accessor and its cache
|
|
// Not a thread safe call!
|
|
{
|
|
if (gridptr)
|
|
Slic3r::reset_accessor(*gridptr);
|
|
}
|
|
};
|
|
|
|
void InteriorDeleter::operator()(Interior *p)
|
|
{
|
|
delete p;
|
|
}
|
|
|
|
indexed_triangle_set &get_mesh(Interior &interior)
|
|
{
|
|
return interior.mesh;
|
|
}
|
|
|
|
const indexed_triangle_set &get_mesh(const Interior &interior)
|
|
{
|
|
return interior.mesh;
|
|
}
|
|
|
|
const VoxelGrid &get_grid(const Interior &interior)
|
|
{
|
|
return *interior.gridptr;
|
|
}
|
|
|
|
VoxelGrid &get_grid(Interior &interior)
|
|
{
|
|
return *interior.gridptr;
|
|
}
|
|
|
|
InteriorPtr generate_interior(const VoxelGrid &vgrid,
|
|
const HollowingConfig &hc,
|
|
const JobController &ctl)
|
|
{
|
|
double offset = hc.min_thickness;
|
|
double D = hc.closing_distance;
|
|
float in_range = 1.1f * float(offset + D);
|
|
auto narrowb = 3.f / get_voxel_scale(vgrid);
|
|
float out_range = narrowb;
|
|
|
|
if (ctl.stopcondition()) return {};
|
|
else ctl.statuscb(0, L("Hollowing"));
|
|
|
|
auto gridptr = dilate_grid(vgrid, out_range, in_range);
|
|
|
|
if (ctl.stopcondition()) return {};
|
|
else ctl.statuscb(30, L("Hollowing"));
|
|
|
|
double iso_surface = D;
|
|
if (D > EPSILON) {
|
|
in_range = narrowb;
|
|
gridptr = redistance_grid(*gridptr, -(offset + D), narrowb, in_range);
|
|
|
|
gridptr = dilate_grid(*gridptr, std::ceil(iso_surface), 0.f);
|
|
|
|
out_range = iso_surface;
|
|
} else {
|
|
iso_surface = -offset;
|
|
}
|
|
|
|
if (ctl.stopcondition()) return {};
|
|
else ctl.statuscb(70, L("Hollowing"));
|
|
|
|
double adaptivity = 0.;
|
|
InteriorPtr interior = InteriorPtr{new Interior{}};
|
|
|
|
interior->mesh = grid_to_mesh(*gridptr, iso_surface, adaptivity);
|
|
interior->gridptr = std::move(gridptr);
|
|
|
|
if (ctl.stopcondition()) return {};
|
|
else ctl.statuscb(100, L("Hollowing"));
|
|
|
|
interior->iso_surface = iso_surface;
|
|
interior->thickness = offset;
|
|
interior->full_narrowb = (out_range + in_range) / 2.;
|
|
|
|
return interior;
|
|
}
|
|
|
|
indexed_triangle_set DrainHole::to_mesh() const
|
|
{
|
|
auto r = double(radius);
|
|
auto h = double(height);
|
|
indexed_triangle_set hole = its_make_cylinder(r, h); //sla::cylinder(r, h, steps);
|
|
Eigen::Quaternionf q;
|
|
q.setFromTwoVectors(Vec3f::UnitZ(), normal);
|
|
for(auto& p : hole.vertices) p = q * p + pos;
|
|
|
|
return hole;
|
|
}
|
|
|
|
bool DrainHole::operator==(const DrainHole &sp) const
|
|
{
|
|
return (pos == sp.pos) && (normal == sp.normal) &&
|
|
is_approx(radius, sp.radius) &&
|
|
is_approx(height, sp.height);
|
|
}
|
|
|
|
bool DrainHole::is_inside(const Vec3f& pt) const
|
|
{
|
|
Eigen::Hyperplane<float, 3> plane(normal, pos);
|
|
float dist = plane.signedDistance(pt);
|
|
if (dist < float(EPSILON) || dist > height)
|
|
return false;
|
|
|
|
Eigen::ParametrizedLine<float, 3> axis(pos, normal);
|
|
if ( axis.squaredDistance(pt) < pow(radius, 2.f))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Given a line s+dir*t, find parameter t of intersections with the hole
|
|
// and the normal (points inside the hole). Outputs through out reference,
|
|
// returns true if two intersections were found.
|
|
bool DrainHole::get_intersections(const Vec3f& s, const Vec3f& dir,
|
|
std::array<std::pair<float, Vec3d>, 2>& out)
|
|
const
|
|
{
|
|
assert(is_approx(normal.norm(), 1.f));
|
|
const Eigen::ParametrizedLine<float, 3> ray(s, dir.normalized());
|
|
|
|
for (size_t i=0; i<2; ++i)
|
|
out[i] = std::make_pair(AABBMesh::hit_result::infty(), Vec3d::Zero());
|
|
|
|
const float sqr_radius = pow(radius, 2.f);
|
|
|
|
// first check a bounding sphere of the hole:
|
|
Vec3f center = pos+normal*height/2.f;
|
|
float sqr_dist_limit = pow(height/2.f, 2.f) + sqr_radius ;
|
|
if (ray.squaredDistance(center) > sqr_dist_limit)
|
|
return false;
|
|
|
|
// The line intersects the bounding sphere, look for intersections with
|
|
// bases of the cylinder.
|
|
|
|
size_t found = 0; // counts how many intersections were found
|
|
Eigen::Hyperplane<float, 3> base;
|
|
if (! is_approx(ray.direction().dot(normal), 0.f)) {
|
|
for (size_t i=1; i<=1; --i) {
|
|
Vec3f cylinder_center = pos+i*height*normal;
|
|
if (i == 0) {
|
|
// The hole base can be identical to mesh surface if it is flat
|
|
// let's better move the base outward a bit
|
|
cylinder_center -= EPSILON*normal;
|
|
}
|
|
base = Eigen::Hyperplane<float, 3>(normal, cylinder_center);
|
|
Vec3f intersection = ray.intersectionPoint(base);
|
|
// Only accept the point if it is inside the cylinder base.
|
|
if ((cylinder_center-intersection).squaredNorm() < sqr_radius) {
|
|
out[found].first = ray.intersectionParameter(base);
|
|
out[found].second = (i==0 ? 1. : -1.) * normal.cast<double>();
|
|
++found;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// In case the line was perpendicular to the cylinder axis, previous
|
|
// block was skipped, but base will later be assumed to be valid.
|
|
base = Eigen::Hyperplane<float, 3>(normal, pos-EPSILON*normal);
|
|
}
|
|
|
|
// In case there is still an intersection to be found, check the wall
|
|
if (found != 2 && ! is_approx(std::abs(ray.direction().dot(normal)), 1.f)) {
|
|
// Project the ray onto the base plane
|
|
Vec3f proj_origin = base.projection(ray.origin());
|
|
Vec3f proj_dir = base.projection(ray.origin()+ray.direction())-proj_origin;
|
|
// save how the parameter scales and normalize the projected direction
|
|
float par_scale = proj_dir.norm();
|
|
proj_dir = proj_dir/par_scale;
|
|
Eigen::ParametrizedLine<float, 3> projected_ray(proj_origin, proj_dir);
|
|
// Calculate point on the secant that's closest to the center
|
|
// and its distance to the circle along the projected line
|
|
Vec3f closest = projected_ray.projection(pos);
|
|
float dist = sqrt((sqr_radius - (closest-pos).squaredNorm()));
|
|
// Unproject both intersections on the original line and check
|
|
// they are on the cylinder and not past it:
|
|
for (int i=-1; i<=1 && found !=2; i+=2) {
|
|
Vec3f isect = closest + i*dist * projected_ray.direction();
|
|
Vec3f to_isect = isect-proj_origin;
|
|
float par = to_isect.norm() / par_scale;
|
|
if (to_isect.normalized().dot(proj_dir.normalized()) < 0.f)
|
|
par *= -1.f;
|
|
Vec3d hit_normal = (pos-isect).normalized().cast<double>();
|
|
isect = ray.pointAt(par);
|
|
// check that the intersection is between the base planes:
|
|
float vert_dist = base.signedDistance(isect);
|
|
if (vert_dist > 0.f && vert_dist < height) {
|
|
out[found].first = par;
|
|
out[found].second = hit_normal;
|
|
++found;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If only one intersection was found, it is some corner case,
|
|
// no intersection will be returned:
|
|
if (found != 2)
|
|
return false;
|
|
|
|
// Sort the intersections:
|
|
if (out[0].first > out[1].first)
|
|
std::swap(out[0], out[1]);
|
|
|
|
return true;
|
|
}
|
|
|
|
void cut_drainholes(std::vector<ExPolygons> & obj_slices,
|
|
const std::vector<float> &slicegrid,
|
|
float closing_radius,
|
|
const sla::DrainHoles & holes,
|
|
std::function<void(void)> thr)
|
|
{
|
|
TriangleMesh mesh;
|
|
for (const sla::DrainHole &holept : holes)
|
|
mesh.merge(TriangleMesh{holept.to_mesh()});
|
|
|
|
if (mesh.empty()) return;
|
|
|
|
std::vector<ExPolygons> hole_slices = slice_mesh_ex(mesh.its, slicegrid, closing_radius, thr);
|
|
|
|
if (obj_slices.size() != hole_slices.size())
|
|
BOOST_LOG_TRIVIAL(warning)
|
|
<< "Sliced object and drain-holes layer count does not match!";
|
|
|
|
size_t until = std::min(obj_slices.size(), hole_slices.size());
|
|
|
|
for (size_t i = 0; i < until; ++i)
|
|
obj_slices[i] = diff_ex(obj_slices[i], hole_slices[i]);
|
|
}
|
|
|
|
void hollow_mesh(TriangleMesh &mesh, const HollowingConfig &cfg, int flags)
|
|
{
|
|
InteriorPtr interior = generate_interior(mesh.its, cfg, JobController{});
|
|
if (!interior) return;
|
|
|
|
hollow_mesh(mesh, *interior, flags);
|
|
}
|
|
|
|
void hollow_mesh(TriangleMesh &mesh, const Interior &interior, int flags)
|
|
{
|
|
if (mesh.empty() || interior.mesh.empty()) return;
|
|
|
|
if (flags & hfRemoveInsideTriangles && interior.gridptr)
|
|
remove_inside_triangles(mesh, interior);
|
|
|
|
indexed_triangle_set interi = interior.mesh;
|
|
sla::swap_normals(interi);
|
|
TriangleMesh inter{std::move(interi)};
|
|
|
|
mesh.merge(inter);
|
|
}
|
|
|
|
// Get the distance of p to the interior's zero iso_surface. Interior should
|
|
// have its zero isosurface positioned at offset + closing_distance inwards form
|
|
// the model surface.
|
|
static double get_distance_raw(const Vec3f &p, const Interior &interior)
|
|
{
|
|
assert(interior.gridptr);
|
|
|
|
return Slic3r::get_distance_raw(p, *interior.gridptr);
|
|
}
|
|
|
|
struct TriangleBubble { Vec3f center; double R; };
|
|
|
|
// Return the distance of bubble center to the interior boundary or NaN if the
|
|
// triangle is too big to be measured.
|
|
static double get_distance(const TriangleBubble &b, const Interior &interior)
|
|
{
|
|
double R = b.R;
|
|
double D = 2. * R;
|
|
double Dst = get_distance_raw(b.center, interior);
|
|
|
|
return D > interior.full_narrowb ||
|
|
((Dst - R) < 0. && 2 * R > interior.thickness) ?
|
|
std::nan("") :
|
|
Dst - interior.iso_surface;
|
|
}
|
|
|
|
inline double get_distance(const Vec3f &p, const Interior &interior)
|
|
{
|
|
double d = get_distance_raw(p, interior) - interior.iso_surface;
|
|
return d;
|
|
}
|
|
|
|
template<class T>
|
|
FloatingOnly<T> get_distance(const Vec<3, T> &p, const Interior &interior)
|
|
{
|
|
return get_distance(Vec3f(p.template cast<float>()), interior);
|
|
}
|
|
|
|
// A face that can be divided. Stores the indices into the original mesh if its
|
|
// part of that mesh and the vertices it consists of.
|
|
enum { NEW_FACE = -1};
|
|
struct DivFace {
|
|
Vec3i indx;
|
|
std::array<Vec3f, 3> verts;
|
|
long faceid = NEW_FACE;
|
|
long parent = NEW_FACE;
|
|
};
|
|
|
|
// Divide a face recursively and call visitor on all the sub-faces.
|
|
template<class Fn>
|
|
void divide_triangle(const DivFace &face, Fn &&visitor)
|
|
{
|
|
std::array<Vec3f, 3> edges = {(face.verts[0] - face.verts[1]),
|
|
(face.verts[1] - face.verts[2]),
|
|
(face.verts[2] - face.verts[0])};
|
|
|
|
std::array<size_t, 3> edgeidx = {0, 1, 2};
|
|
|
|
std::sort(edgeidx.begin(), edgeidx.end(), [&edges](size_t e1, size_t e2) {
|
|
return edges[e1].squaredNorm() > edges[e2].squaredNorm();
|
|
});
|
|
|
|
DivFace child1, child2;
|
|
|
|
child1.parent = face.faceid == NEW_FACE ? face.parent : face.faceid;
|
|
child1.indx(0) = -1;
|
|
child1.indx(1) = face.indx(edgeidx[1]);
|
|
child1.indx(2) = face.indx((edgeidx[1] + 1) % 3);
|
|
child1.verts[0] = (face.verts[edgeidx[0]] + face.verts[(edgeidx[0] + 1) % 3]) / 2.;
|
|
child1.verts[1] = face.verts[edgeidx[1]];
|
|
child1.verts[2] = face.verts[(edgeidx[1] + 1) % 3];
|
|
|
|
if (visitor(child1))
|
|
divide_triangle(child1, std::forward<Fn>(visitor));
|
|
|
|
child2.parent = face.faceid == NEW_FACE ? face.parent : face.faceid;
|
|
child2.indx(0) = -1;
|
|
child2.indx(1) = face.indx(edgeidx[2]);
|
|
child2.indx(2) = face.indx((edgeidx[2] + 1) % 3);
|
|
child2.verts[0] = child1.verts[0];
|
|
child2.verts[1] = face.verts[edgeidx[2]];
|
|
child2.verts[2] = face.verts[(edgeidx[2] + 1) % 3];
|
|
|
|
if (visitor(child2))
|
|
divide_triangle(child2, std::forward<Fn>(visitor));
|
|
}
|
|
|
|
void remove_inside_triangles(TriangleMesh &mesh, const Interior &interior,
|
|
const std::vector<bool> &exclude_mask)
|
|
{
|
|
enum TrPos { posInside, posTouch, posOutside };
|
|
|
|
auto &faces = mesh.its.indices;
|
|
auto &vertices = mesh.its.vertices;
|
|
auto bb = mesh.bounding_box();
|
|
|
|
bool use_exclude_mask = faces.size() == exclude_mask.size();
|
|
auto is_excluded = [&exclude_mask, use_exclude_mask](size_t face_id) {
|
|
return use_exclude_mask && exclude_mask[face_id];
|
|
};
|
|
|
|
// TODO: Parallel mode not working yet
|
|
constexpr auto &exec_policy = ex_seq;
|
|
|
|
// Info about the needed modifications on the input mesh.
|
|
struct MeshMods {
|
|
|
|
// Just a thread safe wrapper for a vector of triangles.
|
|
struct {
|
|
std::vector<std::array<Vec3f, 3>> data;
|
|
execution::SpinningMutex<decltype(exec_policy)> mutex;
|
|
|
|
void emplace_back(const std::array<Vec3f, 3> &pts)
|
|
{
|
|
std::lock_guard lk{mutex};
|
|
data.emplace_back(pts);
|
|
}
|
|
|
|
size_t size() const { return data.size(); }
|
|
const std::array<Vec3f, 3>& operator[](size_t idx) const
|
|
{
|
|
return data[idx];
|
|
}
|
|
|
|
} new_triangles;
|
|
|
|
// A vector of bool for all faces signaling if it needs to be removed
|
|
// or not.
|
|
std::vector<bool> to_remove;
|
|
|
|
MeshMods(const TriangleMesh &mesh):
|
|
to_remove(mesh.its.indices.size(), false) {}
|
|
|
|
// Number of triangles that need to be removed.
|
|
size_t to_remove_cnt() const
|
|
{
|
|
return std::accumulate(to_remove.begin(), to_remove.end(), size_t(0));
|
|
}
|
|
|
|
} mesh_mods{mesh};
|
|
|
|
// Must return true if further division of the face is needed.
|
|
auto divfn = [&interior, bb, &mesh_mods](const DivFace &f) {
|
|
BoundingBoxf3 facebb { f.verts.begin(), f.verts.end() };
|
|
|
|
// Face is certainly outside the cavity
|
|
if (! facebb.intersects(bb) && f.faceid != NEW_FACE) {
|
|
return false;
|
|
}
|
|
|
|
TriangleBubble bubble{facebb.center().cast<float>(), facebb.radius()};
|
|
|
|
double D = get_distance(bubble, interior);
|
|
double R = bubble.R;
|
|
|
|
if (std::isnan(D)) // The distance cannot be measured, triangle too big
|
|
return true;
|
|
|
|
// Distance of the bubble wall to the interior wall. Negative if the
|
|
// bubble is overlapping with the interior
|
|
double bubble_distance = D - R;
|
|
|
|
// The face is crossing the interior or inside, it must be removed and
|
|
// parts of it re-added, that are outside the interior
|
|
if (bubble_distance < 0.) {
|
|
if (f.faceid != NEW_FACE)
|
|
mesh_mods.to_remove[f.faceid] = true;
|
|
|
|
if (f.parent != NEW_FACE) // Top parent needs to be removed as well
|
|
mesh_mods.to_remove[f.parent] = true;
|
|
|
|
// If the outside part is between the interior and the exterior
|
|
// (inside the wall being invisible), no further division is needed.
|
|
if ((R + D) < interior.thickness)
|
|
return false;
|
|
|
|
return true;
|
|
} else if (f.faceid == NEW_FACE) {
|
|
// New face completely outside needs to be re-added.
|
|
mesh_mods.new_triangles.emplace_back(f.verts);
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
interior.reset_accessor();
|
|
|
|
execution::for_each(
|
|
exec_policy, size_t(0), faces.size(),
|
|
[&](size_t face_idx) {
|
|
const Vec3i &face = faces[face_idx];
|
|
|
|
// If the triangle is excluded, we need to keep it.
|
|
if (is_excluded(face_idx)) return;
|
|
|
|
std::array<Vec3f, 3> pts = {vertices[face(0)], vertices[face(1)],
|
|
vertices[face(2)]};
|
|
|
|
BoundingBoxf3 facebb{pts.begin(), pts.end()};
|
|
|
|
// Face is certainly outside the cavity
|
|
if (!facebb.intersects(bb)) return;
|
|
|
|
DivFace df{face, pts, long(face_idx)};
|
|
|
|
if (divfn(df)) divide_triangle(df, divfn);
|
|
},
|
|
execution::max_concurrency(exec_policy)
|
|
);
|
|
|
|
auto new_faces = reserve_vector<Vec3i>(faces.size() +
|
|
mesh_mods.new_triangles.size());
|
|
|
|
for (size_t face_idx = 0; face_idx < faces.size(); ++face_idx) {
|
|
if (!mesh_mods.to_remove[face_idx])
|
|
new_faces.emplace_back(faces[face_idx]);
|
|
}
|
|
|
|
for(size_t i = 0; i < mesh_mods.new_triangles.size(); ++i) {
|
|
size_t o = vertices.size();
|
|
vertices.emplace_back(mesh_mods.new_triangles[i][0]);
|
|
vertices.emplace_back(mesh_mods.new_triangles[i][1]);
|
|
vertices.emplace_back(mesh_mods.new_triangles[i][2]);
|
|
new_faces.emplace_back(int(o), int(o + 1), int(o + 2));
|
|
}
|
|
|
|
BOOST_LOG_TRIVIAL(info)
|
|
<< "Trimming: " << mesh_mods.to_remove_cnt() << " triangles removed";
|
|
BOOST_LOG_TRIVIAL(info)
|
|
<< "Trimming: " << mesh_mods.new_triangles.size() << " triangles added";
|
|
|
|
faces.swap(new_faces);
|
|
new_faces = {};
|
|
|
|
mesh = TriangleMesh{mesh.its};
|
|
//FIXME do we want to repair the mesh? Are there duplicate vertices or flipped triangles?
|
|
}
|
|
|
|
struct FaceHash {
|
|
|
|
// A 64 bit number's max hex digits
|
|
static constexpr size_t MAX_NUM_CHARS = 16;
|
|
|
|
// A hash is created for each triangle to be identifiable. The hash uses
|
|
// only the triangle's geometric traits, not the index in a particular mesh.
|
|
std::unordered_set<std::string> facehash;
|
|
|
|
// Returns the string in reverse, but that is ok for hashing
|
|
static std::array<char, MAX_NUM_CHARS + 1> to_chars(int64_t val)
|
|
{
|
|
std::array<char, MAX_NUM_CHARS + 1> ret;
|
|
|
|
static const constexpr char * Conv = "0123456789abcdef";
|
|
|
|
auto ptr = ret.begin();
|
|
auto uval = static_cast<uint64_t>(std::abs(val));
|
|
while (uval) {
|
|
*ptr = Conv[uval & 0xf];
|
|
++ptr;
|
|
uval = uval >> 4;
|
|
}
|
|
if (val < 0) { *ptr = '-'; ++ptr; }
|
|
*ptr = '\0'; // C style string ending
|
|
|
|
return ret;
|
|
}
|
|
|
|
static std::string hash(const Vec<3, int64_t> &v)
|
|
{
|
|
std::string ret;
|
|
ret.reserve(3 * MAX_NUM_CHARS);
|
|
|
|
for (auto val : v)
|
|
ret += to_chars(val).data();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static std::string facekey(const Vec3i &face, const std::vector<Vec3f> &vertices)
|
|
{
|
|
// Scale to integer to avoid floating points
|
|
std::array<Vec<3, int64_t>, 3> pts = {
|
|
scaled<int64_t>(vertices[face(0)]),
|
|
scaled<int64_t>(vertices[face(1)]),
|
|
scaled<int64_t>(vertices[face(2)])
|
|
};
|
|
|
|
// Get the first two sides of the triangle, do a cross product and move
|
|
// that vector to the center of the triangle. This encodes all
|
|
// information to identify an identical triangle at the same position.
|
|
Vec<3, int64_t> a = pts[0] - pts[2], b = pts[1] - pts[2];
|
|
Vec<3, int64_t> c = a.cross(b) + (pts[0] + pts[1] + pts[2]) / 3;
|
|
|
|
// Return a concatenated string representation of the coordinates
|
|
return hash(c);
|
|
}
|
|
|
|
FaceHash (const indexed_triangle_set &its): facehash(its.indices.size())
|
|
{
|
|
for (const Vec3i &face : its.indices)
|
|
facehash.insert(facekey(face, its.vertices));
|
|
}
|
|
|
|
bool find(const std::string &key)
|
|
{
|
|
auto it = facehash.find(key);
|
|
return it != facehash.end();
|
|
}
|
|
};
|
|
|
|
|
|
static void exclude_neighbors(const Vec3i &face,
|
|
std::vector<bool> &mask,
|
|
const indexed_triangle_set &its,
|
|
const VertexFaceIndex &index,
|
|
size_t recursions)
|
|
{
|
|
for (int i = 0; i < 3; ++i) {
|
|
const auto &neighbors_range = index[face(i)];
|
|
for (size_t fi_n : neighbors_range) {
|
|
mask[fi_n] = true;
|
|
if (recursions > 0)
|
|
exclude_neighbors(its.indices[fi_n], mask, its, index, recursions - 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<bool> create_exclude_mask(const indexed_triangle_set &its,
|
|
const Interior &interior,
|
|
const std::vector<DrainHole> &holes)
|
|
{
|
|
FaceHash interior_hash{sla::get_mesh(interior)};
|
|
|
|
std::vector<bool> exclude_mask(its.indices.size(), false);
|
|
|
|
VertexFaceIndex neighbor_index{its};
|
|
|
|
for (size_t fi = 0; fi < its.indices.size(); ++fi) {
|
|
auto &face = its.indices[fi];
|
|
|
|
if (interior_hash.find(FaceHash::facekey(face, its.vertices))) {
|
|
exclude_mask[fi] = true;
|
|
continue;
|
|
}
|
|
|
|
if (exclude_mask[fi]) {
|
|
exclude_neighbors(face, exclude_mask, its, neighbor_index, 1);
|
|
continue;
|
|
}
|
|
|
|
// Lets deal with the holes. All the triangles of a hole and all the
|
|
// neighbors of these triangles need to be kept. The neigbors were
|
|
// created by CGAL mesh boolean operation that modified the original
|
|
// interior inside the input mesh to contain the holes.
|
|
Vec3d tr_center = (
|
|
its.vertices[face(0)] +
|
|
its.vertices[face(1)] +
|
|
its.vertices[face(2)]
|
|
).cast<double>() / 3.;
|
|
|
|
// If the center is more than half a mm inside the interior,
|
|
// it cannot possibly be part of a hole wall.
|
|
if (sla::get_distance(tr_center, interior) < -0.5)
|
|
continue;
|
|
|
|
Vec3f U = its.vertices[face(1)] - its.vertices[face(0)];
|
|
Vec3f V = its.vertices[face(2)] - its.vertices[face(0)];
|
|
Vec3f C = U.cross(V);
|
|
Vec3f face_normal = C.normalized();
|
|
|
|
for (const sla::DrainHole &dh : holes) {
|
|
if (dh.failed) continue;
|
|
|
|
Vec3d dhpos = dh.pos.cast<double>();
|
|
Vec3d dhend = dhpos + dh.normal.cast<double>() * dh.height;
|
|
|
|
Linef3 holeaxis{dhpos, dhend};
|
|
|
|
double D_hole_center = line_alg::distance_to(holeaxis, tr_center);
|
|
double D_hole = std::abs(D_hole_center - dh.radius);
|
|
float dot = dh.normal.dot(face_normal);
|
|
|
|
// Empiric tolerances for center distance and normals angle.
|
|
// For triangles that are part of a hole wall the angle of
|
|
// triangle normal and the hole axis is around 90 degrees,
|
|
// so the dot product is around zero.
|
|
double D_tol = dh.radius / sla::DrainHole::steps;
|
|
float normal_angle_tol = 1.f / sla::DrainHole::steps;
|
|
|
|
if (D_hole < D_tol && std::abs(dot) < normal_angle_tol) {
|
|
exclude_mask[fi] = true;
|
|
exclude_neighbors(face, exclude_mask, its, neighbor_index, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
return exclude_mask;
|
|
}
|
|
|
|
DrainHoles transformed_drainhole_points(const ModelObject &mo,
|
|
const Transform3d &trafo)
|
|
{
|
|
auto pts = mo.sla_drain_holes;
|
|
// const Transform3d& vol_trafo = mo.volumes.front()->get_transformation().get_matrix();
|
|
const Geometry::Transformation trans(trafo /** vol_trafo*/);
|
|
const Transform3d& tr = trans.get_matrix();
|
|
for (sla::DrainHole &hl : pts) {
|
|
Vec3d pos = hl.pos.cast<double>();
|
|
Vec3d nrm = hl.normal.cast<double>();
|
|
|
|
pos = tr * pos;
|
|
nrm = tr * nrm - tr.translation();
|
|
|
|
// Now shift the hole a bit above the object and make it deeper to
|
|
// compensate for it. This is to avoid problems when the hole is placed
|
|
// on (nearly) flat surface.
|
|
pos -= nrm.normalized() * sla::HoleStickOutLength;
|
|
|
|
hl.pos = pos.cast<float>();
|
|
hl.normal = nrm.cast<float>();
|
|
hl.height += sla::HoleStickOutLength;
|
|
}
|
|
|
|
return pts;
|
|
}
|
|
|
|
double get_voxel_scale(double mesh_volume, const HollowingConfig &hc)
|
|
{
|
|
static constexpr double MIN_SAMPLES_IN_WALL = 3.5;
|
|
static constexpr double MAX_OVERSAMPL = 8.;
|
|
static constexpr double UNIT_VOLUME = 500000; // empiric
|
|
|
|
// I can't figure out how to increase the grid resolution through openvdb
|
|
// API so the model will be scaled up before conversion and the result
|
|
// scaled down. Voxels have a unit size. If I set voxelSize smaller, it
|
|
// scales the whole geometry down, and doesn't increase the number of
|
|
// voxels.
|
|
//
|
|
// First an allowed range for voxel scale is determined from an initial
|
|
// range of <MIN_SAMPLES_IN_WALL, MAX_OVERSAMPL>. The final voxel scale is
|
|
// then chosen from this range using the 'quality:<0, 1>' parameter.
|
|
// The minimum can be lowered if the wall thickness is great enough and
|
|
// the maximum is lowered if the model volume very big.
|
|
|
|
double sc_divider = std::max(1.0, (mesh_volume / UNIT_VOLUME));
|
|
double min_oversampl = std::max(MIN_SAMPLES_IN_WALL / hc.min_thickness, 1.);
|
|
double max_oversampl_scaled = std::max(min_oversampl, MAX_OVERSAMPL / sc_divider);
|
|
auto voxel_scale = min_oversampl + (max_oversampl_scaled - min_oversampl) * hc.quality;
|
|
|
|
BOOST_LOG_TRIVIAL(debug) << "Hollowing: max oversampl will be: " << max_oversampl_scaled;
|
|
BOOST_LOG_TRIVIAL(debug) << "Hollowing: voxel scale will be: " << voxel_scale;
|
|
BOOST_LOG_TRIVIAL(debug) << "Hollowing: mesh volume is: " << mesh_volume;
|
|
|
|
return voxel_scale;
|
|
}
|
|
|
|
}} // namespace Slic3r::sla
|