PrusaSlicer/src/admesh/connect.cpp
bubnikv cd95b52dcd Undo / Redo memory conservation strategy: Release recoverable data
starting from the objects of lowest ObjectID.
(convex hulls are recoverable as well as the indexed triangle sets
inside the TriangleMeshes or the triangle connectivity information).

Now the top most snapshot (the temp one taken before Undo jump) will
never be released.
2019-07-18 11:51:06 +02:00

759 lines
28 KiB
C++

/* ADMesh -- process triangulated solid meshes
* Copyright (C) 1995, 1996 Anthony D. Martin <amartin@engr.csulb.edu>
* Copyright (C) 2013, 2014 several contributors, see AUTHORS
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Questions, comments, suggestions, etc to
* https://github.com/admesh/admesh/issues
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <vector>
#include <boost/predef/other/endian.h>
#include <boost/log/trivial.hpp>
// Boost pool: Don't use mutexes to synchronize memory allocation.
#define BOOST_POOL_NO_MT
#include <boost/pool/object_pool.hpp>
#include "stl.h"
struct HashEdge {
// Key of a hash edge: sorted vertices of the edge.
uint32_t key[6];
// Compare two keys.
bool operator==(const HashEdge &rhs) const { return memcmp(key, rhs.key, sizeof(key)) == 0; }
bool operator!=(const HashEdge &rhs) const { return ! (*this == rhs); }
int hash(int M) const { return ((key[0] / 11 + key[1] / 7 + key[2] / 3) ^ (key[3] / 11 + key[4] / 7 + key[5] / 3)) % M; }
// Index of a facet owning this edge.
int facet_number;
// Index of this edge inside the facet with an index of facet_number.
// If this edge is stored backwards, which_edge is increased by 3.
int which_edge;
HashEdge *next;
void load_exact(stl_file *stl, const stl_vertex *a, const stl_vertex *b)
{
{
stl_vertex diff = (*a - *b).cwiseAbs();
float max_diff = std::max(diff(0), std::max(diff(1), diff(2)));
stl->stats.shortest_edge = std::min(max_diff, stl->stats.shortest_edge);
}
// Ensure identical vertex ordering of equal edges.
// This method is numerically robust.
if (vertex_lower(*a, *b)) {
} else {
// This edge is loaded backwards.
std::swap(a, b);
this->which_edge += 3;
}
memcpy(&this->key[0], a->data(), sizeof(stl_vertex));
memcpy(&this->key[3], b->data(), sizeof(stl_vertex));
// Switch negative zeros to positive zeros, so memcmp will consider them to be equal.
for (size_t i = 0; i < 6; ++ i) {
unsigned char *p = (unsigned char*)(this->key + i);
#if BOOST_ENDIAN_LITTLE_BYTE
if (p[0] == 0 && p[1] == 0 && p[2] == 0 && p[3] == 0x80)
// Negative zero, switch to positive zero.
p[3] = 0;
#else /* BOOST_ENDIAN_LITTLE_BYTE */
if (p[0] == 0x80 && p[1] == 0 && p[2] == 0 && p[3] == 0)
// Negative zero, switch to positive zero.
p[0] = 0;
#endif /* BOOST_ENDIAN_LITTLE_BYTE */
}
}
bool load_nearby(const stl_file *stl, const stl_vertex &a, const stl_vertex &b, float tolerance)
{
// Index of a grid cell spaced by tolerance.
typedef Eigen::Matrix<int32_t, 3, 1, Eigen::DontAlign> Vec3i;
Vec3i vertex1 = ((a - stl->stats.min) / tolerance).cast<int32_t>();
Vec3i vertex2 = ((b - stl->stats.min) / tolerance).cast<int32_t>();
static_assert(sizeof(Vec3i) == 12, "size of Vec3i incorrect");
if (vertex1 == vertex2)
// Both vertices hash to the same value
return false;
// Ensure identical vertex ordering of edges, which vertices land into equal grid cells.
// This method is numerically robust.
if ((vertex1[0] != vertex2[0]) ?
(vertex1[0] < vertex2[0]) :
((vertex1[1] != vertex2[1]) ?
(vertex1[1] < vertex2[1]) :
(vertex1[2] < vertex2[2]))) {
memcpy(&this->key[0], vertex1.data(), sizeof(stl_vertex));
memcpy(&this->key[3], vertex2.data(), sizeof(stl_vertex));
} else {
memcpy(&this->key[0], vertex2.data(), sizeof(stl_vertex));
memcpy(&this->key[3], vertex1.data(), sizeof(stl_vertex));
this->which_edge += 3; /* this edge is loaded backwards */
}
return true;
}
private:
inline bool vertex_lower(const stl_vertex &a, const stl_vertex &b) {
return (a(0) != b(0)) ? (a(0) < b(0)) :
((a(1) != b(1)) ? (a(1) < b(1)) : (a(2) < b(2)));
}
};
struct HashTableEdges {
HashTableEdges(size_t number_of_faces) {
this->M = (int)hash_size_from_nr_faces(number_of_faces);
this->heads.assign(this->M, nullptr);
this->tail = pool.construct();
this->tail->next = this->tail;
for (int i = 0; i < this->M; ++ i)
this->heads[i] = this->tail;
}
~HashTableEdges() {
#ifndef NDEBUG
for (int i = 0; i < this->M; ++ i)
for (HashEdge *temp = this->heads[i]; temp != this->tail; temp = temp->next)
++ this->freed;
this->tail = nullptr;
#endif /* NDEBUG */
}
void insert_edge_exact(stl_file *stl, const HashEdge &edge)
{
this->insert_edge(stl, edge, [stl](const HashEdge& edge1, const HashEdge& edge2) { record_neighbors(stl, edge1, edge2); });
}
void insert_edge_nearby(stl_file *stl, const HashEdge &edge)
{
this->insert_edge(stl, edge, [stl](const HashEdge& edge1, const HashEdge& edge2) { match_neighbors_nearby(stl, edge1, edge2); });
}
// Hash table on edges
std::vector<HashEdge*> heads;
HashEdge* tail;
int M;
boost::object_pool<HashEdge> pool;
#ifndef NDEBUG
size_t malloced = 0;
size_t freed = 0;
size_t collisions = 0;
#endif /* NDEBUG */
private:
static inline size_t hash_size_from_nr_faces(const size_t nr_faces)
{
// Good primes for addressing a cca. 30 bit space.
// https://planetmath.org/goodhashtableprimes
static std::vector<uint32_t> primes{ 98317, 196613, 393241, 786433, 1572869, 3145739, 6291469, 12582917, 25165843, 50331653, 100663319, 201326611, 402653189, 805306457, 1610612741 };
// Find a prime number for 50% filling of the shared triangle edges in the mesh.
auto it = std::upper_bound(primes.begin(), primes.end(), nr_faces * 3 * 2 - 1);
return (it == primes.end()) ? primes.back() : *it;
}
// MatchNeighbors(stl_file *stl, const HashEdge &edge_a, const HashEdge &edge_b)
template<typename MatchNeighbors>
void insert_edge(stl_file *stl, const HashEdge &edge, MatchNeighbors match_neighbors)
{
int chain_number = edge.hash(this->M);
HashEdge *link = this->heads[chain_number];
if (link == this->tail) {
// This list doesn't have any edges currently in it. Add this one.
HashEdge *new_edge = pool.construct(edge);
#ifndef NDEBUG
++ this->malloced;
#endif /* NDEBUG */
new_edge->next = this->tail;
this->heads[chain_number] = new_edge;
} else if (edges_equal(edge, *link)) {
// This is a match. Record result in neighbors list.
match_neighbors(edge, *link);
// Delete the matched edge from the list.
this->heads[chain_number] = link->next;
// pool.destroy(link);
#ifndef NDEBUG
++ this->freed;
#endif /* NDEBUG */
} else {
// Continue through the rest of the list.
for (;;) {
if (link->next == this->tail) {
// This is the last item in the list. Insert a new edge.
HashEdge *new_edge = pool.construct();
#ifndef NDEBUG
++ this->malloced;
#endif /* NDEBUG */
*new_edge = edge;
new_edge->next = this->tail;
link->next = new_edge;
#ifndef NDEBUG
++ this->collisions;
#endif /* NDEBUG */
break;
}
if (edges_equal(edge, *link->next)) {
// This is a match. Record result in neighbors list.
match_neighbors(edge, *link->next);
// Delete the matched edge from the list.
HashEdge *temp = link->next;
link->next = link->next->next;
// pool.destroy(temp);
#ifndef NDEBUG
++ this->freed;
#endif /* NDEBUG */
break;
}
// This is not a match. Go to the next link.
link = link->next;
#ifndef NDEBUG
++ this->collisions;
#endif /* NDEBUG */
}
}
}
// Edges equal for hashing. Edgesof different facet are allowed to be matched.
static inline bool edges_equal(const HashEdge &edge_a, const HashEdge &edge_b)
{
return edge_a.facet_number != edge_b.facet_number && edge_a == edge_b;
}
static void record_neighbors(stl_file *stl, const HashEdge &edge_a, const HashEdge &edge_b)
{
// Facet a's neighbor is facet b
stl->neighbors_start[edge_a.facet_number].neighbor[edge_a.which_edge % 3] = edge_b.facet_number; /* sets the .neighbor part */
stl->neighbors_start[edge_a.facet_number].which_vertex_not[edge_a.which_edge % 3] = (edge_b.which_edge + 2) % 3; /* sets the .which_vertex_not part */
// Facet b's neighbor is facet a
stl->neighbors_start[edge_b.facet_number].neighbor[edge_b.which_edge % 3] = edge_a.facet_number; /* sets the .neighbor part */
stl->neighbors_start[edge_b.facet_number].which_vertex_not[edge_b.which_edge % 3] = (edge_a.which_edge + 2) % 3; /* sets the .which_vertex_not part */
if (((edge_a.which_edge < 3) && (edge_b.which_edge < 3)) || ((edge_a.which_edge > 2) && (edge_b.which_edge > 2))) {
// These facets are oriented in opposite directions, their normals are probably messed up.
stl->neighbors_start[edge_a.facet_number].which_vertex_not[edge_a.which_edge % 3] += 3;
stl->neighbors_start[edge_b.facet_number].which_vertex_not[edge_b.which_edge % 3] += 3;
}
// Count successful connects:
// Total connects:
stl->stats.connected_edges += 2;
// Count individual connects:
switch (stl->neighbors_start[edge_a.facet_number].num_neighbors()) {
case 1: ++ stl->stats.connected_facets_1_edge; break;
case 2: ++ stl->stats.connected_facets_2_edge; break;
case 3: ++ stl->stats.connected_facets_3_edge; break;
default: assert(false);
}
switch (stl->neighbors_start[edge_b.facet_number].num_neighbors()) {
case 1: ++ stl->stats.connected_facets_1_edge; break;
case 2: ++ stl->stats.connected_facets_2_edge; break;
case 3: ++ stl->stats.connected_facets_3_edge; break;
default: assert(false);
}
}
static void match_neighbors_nearby(stl_file *stl, const HashEdge &edge_a, const HashEdge &edge_b)
{
record_neighbors(stl, edge_a, edge_b);
// Which vertices to change
int facet1 = -1;
int facet2 = -1;
int vertex1, vertex2;
stl_vertex new_vertex1, new_vertex2;
{
int v1a; // pair 1, facet a
int v1b; // pair 1, facet b
int v2a; // pair 2, facet a
int v2b; // pair 2, facet b
// Find first pair.
if (edge_a.which_edge < 3) {
v1a = edge_a.which_edge;
v2a = (edge_a.which_edge + 1) % 3;
} else {
v2a = edge_a.which_edge % 3;
v1a = (edge_a.which_edge + 1) % 3;
}
if (edge_b.which_edge < 3) {
v1b = edge_b.which_edge;
v2b = (edge_b.which_edge + 1) % 3;
} else {
v2b = edge_b.which_edge % 3;
v1b = (edge_b.which_edge + 1) % 3;
}
// Of the first pair, which vertex, if any, should be changed
if (stl->facet_start[edge_a.facet_number].vertex[v1a] != stl->facet_start[edge_b.facet_number].vertex[v1b]) {
// These facets are different.
if ( (stl->neighbors_start[edge_a.facet_number].neighbor[v1a] == -1)
&& (stl->neighbors_start[edge_a.facet_number].neighbor[(v1a + 2) % 3] == -1)) {
// This vertex has no neighbors. This is a good one to change.
facet1 = edge_a.facet_number;
vertex1 = v1a;
new_vertex1 = stl->facet_start[edge_b.facet_number].vertex[v1b];
} else {
facet1 = edge_b.facet_number;
vertex1 = v1b;
new_vertex1 = stl->facet_start[edge_a.facet_number].vertex[v1a];
}
}
// Of the second pair, which vertex, if any, should be changed.
if (stl->facet_start[edge_a.facet_number].vertex[v2a] == stl->facet_start[edge_b.facet_number].vertex[v2b]) {
// These facets are different.
if ( (stl->neighbors_start[edge_a.facet_number].neighbor[v2a] == -1)
&& (stl->neighbors_start[edge_a.facet_number].neighbor[(v2a + 2) % 3] == -1)) {
// This vertex has no neighbors. This is a good one to change.
facet2 = edge_a.facet_number;
vertex2 = v2a;
new_vertex2 = stl->facet_start[edge_b.facet_number].vertex[v2b];
} else {
facet2 = edge_b.facet_number;
vertex2 = v2b;
new_vertex2 = stl->facet_start[edge_a.facet_number].vertex[v2a];
}
}
}
auto change_vertices = [stl](int facet_num, int vnot, stl_vertex new_vertex)
{
int first_facet = facet_num;
bool direction = false;
for (;;) {
int pivot_vertex;
int next_edge;
if (vnot > 2) {
if (direction) {
pivot_vertex = (vnot + 1) % 3;
next_edge = vnot % 3;
}
else {
pivot_vertex = (vnot + 2) % 3;
next_edge = pivot_vertex;
}
direction = !direction;
}
else {
if (direction) {
pivot_vertex = (vnot + 2) % 3;
next_edge = pivot_vertex;
}
else {
pivot_vertex = (vnot + 1) % 3;
next_edge = vnot;
}
}
#if 0
if (stl->facet_start[facet_num].vertex[pivot_vertex](0) == new_vertex(0) &&
stl->facet_start[facet_num].vertex[pivot_vertex](1) == new_vertex(1) &&
stl->facet_start[facet_num].vertex[pivot_vertex](2) == new_vertex(2))
printf("Changing vertex %f,%f,%f: Same !!!\r\n", new_vertex(0), new_vertex(1), new_vertex(2));
else {
if (stl->facet_start[facet_num].vertex[pivot_vertex](0) != new_vertex(0))
printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n",
stl->facet_start[facet_num].vertex[pivot_vertex](0),
*reinterpret_cast<const int*>(&stl->facet_start[facet_num].vertex[pivot_vertex](0)),
new_vertex(0),
*reinterpret_cast<const int*>(&new_vertex(0)));
if (stl->facet_start[facet_num].vertex[pivot_vertex](1) != new_vertex(1))
printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n",
stl->facet_start[facet_num].vertex[pivot_vertex](1),
*reinterpret_cast<const int*>(&stl->facet_start[facet_num].vertex[pivot_vertex](1)),
new_vertex(1),
*reinterpret_cast<const int*>(&new_vertex(1)));
if (stl->facet_start[facet_num].vertex[pivot_vertex](2) != new_vertex(2))
printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n",
stl->facet_start[facet_num].vertex[pivot_vertex](2),
*reinterpret_cast<const int*>(&stl->facet_start[facet_num].vertex[pivot_vertex](2)),
new_vertex(2),
*reinterpret_cast<const int*>(&new_vertex(2)));
}
#endif
stl->facet_start[facet_num].vertex[pivot_vertex] = new_vertex;
vnot = stl->neighbors_start[facet_num].which_vertex_not[next_edge];
facet_num = stl->neighbors_start[facet_num].neighbor[next_edge];
if (facet_num == -1)
break;
if (facet_num == first_facet) {
// back to the beginning
BOOST_LOG_TRIVIAL(info) << "Back to the first facet changing vertices: probably a mobius part. Try using a smaller tolerance or don't do a nearby check.";
return;
}
}
};
if (facet1 != -1) {
int vnot1 = (facet1 == edge_a.facet_number) ?
(edge_a.which_edge + 2) % 3 :
(edge_b.which_edge + 2) % 3;
if (((vnot1 + 2) % 3) == vertex1)
vnot1 += 3;
change_vertices(facet1, vnot1, new_vertex1);
}
if (facet2 != -1) {
int vnot2 = (facet2 == edge_a.facet_number) ?
(edge_a.which_edge + 2) % 3 :
(edge_b.which_edge + 2) % 3;
if (((vnot2 + 2) % 3) == vertex2)
vnot2 += 3;
change_vertices(facet2, vnot2, new_vertex2);
}
stl->stats.edges_fixed += 2;
}
};
// This function builds the neighbors list. No modifications are made
// to any of the facets. The edges are said to match only if all six
// floats of the first edge matches all six floats of the second edge.
void stl_check_facets_exact(stl_file *stl)
{
assert(stl->facet_start.size() == stl->neighbors_start.size());
stl->stats.connected_edges = 0;
stl->stats.connected_facets_1_edge = 0;
stl->stats.connected_facets_2_edge = 0;
stl->stats.connected_facets_3_edge = 0;
// If any two of the three vertices are found to be exactally the same, call them degenerate and remove the facet.
// Do it before the next step, as the next step stores references to the face indices in the hash tables and removing a facet
// will break the references.
for (uint32_t i = 0; i < stl->stats.number_of_facets;) {
stl_facet &facet = stl->facet_start[i];
if (facet.vertex[0] == facet.vertex[1] || facet.vertex[1] == facet.vertex[2] || facet.vertex[0] == facet.vertex[2]) {
// Remove the degenerate facet.
facet = stl->facet_start[-- stl->stats.number_of_facets];
stl->facet_start.pop_back();
stl->neighbors_start.pop_back();
stl->stats.facets_removed += 1;
stl->stats.degenerate_facets += 1;
} else
++ i;
}
// Initialize hash table.
HashTableEdges hash_table(stl->stats.number_of_facets);
for (auto &neighbor : stl->neighbors_start)
neighbor.reset();
// Connect neighbor edges.
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
const stl_facet &facet = stl->facet_start[i];
for (int j = 0; j < 3; ++ j) {
HashEdge edge;
edge.facet_number = i;
edge.which_edge = j;
edge.load_exact(stl, &facet.vertex[j], &facet.vertex[(j + 1) % 3]);
hash_table.insert_edge_exact(stl, edge);
}
}
#if 0
printf("Number of faces: %d, number of manifold edges: %d, number of connected edges: %d, number of unconnected edges: %d\r\n",
stl->stats.number_of_facets, stl->stats.number_of_facets * 3,
stl->stats.connected_edges, stl->stats.number_of_facets * 3 - stl->stats.connected_edges);
#endif
}
void stl_check_facets_nearby(stl_file *stl, float tolerance)
{
if ( (stl->stats.connected_facets_1_edge == stl->stats.number_of_facets)
&& (stl->stats.connected_facets_2_edge == stl->stats.number_of_facets)
&& (stl->stats.connected_facets_3_edge == stl->stats.number_of_facets)) {
// No need to check any further. All facets are connected.
return;
}
HashTableEdges hash_table(stl->stats.number_of_facets);
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
//FIXME is the copy necessary?
stl_facet facet = stl->facet_start[i];
for (int j = 0; j < 3; j++) {
if (stl->neighbors_start[i].neighbor[j] == -1) {
HashEdge edge;
edge.facet_number = i;
edge.which_edge = j;
if (edge.load_nearby(stl, facet.vertex[j], facet.vertex[(j + 1) % 3], tolerance))
// Only insert edges that have different keys.
hash_table.insert_edge_nearby(stl, edge);
}
}
}
}
void stl_remove_unconnected_facets(stl_file *stl)
{
// A couple of things need to be done here. One is to remove any completely unconnected facets (0 edges connected) since these are
// useless and could be completely wrong. The second thing that needs to be done is to remove any degenerate facets that were created during
// stl_check_facets_nearby().
auto remove_facet = [stl](int facet_number)
{
++ stl->stats.facets_removed;
/* Update list of connected edges */
stl_neighbors &neighbors = stl->neighbors_start[facet_number];
// Update statistics on unconnected triangle edges.
switch ((neighbors.neighbor[0] == -1) + (neighbors.neighbor[1] == -1) + (neighbors.neighbor[2] == -1)) {
case 0: // Facet has 3 neighbors
-- stl->stats.connected_facets_3_edge;
-- stl->stats.connected_facets_2_edge;
-- stl->stats.connected_facets_1_edge;
break;
case 1: // Facet has 2 neighbors
-- stl->stats.connected_facets_2_edge;
-- stl->stats.connected_facets_1_edge;
break;
case 2: // Facet has 1 neighbor
-- stl->stats.connected_facets_1_edge;
case 3: // Facet has 0 neighbors
break;
default:
assert(false);
}
if (facet_number < -- stl->stats.number_of_facets) {
// Removing a face, which was not the last one.
// Copy the face and neighborship from the last face to facet_number.
stl->facet_start[facet_number] = stl->facet_start[stl->stats.number_of_facets];
neighbors = stl->neighbors_start[stl->stats.number_of_facets];
// Update neighborship of faces, which used to point to the last face, now moved to facet_number.
for (int i = 0; i < 3; ++ i)
if (neighbors.neighbor[i] != -1) {
int &other_face_idx = stl->neighbors_start[neighbors.neighbor[i]].neighbor[(neighbors.which_vertex_not[i] + 1) % 3];
if (other_face_idx != stl->stats.number_of_facets) {
BOOST_LOG_TRIVIAL(info) << "in remove_facet: neighbor = " << other_face_idx << " numfacets = " << stl->stats.number_of_facets << " this is wrong";
return;
}
other_face_idx = facet_number;
}
}
stl->facet_start.pop_back();
stl->neighbors_start.pop_back();
};
auto remove_degenerate = [stl, remove_facet](int facet)
{
// Update statistics on face connectivity.
auto stl_update_connects_remove_1 = [stl](int facet_num) {
//FIXME when decreasing 3_edge, should I increase 2_edge etc?
switch ((stl->neighbors_start[facet_num].neighbor[0] == -1) + (stl->neighbors_start[facet_num].neighbor[1] == -1) + (stl->neighbors_start[facet_num].neighbor[2] == -1)) {
case 0: // Facet has 3 neighbors
-- stl->stats.connected_facets_3_edge; break;
case 1: // Facet has 2 neighbors
-- stl->stats.connected_facets_2_edge; break;
case 2: // Facet has 1 neighbor
-- stl->stats.connected_facets_1_edge; break;
case 3: // Facet has 0 neighbors
break;
default:
assert(false);
}
};
int edge_to_collapse = 0;
if (stl->facet_start[facet].vertex[0] == stl->facet_start[facet].vertex[1]) {
if (stl->facet_start[facet].vertex[1] == stl->facet_start[facet].vertex[2]) {
// All 3 vertices are equal. Collapse the edge with no neighbor if it exists.
const int *nbr = stl->neighbors_start[facet].neighbor;
edge_to_collapse = (nbr[0] == -1) ? 0 : (nbr[1] == -1) ? 1 : 2;
} else {
edge_to_collapse = 0;
}
} else if (stl->facet_start[facet].vertex[1] == stl->facet_start[facet].vertex[2]) {
edge_to_collapse = 1;
} else if (stl->facet_start[facet].vertex[2] == stl->facet_start[facet].vertex[0]) {
edge_to_collapse = 2;
} else {
// No degenerate. Function shouldn't have been called.
return;
}
int edge[3] = { (edge_to_collapse + 1) % 3, (edge_to_collapse + 2) % 3, edge_to_collapse };
int neighbor[] = {
stl->neighbors_start[facet].neighbor[edge[0]],
stl->neighbors_start[facet].neighbor[edge[1]],
stl->neighbors_start[facet].neighbor[edge[2]]
};
int vnot[] = {
stl->neighbors_start[facet].which_vertex_not[edge[0]],
stl->neighbors_start[facet].which_vertex_not[edge[1]],
stl->neighbors_start[facet].which_vertex_not[edge[2]]
};
// Update statistics on edge connectivity.
if (neighbor[0] == -1)
stl_update_connects_remove_1(neighbor[1]);
if (neighbor[1] == -1)
stl_update_connects_remove_1(neighbor[0]);
if (neighbor[0] >= 0) {
if (neighbor[1] >= 0) {
// Adjust the "flip" flag for the which_vertex_not values.
if (vnot[0] > 2) {
if (vnot[1] > 2) {
// The face to be removed has its normal flipped compared to the left & right neighbors, therefore after removing this face
// the two remaining neighbors will be oriented correctly.
vnot[0] -= 3;
vnot[1] -= 3;
} else
// One neighbor has its normal inverted compared to the face to be removed, the other is oriented equally.
// After removal, the two neighbors will have their normals flipped.
vnot[1] += 3;
} else if (vnot[1] > 2)
// One neighbor has its normal inverted compared to the face to be removed, the other is oriented equally.
// After removal, the two neighbors will have their normals flipped.
vnot[0] += 3;
}
stl->neighbors_start[neighbor[0]].neighbor[(vnot[0] + 1) % 3] = (neighbor[0] == neighbor[1]) ? -1 : neighbor[1];
stl->neighbors_start[neighbor[0]].which_vertex_not[(vnot[0] + 1) % 3] = vnot[1];
}
if (neighbor[1] >= 0) {
stl->neighbors_start[neighbor[1]].neighbor[(vnot[1] + 1) % 3] = (neighbor[0] == neighbor[1]) ? -1 : neighbor[0];
stl->neighbors_start[neighbor[1]].which_vertex_not[(vnot[1] + 1) % 3] = vnot[0];
}
if (neighbor[2] >= 0) {
stl_update_connects_remove_1(neighbor[2]);
stl->neighbors_start[neighbor[2]].neighbor[(vnot[2] + 1) % 3] = -1;
}
remove_facet(facet);
};
// remove degenerate facets
for (uint32_t i = 0; i < stl->stats.number_of_facets;)
if (stl->facet_start[i].vertex[0] == stl->facet_start[i].vertex[1] ||
stl->facet_start[i].vertex[0] == stl->facet_start[i].vertex[2] ||
stl->facet_start[i].vertex[1] == stl->facet_start[i].vertex[2]) {
remove_degenerate(i);
// assert(stl_validate(stl));
} else
++ i;
if (stl->stats.connected_facets_1_edge < (int)stl->stats.number_of_facets) {
// remove completely unconnected facets
for (uint32_t i = 0; i < stl->stats.number_of_facets;)
if (stl->neighbors_start[i].neighbor[0] == -1 &&
stl->neighbors_start[i].neighbor[1] == -1 &&
stl->neighbors_start[i].neighbor[2] == -1) {
// This facet is completely unconnected. Remove it.
remove_facet(i);
assert(stl_validate(stl));
} else
++ i;
}
}
void stl_fill_holes(stl_file *stl)
{
// Insert all unconnected edges into hash list.
HashTableEdges hash_table(stl->stats.number_of_facets);
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
stl_facet facet = stl->facet_start[i];
for (int j = 0; j < 3; ++ j) {
if(stl->neighbors_start[i].neighbor[j] != -1)
continue;
HashEdge edge;
edge.facet_number = i;
edge.which_edge = j;
edge.load_exact(stl, &facet.vertex[j], &facet.vertex[(j + 1) % 3]);
hash_table.insert_edge_exact(stl, edge);
}
}
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
stl_facet facet = stl->facet_start[i];
int neighbors_initial[3] = { stl->neighbors_start[i].neighbor[0], stl->neighbors_start[i].neighbor[1], stl->neighbors_start[i].neighbor[2] };
int first_facet = i;
for (int j = 0; j < 3; ++ j) {
if (stl->neighbors_start[i].neighbor[j] != -1)
continue;
stl_facet new_facet;
new_facet.vertex[0] = facet.vertex[j];
new_facet.vertex[1] = facet.vertex[(j + 1) % 3];
bool direction = neighbors_initial[(j + 2) % 3] == -1;
int facet_num = i;
int vnot = (j + 2) % 3;
for (;;) {
int pivot_vertex = 0;
int next_edge = 0;
if (vnot > 2) {
if (direction) {
pivot_vertex = (vnot + 1) % 3;
next_edge = vnot % 3;
} else {
pivot_vertex = (vnot + 2) % 3;
next_edge = pivot_vertex;
}
direction = ! direction;
} else {
if(direction == 0) {
pivot_vertex = (vnot + 1) % 3;
next_edge = vnot;
} else {
pivot_vertex = (vnot + 2) % 3;
next_edge = pivot_vertex;
}
}
int next_facet = stl->neighbors_start[facet_num].neighbor[next_edge];
if (next_facet == -1) {
new_facet.vertex[2] = stl->facet_start[facet_num].vertex[vnot % 3];
stl_add_facet(stl, &new_facet);
for (int k = 0; k < 3; ++ k) {
HashEdge edge;
edge.facet_number = stl->stats.number_of_facets - 1;
edge.which_edge = k;
edge.load_exact(stl, &new_facet.vertex[k], &new_facet.vertex[(k + 1) % 3]);
hash_table.insert_edge_exact(stl, edge);
}
break;
}
vnot = stl->neighbors_start[facet_num].which_vertex_not[next_edge];
facet_num = next_facet;
if (facet_num == first_facet) {
// back to the beginning
BOOST_LOG_TRIVIAL(info) << "Back to the first facet filling holes: probably a mobius part. Try using a smaller tolerance or don't do a nearby check.";
return;
}
}
}
}
}
void stl_add_facet(stl_file *stl, const stl_facet *new_facet)
{
assert(stl->facet_start.size() == stl->stats.number_of_facets);
assert(stl->neighbors_start.size() == stl->stats.number_of_facets);
stl->facet_start.emplace_back(*new_facet);
// note that the normal vector is not set here, just initialized to 0.
stl->facet_start[stl->stats.number_of_facets].normal = stl_normal::Zero();
stl->neighbors_start.emplace_back();
++ stl->stats.facets_added;
++ stl->stats.number_of_facets;
}