2023-08-16 16:07:09 +02:00

419 lines
13 KiB
C++

#ifndef NFP_CPP
#define NFP_CPP
#include "NFP.hpp"
#include "CircularEdgeIterator.hpp"
#include "NFPConcave_Tesselate.hpp"
#if !defined(_MSC_VER) && defined(__SIZEOF_INT128__) && !defined(__APPLE__)
namespace Slic3r { using LargeInt = __int128; }
#else
#include <boost/multiprecision/integer.hpp>
namespace Slic3r { using LargeInt = boost::multiprecision::int128_t; }
#endif
#include <boost/rational.hpp>
namespace Slic3r {
static bool line_cmp(const Line& e1, const Line& e2)
{
using Ratio = boost::rational<LargeInt>;
const Vec<2, int64_t> ax(1, 0); // Unit vector for the X axis
Vec<2, int64_t> p1 = (e1.b - e1.a).cast<int64_t>();
Vec<2, int64_t> p2 = (e2.b - e2.a).cast<int64_t>();
// Quadrant mapping array. The quadrant of a vector can be determined
// from the dot product of the vector and its perpendicular pair
// with the unit vector X axis. The products will carry the values
// lcos = dot(p, ax) = l * cos(phi) and
// lsin = -dotperp(p, ax) = l * sin(phi) where
// l is the length of vector p. From the signs of these values we can
// construct an index which has the sign of lcos as MSB and the
// sign of lsin as LSB. This index can be used to retrieve the actual
// quadrant where vector p resides using the following map:
// (+ is 0, - is 1)
// cos | sin | decimal | quadrant
// + | + | 0 | 0
// + | - | 1 | 3
// - | + | 2 | 1
// - | - | 3 | 2
std::array<int, 4> quadrants {0, 3, 1, 2 };
std::array<int, 2> q {0, 0}; // Quadrant indices for p1 and p2
using TDots = std::array<int64_t, 2>;
TDots lcos { p1.dot(ax), p2.dot(ax) };
TDots lsin { -dotperp(p1, ax), -dotperp(p2, ax) };
// Construct the quadrant indices for p1 and p2
for(size_t i = 0; i < 2; ++i) {
if (lcos[i] == 0)
q[i] = lsin[i] > 0 ? 1 : 3;
else if (lsin[i] == 0)
q[i] = lcos[i] > 0 ? 0 : 2;
else
q[i] = quadrants[((lcos[i] < 0) << 1) + (lsin[i] < 0)];
}
if (q[0] == q[1]) { // only bother if p1 and p2 are in the same quadrant
auto lsq1 = p1.squaredNorm(); // squared magnitudes, avoid sqrt
auto lsq2 = p2.squaredNorm(); // squared magnitudes, avoid sqrt
// We will actually compare l^2 * cos^2(phi) which saturates the
// cos function. But with the quadrant info we can get the sign back
int sign = q[0] == 1 || q[0] == 2 ? -1 : 1;
// If Ratio is an actual rational type, there is no precision loss
auto pcos1 = Ratio(lcos[0]) / lsq1 * sign * lcos[0];
auto pcos2 = Ratio(lcos[1]) / lsq2 * sign * lcos[1];
return q[0] < 2 ? pcos1 > pcos2 : pcos1 < pcos2;
}
// If in different quadrants, compare the quadrant indices only.
return q[0] < q[1];
}
static inline bool vsort(const Vec2crd& v1, const Vec2crd& v2)
{
return v1.y() == v2.y() ? v1.x() < v2.x() : v1.y() < v2.y();
}
ExPolygons ifp_convex(const arr2::RectangleBed &obed, const Polygon &convexpoly)
{
ExPolygon ret;
auto sbox = bounding_box(convexpoly);
auto sboxsize = sbox.size();
coord_t sheight = sboxsize.y();
coord_t swidth = sboxsize.x();
Point sliding_top = reference_vertex(convexpoly);
auto leftOffset = sliding_top.x() - sbox.min.x();
auto rightOffset = sliding_top.x() - sbox.max.x();
coord_t topOffset = 0;
auto bottomOffset = sheight;
auto bedbb = obed.bb;
// bedbb.offset(1);
auto bedsz = bedbb.size();
auto boxWidth = bedsz.x();
auto boxHeight = bedsz.y();
auto bedMinx = bedbb.min.x();
auto bedMiny = bedbb.min.y();
auto bedMaxx = bedbb.max.x();
auto bedMaxy = bedbb.max.y();
Polygon innerNfp{ Point{bedMinx + leftOffset, bedMaxy + topOffset},
Point{bedMaxx + rightOffset, bedMaxy + topOffset},
Point{bedMaxx + rightOffset, bedMiny + bottomOffset},
Point{bedMinx + leftOffset, bedMiny + bottomOffset},
Point{bedMinx + leftOffset, bedMaxy + topOffset} };
if (sheight <= boxHeight && swidth <= boxWidth)
ret.contour = std::move(innerNfp);
return {ret};
}
Polygon ifp_convex_convex(const Polygon &fixed, const Polygon &movable)
{
auto subnfps = reserve_polygons(fixed.size());
// For each edge of the bed polygon, determine the nfp of convexpoly and
// the zero area polygon formed by the edge. The union of all these sub-nfps
// will contain a hole that is the actual ifp.
auto lrange = line_range(fixed);
for (const Line &l : lrange) { // Older mac compilers generate warnging if line_range is called in-place
Polygon fixed = {l.a, l.b};
subnfps.emplace_back(nfp_convex_convex_legacy(fixed, movable));
}
// Do the union and then keep only the holes (should be only one or zero, if
// the convexpoly cannot fit into the bed)
Polygons ifp = union_(subnfps);
Polygon ret;
// find the first hole
auto it = std::find_if(ifp.begin(), ifp.end(), [](const Polygon &subifp){
return subifp.is_clockwise();
});
if (it != ifp.end()) {
ret = std::move(*it);
std::reverse(ret.begin(), ret.end());
}
return ret;
}
ExPolygons ifp_convex(const arr2::CircleBed &bed, const Polygon &convexpoly)
{
Polygon circle = approximate_circle_with_polygon(bed);
return {ExPolygon{ifp_convex_convex(circle, convexpoly)}};
}
ExPolygons ifp_convex(const arr2::IrregularBed &bed, const Polygon &convexpoly)
{
auto bb = get_extents(bed.poly);
bb.offset(scaled(1.));
Polygon rect = arr2::to_rectangle(bb);
ExPolygons blueprint = diff_ex(rect, bed.poly);
Polygons ifp;
for (const ExPolygon &part : blueprint) {
Polygons triangles = Slic3r::convex_decomposition_tess(part);
for (const Polygon &tr : triangles) {
Polygon subifp = nfp_convex_convex_legacy(tr, convexpoly);
ifp.emplace_back(std::move(subifp));
}
}
ifp = union_(ifp);
Polygons ret;
std::copy_if(ifp.begin(), ifp.end(), std::back_inserter(ret),
[](const Polygon &p) { return p.is_clockwise(); });
for (Polygon &p : ret)
std::reverse(p.begin(), p.end());
return to_expolygons(ret);
}
Vec2crd reference_vertex(const Polygon &poly)
{
Vec2crd ret{std::numeric_limits<coord_t>::min(),
std::numeric_limits<coord_t>::min()};
auto it = std::max_element(poly.points.begin(), poly.points.end(), vsort);
if (it != poly.points.end())
ret = std::max(ret, static_cast<const Vec2crd &>(*it), vsort);
return ret;
}
Vec2crd reference_vertex(const ExPolygon &expoly)
{
return reference_vertex(expoly.contour);
}
Vec2crd reference_vertex(const Polygons &outline)
{
Vec2crd ret{std::numeric_limits<coord_t>::min(),
std::numeric_limits<coord_t>::min()};
for (const Polygon &poly : outline)
ret = std::max(ret, reference_vertex(poly), vsort);
return ret;
}
Vec2crd reference_vertex(const ExPolygons &outline)
{
Vec2crd ret{std::numeric_limits<coord_t>::min(),
std::numeric_limits<coord_t>::min()};
for (const ExPolygon &expoly : outline)
ret = std::max(ret, reference_vertex(expoly), vsort);
return ret;
}
Vec2crd min_vertex(const Polygon &poly)
{
Vec2crd ret{std::numeric_limits<coord_t>::max(),
std::numeric_limits<coord_t>::max()};
auto it = std::min_element(poly.points.begin(), poly.points.end(), vsort);
if (it != poly.points.end())
ret = std::min(ret, static_cast<const Vec2crd&>(*it), vsort);
return ret;
}
// Find the vertex corresponding to the edge with minimum angle to X axis.
// Only usable with CircularEdgeIterator<> template.
template<class It> It find_min_anglex_edge(It from)
{
bool found = false;
auto it = from;
while (!found ) {
found = !line_cmp(*it, *std::next(it));
++it;
}
return it;
}
// Only usable if both fixed and movable polygon is convex. In that case,
// their edges are already sorted by angle to X axis, only the starting
// (lowest X axis) edge needs to be found first.
void nfp_convex_convex(const Polygon &fixed, const Polygon &movable, Polygon &poly)
{
if (fixed.empty() || movable.empty())
return;
// Clear poly and adjust its capacity. Nothing happens if poly is
// already sufficiently large and and empty.
poly.clear();
poly.points.reserve(fixed.size() + movable.size());
// Find starting positions on the fixed and moving polygons
auto it_fx = find_min_anglex_edge(CircularEdgeIterator{fixed});
auto it_mv = find_min_anglex_edge(CircularReverseEdgeIterator{movable});
// End positions are at the same vertex after completing one full circle
auto end_fx = it_fx + fixed.size();
auto end_mv = it_mv + movable.size();
// Pos zero is just fine as starting point:
poly.points.emplace_back(0, 0);
// Output iterator adapter for std::merge
struct OutItAdaptor {
using value_type [[maybe_unused]] = Line;
using difference_type [[maybe_unused]] = std::ptrdiff_t;
using pointer [[maybe_unused]] = Line*;
using reference [[maybe_unused]] = Line& ;
using iterator_category [[maybe_unused]] = std::output_iterator_tag;
Polygon *outpoly;
OutItAdaptor(Polygon &out) : outpoly{&out} {}
OutItAdaptor &operator *() { return *this; }
void operator=(const Line &l)
{
// Yielding l.b, offsetted so that l.a touches the last vertex in
// in outpoly
outpoly->points.emplace_back(l.b + outpoly->back() - l.a);
}
OutItAdaptor& operator++() { return *this; };
};
// Use std algo to merge the edges from the two polygons
std::merge(it_fx, end_fx, it_mv, end_mv, OutItAdaptor{poly}, line_cmp);
}
Polygon nfp_convex_convex(const Polygon &fixed, const Polygon &movable)
{
Polygon ret;
nfp_convex_convex(fixed, movable, ret);
return ret;
}
static void buildPolygon(const std::vector<Line>& edgelist,
Polygon& rpoly,
Point& top_nfp)
{
auto& rsh = rpoly.points;
rsh.reserve(2 * edgelist.size());
// Add the two vertices from the first edge into the final polygon.
rsh.emplace_back(edgelist.front().a);
rsh.emplace_back(edgelist.front().b);
// Sorting function for the nfp reference vertex search
// the reference (rightmost top) vertex so far
top_nfp = *std::max_element(std::cbegin(rsh), std::cend(rsh), vsort);
auto tmp = std::next(std::begin(rsh));
// Construct final nfp by placing each edge to the end of the previous
for(auto eit = std::next(edgelist.begin()); eit != edgelist.end(); ++eit) {
auto d = *tmp - eit->a;
Vec2crd p = eit->b + d;
rsh.emplace_back(p);
// Set the new reference vertex
if (vsort(top_nfp, p))
top_nfp = p;
tmp = std::next(tmp);
}
}
Polygon nfp_convex_convex_legacy(const Polygon &fixed, const Polygon &movable)
{
assert (!fixed.empty());
assert (!movable.empty());
Polygon rsh; // Final nfp placeholder
Point max_nfp;
std::vector<Line> edgelist;
auto cap = fixed.points.size() + movable.points.size();
// Reserve the needed memory
edgelist.reserve(cap);
rsh.points.reserve(cap);
auto add_edge = [&edgelist](const Point &v1, const Point &v2) {
Line e{v1, v2};
if ((e.b - e.a).cast<int64_t>().squaredNorm() > 0)
edgelist.emplace_back(e);
};
Point max_fixed = fixed.points.front();
{ // place all edges from fixed into edgelist
auto first = std::cbegin(fixed);
auto next = std::next(first);
while(next != std::cend(fixed)) {
add_edge(*(first), *(next));
max_fixed = std::max(max_fixed, *first, vsort);
++first; ++next;
}
add_edge(*std::crbegin(fixed), *std::cbegin(fixed));
max_fixed = std::max(max_fixed, *std::crbegin(fixed), vsort);
}
Point max_movable = movable.points.front();
Point min_movable = movable.points.front();
{ // place all edges from movable into edgelist
auto first = std::cbegin(movable);
auto next = std::next(first);
while(next != std::cend(movable)) {
add_edge(*(next), *(first));
min_movable = std::min(min_movable, *first, vsort);
max_movable = std::max(max_movable, *first, vsort);
++first; ++next;
}
add_edge(*std::cbegin(movable), *std::crbegin(movable));
min_movable = std::min(min_movable, *std::crbegin(movable), vsort);
max_movable = std::max(max_movable, *std::crbegin(movable), vsort);
}
std::sort(edgelist.begin(), edgelist.end(), line_cmp);
buildPolygon(edgelist, rsh, max_nfp);
auto dtouch = max_fixed - min_movable;
auto top_other = max_movable + dtouch;
auto dnfp = top_other - max_nfp;
rsh.translate(dnfp);
return rsh;
}
} // namespace Slic3r
#endif // NFP_CPP