PrusaSlicer/src/slic3r/Utils/Bonjour.cpp
2022-07-17 18:40:07 +02:00

1208 lines
32 KiB
C++

#include "Bonjour.hpp"
#include <cstdint>
#include <algorithm>
#include <array>
#include <vector>
#include <string>
#include <map>
#include <thread>
#include <boost/endian/conversion.hpp>
#include <boost/date_time/posix_time/posix_time_duration.hpp>
#include <boost/format.hpp>
#include <boost/log/trivial.hpp>
#include <boost/bind.hpp>
using boost::optional;
using boost::system::error_code;
namespace endian = boost::endian;
namespace asio = boost::asio;
using boost::asio::ip::udp;
namespace Slic3r {
// Minimal implementation of a MDNS/DNS-SD client
// This implementation is extremely simple, only the bits that are useful
// for basic MDNS discovery of OctoPi devices are present.
// However, the bits that are present are implemented with security in mind.
// Only fully correct DNS replies are allowed through.
// While decoding the decoder will bail the moment it encounters anything fishy.
// At least that's the idea. To help prove this is actually the case,
// the implementations has been tested with AFL.
// Relevant RFCs:
// https://tools.ietf.org/html/rfc6762.txt
// https://tools.ietf.org/html/rfc6763.txt
struct DnsName: public std::string
{
enum
{
MAX_RECURSION = 10, // Keep this low
};
static optional<DnsName> decode(const std::vector<char> &buffer, size_t &offset, unsigned depth = 0)
{
// Check offset sanity:
if (offset + 1 >= buffer.size()) {
return boost::none;
}
// Check for recursion depth to prevent parsing names that are nested too deeply or end up cyclic:
if (depth >= MAX_RECURSION) {
return boost::none;
}
DnsName res;
const size_t bsize = buffer.size();
while (true) {
const char* ptr = buffer.data() + offset;
unsigned len = static_cast<unsigned char>(*ptr);
if (len & 0xc0) {
// This is a recursive label
unsigned len_2 = static_cast<unsigned char>(ptr[1]);
size_t pointer = (len & 0x3f) << 8 | len_2;
const auto nested = decode(buffer, pointer, depth + 1);
if (!nested) {
return boost::none;
} else {
if (res.size() > 0) {
res.push_back('.');
}
res.append(*nested);
offset += 2;
return std::move(res);
}
} else if (len == 0) {
// This is a name terminator
offset++;
break;
} else {
// This is a regular label
len &= 0x3f;
if (len + offset + 1 >= bsize) {
return boost::none;
}
res.reserve(len);
if (res.size() > 0) {
res.push_back('.');
}
ptr++;
for (const auto end = ptr + len; ptr < end; ptr++) {
char c = *ptr;
if (c >= 0x20 && c <= 0x7f) {
res.push_back(c);
} else {
return boost::none;
}
}
offset += len + 1;
}
}
if (res.size() > 0) {
return std::move(res);
} else {
return boost::none;
}
}
};
struct DnsHeader
{
uint16_t id;
uint16_t flags;
uint16_t qdcount;
uint16_t ancount;
uint16_t nscount;
uint16_t arcount;
enum
{
SIZE = 12,
};
static DnsHeader decode(const std::vector<char> &buffer) {
DnsHeader res;
const uint16_t *data_16 = reinterpret_cast<const uint16_t*>(buffer.data());
res.id = endian::big_to_native(data_16[0]);
res.flags = endian::big_to_native(data_16[1]);
res.qdcount = endian::big_to_native(data_16[2]);
res.ancount = endian::big_to_native(data_16[3]);
res.nscount = endian::big_to_native(data_16[4]);
res.arcount = endian::big_to_native(data_16[5]);
return res;
}
uint32_t rrcount() const {
return ancount + nscount + arcount;
}
};
struct DnsQuestion
{
enum
{
MIN_SIZE = 5,
};
DnsName name;
uint16_t type;
uint16_t qclass;
DnsQuestion()
: type(0)
, qclass(0)
{}
static optional<DnsQuestion> decode(const std::vector<char> &buffer, size_t &offset)
{
auto qname = DnsName::decode(buffer, offset);
if (!qname) {
return boost::none;
}
DnsQuestion res;
res.name = std::move(*qname);
const uint16_t *data_16 = reinterpret_cast<const uint16_t*>(buffer.data() + offset);
res.type = endian::big_to_native(data_16[0]);
res.qclass = endian::big_to_native(data_16[1]);
offset += 4;
return std::move(res);
}
};
struct DnsResource
{
DnsName name;
uint16_t type;
uint16_t rclass;
uint32_t ttl;
std::vector<char> data;
DnsResource()
: type(0)
, rclass(0)
, ttl(0)
{}
static optional<DnsResource> decode(const std::vector<char> &buffer, size_t &offset, size_t &dataoffset)
{
const size_t bsize = buffer.size();
if (offset + 1 >= bsize) {
return boost::none;
}
auto rname = DnsName::decode(buffer, offset);
if (!rname) {
return boost::none;
}
if (offset + 10 >= bsize) {
return boost::none;
}
DnsResource res;
res.name = std::move(*rname);
const uint16_t *data_16 = reinterpret_cast<const uint16_t*>(buffer.data() + offset);
res.type = endian::big_to_native(data_16[0]);
res.rclass = endian::big_to_native(data_16[1]);
res.ttl = endian::big_to_native(*reinterpret_cast<const uint32_t*>(data_16 + 2));
uint16_t rdlength = endian::big_to_native(data_16[4]);
offset += 10;
if (offset + rdlength > bsize) {
return boost::none;
}
dataoffset = offset;
res.data = std::vector<char>(buffer.begin() + offset, buffer.begin() + offset + rdlength);
offset += rdlength;
return std::move(res);
}
};
struct DnsRR_A
{
enum { TAG = 0x1 };
asio::ip::address_v4 ip;
std::string name;
static void decode(optional<DnsRR_A> &result, const DnsResource &rr)
{
if (rr.data.size() == 4) {
DnsRR_A res;
const uint32_t ip = endian::big_to_native(*reinterpret_cast<const uint32_t*>(rr.data.data()));
res.ip = asio::ip::address_v4(ip);
result = std::move(res);
}
}
};
struct DnsRR_AAAA
{
enum { TAG = 0x1c };
asio::ip::address_v6 ip;
std::string name;
static void decode(optional<DnsRR_AAAA> &result, const DnsResource &rr)
{
if (rr.data.size() == 16) {
DnsRR_AAAA res;
std::array<unsigned char, 16> ip;
std::copy_n(rr.data.begin(), 16, ip.begin());
res.ip = asio::ip::address_v6(ip);
result = std::move(res);
}
}
};
struct DnsRR_SRV
{
enum
{
TAG = 0x21,
MIN_SIZE = 8,
};
uint16_t priority;
uint16_t weight;
uint16_t port;
DnsName hostname;
static optional<DnsRR_SRV> decode(const std::vector<char> &buffer, const DnsResource &rr, size_t dataoffset)
{
if (rr.data.size() < MIN_SIZE) {
return boost::none;
}
DnsRR_SRV res;
const uint16_t *data_16 = reinterpret_cast<const uint16_t*>(rr.data.data());
res.priority = endian::big_to_native(data_16[0]);
res.weight = endian::big_to_native(data_16[1]);
res.port = endian::big_to_native(data_16[2]);
size_t offset = dataoffset + 6;
auto hostname = DnsName::decode(buffer, offset);
if (hostname) {
res.hostname = std::move(*hostname);
return std::move(res);
} else {
return boost::none;
}
}
};
struct DnsRR_TXT
{
enum
{
TAG = 0x10,
};
BonjourReply::TxtData data;
static optional<DnsRR_TXT> decode(const DnsResource &rr, const Bonjour::TxtKeys &txt_keys)
{
const size_t size = rr.data.size();
if (size < 2) {
return boost::none;
}
DnsRR_TXT res;
for (auto it = rr.data.begin(); it != rr.data.end(); ) {
unsigned val_size = static_cast<unsigned char>(*it);
if (val_size == 0 || it + val_size >= rr.data.end()) {
return boost::none;
}
++it;
const auto it_end = it + val_size;
const auto it_eq = std::find(it, it_end, '=');
if (it_eq > it && it_eq < it_end - 1) {
std::string key(it_eq - it, ' ');
std::copy(it, it_eq, key.begin());
if (txt_keys.find(key) != txt_keys.end() || key == "path") {
// This key-value has been requested for
std::string value(it_end - it_eq - 1, ' ');
std::copy(it_eq + 1, it_end, value.begin());
res.data.insert(std::make_pair(std::move(key), std::move(value)));
}
}
it = it_end;
}
return std::move(res);
}
};
struct DnsSDPair
{
optional<DnsRR_SRV> srv;
optional<DnsRR_TXT> txt;
};
struct DnsSDMap : public std::map<std::string, DnsSDPair>
{
void insert_srv(std::string &&name, DnsRR_SRV &&srv)
{
auto hit = this->find(name);
if (hit != this->end()) {
hit->second.srv = std::move(srv);
} else {
DnsSDPair pair;
pair.srv = std::move(srv);
this->insert(std::make_pair(std::move(name), std::move(pair)));
}
}
void insert_txt(std::string &&name, DnsRR_TXT &&txt)
{
auto hit = this->find(name);
if (hit != this->end()) {
hit->second.txt = std::move(txt);
} else {
DnsSDPair pair;
pair.txt = std::move(txt);
this->insert(std::make_pair(std::move(name), std::move(pair)));
}
}
};
struct DnsMessage
{
enum
{
MAX_SIZE = 4096,
MAX_ANS = 30,
};
DnsHeader header;
optional<DnsQuestion> question;
optional<DnsRR_A> rr_a;
optional<DnsRR_AAAA> rr_aaaa;
std::vector<DnsRR_SRV> rr_srv;
DnsSDMap sdmap;
static optional<DnsMessage> decode(const std::vector<char>& buffer, const Bonjour::TxtKeys& txt_keys)
{
const auto size = buffer.size();
if (size < DnsHeader::SIZE + DnsQuestion::MIN_SIZE || size > MAX_SIZE) {
return boost::none;
}
DnsMessage res;
res.header = DnsHeader::decode(buffer);
if (res.header.qdcount > 1 || res.header.ancount > MAX_ANS) {
return boost::none;
}
size_t offset = DnsHeader::SIZE;
if (res.header.qdcount == 1) {
res.question = DnsQuestion::decode(buffer, offset);
}
for (unsigned i = 0; i < res.header.rrcount(); i++) {
size_t dataoffset = 0;
auto rr = DnsResource::decode(buffer, offset, dataoffset);
if (!rr) {
return boost::none;
}
else {
res.parse_rr(buffer, std::move(*rr), dataoffset, txt_keys);
}
}
return std::move(res);
}
private:
void parse_rr(const std::vector<char>& buffer, DnsResource&& rr, size_t dataoffset, const Bonjour::TxtKeys& txt_keys)
{
switch (rr.type) {
case DnsRR_A::TAG:
DnsRR_A::decode(this->rr_a, rr);
this->rr_a->name = rr.name;
break;
case DnsRR_AAAA::TAG:
DnsRR_AAAA::decode(this->rr_aaaa, rr);
this->rr_aaaa->name = rr.name;
break;
case DnsRR_SRV::TAG: {
auto srv = DnsRR_SRV::decode(buffer, rr, dataoffset);
if (srv) { this->sdmap.insert_srv(std::move(rr.name), std::move(*srv)); }
break;
}
case DnsRR_TXT::TAG: {
auto txt = DnsRR_TXT::decode(rr, txt_keys);
if (txt) { this->sdmap.insert_txt(std::move(rr.name), std::move(*txt)); }
break;
}
}
}
};
std::ostream& operator<<(std::ostream &os, const DnsMessage &msg)
{
os << boost::format("DnsMessage(ID: %1%, Q: %2%, A: %3%, AAAA: %4%, services: [")
% msg.header.id
% (msg.question ? msg.question->name.c_str() : "none")
% (msg.rr_a ? msg.rr_a->ip.to_string() : "none")
% (msg.rr_aaaa ? msg.rr_aaaa->ip.to_string() : "none");
enum { SRV_PRINT_MAX = 3 };
unsigned i = 0;
for (const auto &sdpair : msg.sdmap) {
if (i > 0) { os << ", "; }
if (i < SRV_PRINT_MAX) {
os << sdpair.first;
} else {
os << "...";
break;
}
i++;
}
return os << "])";
}
const asio::ip::address_v4 BonjourRequest::MCAST_IP4{ 0xe00000fb };
const asio::ip::address_v6 BonjourRequest::MCAST_IP6 = asio::ip::make_address_v6("ff02::fb");
const uint16_t BonjourRequest::MCAST_PORT = 5353;
optional<BonjourRequest> BonjourRequest::make_PTR(const std::string &service, const std::string &protocol)
{
if (service.size() > 15 || protocol.size() > 15) {
return boost::none;
}
std::vector<char> data;
data.reserve(service.size() + 18);
// Add metadata
static const unsigned char rq_meta[] = {
0x00, 0x00, // Query ID (zero for mDNS)
0x00, 0x00, // Flags
0x00, 0x01, // One query
0x00, 0x00, 0x00, 0x00, 0x00, 0x00 // Zero Answer, Authority, and Additional RRs
};
std::copy(rq_meta, rq_meta + sizeof(rq_meta), std::back_inserter(data));
// Add PTR query name
data.push_back(service.size() + 1);
data.push_back('_');
data.insert(data.end(), service.begin(), service.end());
data.push_back(protocol.size() + 1);
data.push_back('_');
data.insert(data.end(), protocol.begin(), protocol.end());
// Add the rest of PTR record
static const unsigned char ptr_tail[] = {
0x05, // length of "label"
0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x00, // "label" string and terminator
0x00, 0x0c, // Type PTR
0x00, 0xff, // Class ANY
};
std::copy(ptr_tail, ptr_tail + sizeof(ptr_tail), std::back_inserter(data));
return BonjourRequest(std::move(data));
}
optional<BonjourRequest> BonjourRequest::make_A(const std::string& hostname)
{
// todo: why is this and what is real max
if (hostname.size() > 30) {
return boost::none;
}
std::vector<char> data;
data.reserve(hostname.size() + 18);
// Add metadata
static const unsigned char rq_meta[] = {
0x00, 0x00, // Query ID (zero for mDNS)
0x00, 0x00, // Flags
0x00, 0x01, // One query
0x00, 0x00, 0x00, 0x00, 0x00, 0x00 // Zero Answer, Authority, and Additional RRs
};
std::copy(rq_meta, rq_meta + sizeof(rq_meta), std::back_inserter(data));
// Add hostname without .local
data.push_back(hostname.size());
data.insert(data.end(), hostname.begin(), hostname.end());
// Add the rest of A record
static const unsigned char ptr_tail[] = {
0x05, // length of "local"
0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x00,// "local" string and terminator
0x00, 0x01, // Type A
0x00, 0xff, // Class - 01 is internet 0xff is any
};
std::copy(ptr_tail, ptr_tail + sizeof(ptr_tail), std::back_inserter(data));
return BonjourRequest(std::move(data));
}
optional<BonjourRequest> BonjourRequest::make_AAAA(const std::string& hostname)
{
// todo: why is this and what is real max
if (hostname.size() > 30) {
return boost::none;
}
std::vector<char> data;
data.reserve(hostname.size() + 18);
// Add metadata
static const unsigned char rq_meta[] = {
0x00, 0x00, // Query ID (zero for mDNS)
0x00, 0x00, // Flags
0x00, 0x01, // One query
0x00, 0x00, 0x00, 0x00, 0x00, 0x00 // Zero Answer, Authority, and Additional RRs
};
std::copy(rq_meta, rq_meta + sizeof(rq_meta), std::back_inserter(data));
// Add hostname without .local
data.push_back(hostname.size());
data.insert(data.end(), hostname.begin(), hostname.end());
// Add the rest of A record
static const unsigned char ptr_tail[] = {
0x05, // length of "local"
0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x00, // "local" string and terminator
0x00, 0x1c, // Type AAAA
0x00, 0xff, // Class - 01 is internet 0xff is any
};
std::copy(ptr_tail, ptr_tail + sizeof(ptr_tail), std::back_inserter(data));
return BonjourRequest(std::move(data));
}
namespace {
std::string strip_service_dn(const std::string& service_name, const std::string& service_dn)
{
if (service_name.size() <= service_dn.size()) {
return std::string();
}
auto needle = service_name.rfind(service_dn);
if (needle == service_name.size() - service_dn.size()) {
return service_name.substr(0, needle - 1);
} else {
return std::string();
}
}
} // namespace
UdpSession::UdpSession(Bonjour::ReplyFn rfn) : replyfn(rfn)
{
buffer.resize(DnsMessage::MAX_SIZE);
}
UdpSocket::UdpSocket( Bonjour::ReplyFn replyfn, const asio::ip::address& multicast_address, const asio::ip::address& interface_address, std::shared_ptr< boost::asio::io_service > io_service)
: replyfn(replyfn)
, multicast_address(multicast_address)
, socket(*io_service)
, io_service(io_service)
{
try {
// open socket
boost::asio::ip::udp::endpoint listen_endpoint(multicast_address.is_v4() ? udp::v4() : udp::v6(), BonjourRequest::MCAST_PORT);
socket.open(listen_endpoint.protocol());
// set socket to listen
socket.set_option(udp::socket::reuse_address(true));
socket.bind(listen_endpoint);
if (interface_address.is_v4()) {
// listen for multicast on given interface
socket.set_option(boost::asio::ip::multicast::join_group(multicast_address.to_v4(), interface_address.to_v4()));
// send to interface
socket.set_option(asio::ip::multicast::outbound_interface(interface_address.to_v4()));
} else {
// listen for multicast on given interface
socket.set_option(boost::asio::ip::multicast::join_group(multicast_address.to_v6(), interface_address.to_v6().scope_id()));
// send to interface
socket.set_option(asio::ip::multicast::outbound_interface(interface_address.to_v6().scope_id()));
}
mcast_endpoint = udp::endpoint(multicast_address, BonjourRequest::MCAST_PORT);
BOOST_LOG_TRIVIAL(info) << "Socket created. Multicast: " << multicast_address << ". Interface: " << interface_address;
}
catch (std::exception& e) {
BOOST_LOG_TRIVIAL(error) << e.what();
}
}
UdpSocket::UdpSocket( Bonjour::ReplyFn replyfn, const asio::ip::address& multicast_address, std::shared_ptr< boost::asio::io_service > io_service)
: replyfn(replyfn)
, multicast_address(multicast_address)
, socket(*io_service)
, io_service(io_service)
{
try {
// open socket
boost::asio::ip::udp::endpoint listen_endpoint(multicast_address.is_v4() ? udp::v4() : udp::v6(), BonjourRequest::MCAST_PORT);
socket.open(listen_endpoint.protocol());
// set socket to listen
socket.set_option(udp::socket::reuse_address(true));
socket.bind(listen_endpoint);
socket.set_option(boost::asio::ip::multicast::join_group(multicast_address));
mcast_endpoint = udp::endpoint(multicast_address, BonjourRequest::MCAST_PORT);
BOOST_LOG_TRIVIAL(info) << "Socket created. Multicast: " << multicast_address;
}
catch (std::exception& e) {
BOOST_LOG_TRIVIAL(error) << e.what();
}
}
void UdpSocket::send()
{
try {
for (const auto& request : requests)
socket.send_to(asio::buffer(request.m_data), mcast_endpoint);
// Should we care if this is called while already receiving? (async_receive call from receive_handler)
async_receive();
}
catch (std::exception& e) {
BOOST_LOG_TRIVIAL(error) << e.what();
}
}
void UdpSocket::async_receive()
{
try {
// our session to hold the buffer + endpoint
auto session = create_session();
socket.async_receive_from(asio::buffer(session->buffer, session->buffer.size())
, session->remote_endpoint
, boost::bind(&UdpSocket::receive_handler, this, session, asio::placeholders::error, asio::placeholders::bytes_transferred));
}
catch (std::exception& e) {
BOOST_LOG_TRIVIAL(error) << e.what();
}
}
void UdpSocket::receive_handler(SharedSession session, const boost::system::error_code& error, size_t bytes)
{
// let io_service to handle the datagram on session
// from boost documentation io_service::post:
// The io_service guarantees that the handler will only be called in a thread in which the run(), run_one(), poll() or poll_one() member functions is currently being invoked.
io_service->post(boost::bind(&UdpSession::handle_receive, session, error, bytes));
// immediately accept new datagrams
async_receive();
}
SharedSession LookupSocket::create_session() const
{
return std::shared_ptr< LookupSession >(new LookupSession(this, replyfn));
}
void LookupSession::handle_receive(const error_code& error, size_t bytes)
{
assert(socket);
if (error) {
BOOST_LOG_TRIVIAL(error) << error.message();
return;
}
if (bytes == 0 || !replyfn) {
return;
}
buffer.resize(bytes);
auto dns_msg = DnsMessage::decode(buffer, socket->get_txt_keys());
if (dns_msg) {
asio::ip::address ip = remote_endpoint.address();
if (dns_msg->rr_a) { ip = dns_msg->rr_a->ip; }
else if (dns_msg->rr_aaaa) { ip = dns_msg->rr_aaaa->ip; }
for (auto& sdpair : dns_msg->sdmap) {
if (!sdpair.second.srv) {
continue;
}
const auto& srv = *sdpair.second.srv;
auto service_name = strip_service_dn(sdpair.first, socket->get_service_dn());
if (service_name.empty())
continue;
std::string path;
std::string version;
BonjourReply::TxtData txt_data;
if (sdpair.second.txt) {
txt_data = std::move(sdpair.second.txt->data);
}
BonjourReply reply(ip, srv.port, std::move(service_name), srv.hostname, std::move(txt_data));
replyfn(std::move(reply));
}
}
}
SharedSession ResolveSocket::create_session() const
{
return std::shared_ptr< ResolveSession > (new ResolveSession(this, replyfn));
}
void ResolveSession::handle_receive(const error_code& error, size_t bytes)
{
assert(socket);
if (error) {
// todo: what level? do we even log? There might be callbacks when timer runs out
BOOST_LOG_TRIVIAL(info) << error.message();
return;
}
if (bytes == 0 || !replyfn) {
// todo: log something?
return;
}
buffer.resize(bytes);
#if 0
std::string str;
char const hex_chars[16] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };
for (size_t i = 0; i < buffer.size(); i++) {
const char ch = buffer[i];
str += hex_chars[(ch & 0xF0) >> 4];
str += hex_chars[(ch & 0x0F) >> 0];
}
BOOST_LOG_TRIVIAL(debug) << remote_endpoint.address()<< " " << str;
#endif
// decode buffer, txt keys are not needed for A / AAAA answer
auto dns_msg = DnsMessage::decode(buffer, Bonjour::TxtKeys());
if (dns_msg) {
asio::ip::address ip;
std::string answer_name;
if (dns_msg->rr_a) {
ip = dns_msg->rr_a->ip;
answer_name = dns_msg->rr_a->name;
}
else if (dns_msg->rr_aaaa) {
ip = dns_msg->rr_aaaa->ip;
answer_name = dns_msg->rr_aaaa->name;
}
else
return; // not matching query type with answer type
if (!answer_name.empty()) {
// transform both strings to lower. Should we really do it?
std::string name_tolower = answer_name;
std::transform(name_tolower.begin(), name_tolower.end(), name_tolower.begin(),
[](unsigned char c) { return std::tolower(c); });
std::string hostname_tolower = socket->get_hostname();
std::transform(hostname_tolower.begin(), hostname_tolower.end(), hostname_tolower.begin(),
[](unsigned char c) { return std::tolower(c); });
if (name_tolower == hostname_tolower) {
BonjourReply reply(ip, 0, std::string(), answer_name, BonjourReply::TxtData());
replyfn(std::move(reply));
}
}
}
}
// API - private part
struct Bonjour::priv
{
const std::string service;
std::string protocol;
std::string service_dn;
TxtKeys txt_keys;
unsigned timeout;
unsigned retries;
std::string hostname;
// std::vector<BonjourReply> replies;
std::vector<char> buffer;
std::thread io_thread;
Bonjour::ReplyFn replyfn;
Bonjour::CompleteFn completefn;
Bonjour::ResolveFn resolvefn;
priv(std::string&& service);
// void udp_receive_lookup(udp::endpoint from, size_t bytes);
void lookup_perform();
void resolve_perform();
};
Bonjour::priv::priv(std::string&& service)
: service(std::move(service))
, protocol("tcp")
, timeout(10)
, retries(1)
{
buffer.resize(DnsMessage::MAX_SIZE);
}
void Bonjour::priv::lookup_perform()
{
service_dn = (boost::format("_%1%._%2%.local") % service % protocol).str();
std::shared_ptr< boost::asio::io_service > io_service(new boost::asio::io_service);
std::vector<LookupSocket*> sockets;
// resolve intefaces - from PR#6646
std::vector<boost::asio::ip::address> interfaces;
asio::ip::udp::resolver resolver(*io_service);
boost::system::error_code ec;
// ipv4 interfaces
auto results = resolver.resolve(udp::v4(), asio::ip::host_name(), "", ec);
if (!ec) {
for (const auto & r : results) {
const auto addr = r.endpoint().address();
if (addr.is_loopback()) continue;
interfaces.emplace_back(std::move(addr));
}
// create ipv4 socket for each interface
// each will send to querry to for both ipv4 and ipv6
for (const auto& intrfc : interfaces)
sockets.emplace_back(new LookupSocket(txt_keys, service, service_dn, protocol, replyfn, BonjourRequest::MCAST_IP4, intrfc, io_service));
} else {
BOOST_LOG_TRIVIAL(info) << "Failed to resolve ipv4 interfaces: " << ec.message();
}
if (sockets.empty())
sockets.emplace_back(new LookupSocket(txt_keys, service, service_dn, protocol, replyfn, BonjourRequest::MCAST_IP4, io_service));
// ipv6 interfaces
interfaces.clear();
//udp::resolver::query query(host, PORT, boost::asio::ip::resolver_query_base::numeric_service);
results = resolver.resolve(udp::v6(), asio::ip::host_name(), "", ec);
if (!ec)
{
for (const auto& r : results) {
const auto addr = r.endpoint().address();
if (addr.is_loopback()) continue;
interfaces.emplace_back(std::move(addr));
}
// create ipv6 socket for each interface
// each will send to querry to for both ipv4 and ipv6
for (const auto& intrfc : interfaces)
sockets.emplace_back(new LookupSocket(txt_keys, service, service_dn, protocol, replyfn, BonjourRequest::MCAST_IP6, intrfc, io_service));
if (interfaces.empty())
sockets.emplace_back(new LookupSocket(txt_keys, service, service_dn, protocol, replyfn, BonjourRequest::MCAST_IP6, io_service));
} else {
BOOST_LOG_TRIVIAL(info)<< "Failed to resolve ipv6 interfaces: " << ec.message();
}
try {
// send first queries
for (auto * socket : sockets)
socket->send();
// timer settings
asio::deadline_timer timer(*io_service);
retries--;
std::function<void(const error_code&)> timer_handler = [&](const error_code& error) {
// end
if (retries == 0 || error) {
// is this correct ending?
io_service->stop();
if (completefn) {
completefn();
}
// restart timer
} else {
retries--;
timer.expires_from_now(boost::posix_time::seconds(timeout));
timer.async_wait(timer_handler);
// trigger another round of queries
for (auto * socket : sockets)
socket->send();
}
};
// start timer
timer.expires_from_now(boost::posix_time::seconds(timeout));
timer.async_wait(timer_handler);
// start io_service, it will run until it has something to do - so in this case until stop is called in timer
io_service->run();
}
catch (std::exception& e) {
BOOST_LOG_TRIVIAL(error) << e.what();
}
}
void Bonjour::priv::resolve_perform()
{
// reply callback is shared to every UDPSession which is called on same thread as io_service->run();
// thus no need to mutex replies in reply_callback, same should go with the timer
std::vector<BonjourReply> replies;
// examples would store [self] to the lambda (and the timer one), is it ok not to do it? (Should be c++03)
const auto reply_callback = [&rpls = replies](BonjourReply&& reply)
{
if (std::find(rpls.begin(), rpls.end(), reply) == rpls.end())
rpls.push_back(reply);
};
std::shared_ptr< boost::asio::io_service > io_service(new boost::asio::io_service);
std::vector<ResolveSocket*> sockets;
// resolve intefaces - from PR#6646
std::vector<boost::asio::ip::address> interfaces;
asio::ip::udp::resolver resolver(*io_service);
boost::system::error_code ec;
// ipv4 interfaces
auto results = resolver.resolve(udp::v4(), asio::ip::host_name(), "", ec);
if (!ec) {
for (auto const& r : results) {
auto const addr = r.endpoint().address();
if (addr.is_loopback()) continue;
interfaces.emplace_back(addr);
}
// create ipv4 socket for each interface
// each will send to querry to for both ipv4 and ipv6
for (const auto& intrfc : interfaces)
sockets.emplace_back(new ResolveSocket(hostname, reply_callback, BonjourRequest::MCAST_IP4, intrfc, io_service));
} else {
BOOST_LOG_TRIVIAL(info) << "Failed to resolve ipv4 interfaces: " << ec.message();
}
if (sockets.empty())
sockets.emplace_back(new ResolveSocket(hostname, reply_callback, BonjourRequest::MCAST_IP4, io_service));
// ipv6 interfaces
interfaces.clear();
results = resolver.resolve(udp::v6(), asio::ip::host_name(), "", ec);
if (!ec) {
for (auto const& r : results) {
auto const addr = r.endpoint().address();
if (addr.is_loopback()) continue;
interfaces.emplace_back(addr);
}
// create ipv6 socket for each interface
// each will send to querry to for both ipv4 and ipv6
for (const auto& intrfc : interfaces)
sockets.emplace_back(new ResolveSocket(hostname, reply_callback, BonjourRequest::MCAST_IP6, intrfc, io_service));
if (interfaces.empty())
sockets.emplace_back(new ResolveSocket(hostname, reply_callback, BonjourRequest::MCAST_IP6, io_service));
} else {
BOOST_LOG_TRIVIAL(info) << "Failed to resolve ipv6 interfaces: " << ec.message();
}
try {
// send first queries
for (auto * socket : sockets)
socket->send();
// timer settings
asio::deadline_timer timer(*io_service);
retries--;
std::function<void(const error_code&)> timer_handler = [&](const error_code& error) {
int replies_count = replies.size();
// end
if (retries == 0 || error || replies_count > 0) {
// is this correct ending?
io_service->stop();
if (replies_count > 0 && resolvefn) {
resolvefn(replies);
}
// restart timer
} else {
retries--;
timer.expires_from_now(boost::posix_time::seconds(timeout));
timer.async_wait(timer_handler);
// trigger another round of queries
for (auto * socket : sockets)
socket->send();
}
};
// start timer
timer.expires_from_now(boost::posix_time::seconds(timeout));
timer.async_wait(timer_handler);
// start io_service, it will run until it has something to do - so in this case until stop is called in timer
io_service->run();
}
catch (std::exception& e) {
BOOST_LOG_TRIVIAL(error) << e.what();
}
}
// API - public part
BonjourReply::BonjourReply(boost::asio::ip::address ip, uint16_t port, std::string service_name, std::string hostname, BonjourReply::TxtData txt_data)
: ip(std::move(ip))
, port(port)
, service_name(std::move(service_name))
, hostname(std::move(hostname))
, txt_data(std::move(txt_data))
{
std::string proto;
std::string port_suffix;
if (port == 443) { proto = "https://"; }
if (port != 443 && port != 80) { port_suffix = std::to_string(port).insert(0, 1, ':'); }
std::string path = this->path();
if (path[0] != '/') { path.insert(0, 1, '/'); }
full_address = proto + ip.to_string() + port_suffix;
if (path != "/") { full_address += path; }
txt_data["path"] = std::move(path);
}
std::string BonjourReply::path() const
{
const auto it = txt_data.find("path");
return it != txt_data.end() ? it->second : std::string("/");
}
bool BonjourReply::operator==(const BonjourReply &other) const
{
return this->full_address == other.full_address
&& this->service_name == other.service_name;
}
bool BonjourReply::operator<(const BonjourReply &other) const
{
if (this->ip != other.ip) {
// So that the common case doesn't involve string comparison
return this->ip < other.ip;
} else {
auto cmp = this->full_address.compare(other.full_address);
return cmp != 0 ? cmp < 0 : this->service_name < other.service_name;
}
}
std::ostream& operator<<(std::ostream &os, const BonjourReply &reply)
{
os << boost::format("BonjourReply(%1%, %2%, %3%, %4%")
% reply.ip.to_string()
% reply.service_name
% reply.hostname
% reply.full_address;
for (const auto &kv : reply.txt_data) {
os << boost::format(", %1%=%2%") % kv.first % kv.second;
}
return os << ')';
}
Bonjour::Bonjour(std::string service)
: p(new priv(std::move(service)))
{}
Bonjour::Bonjour(Bonjour &&other) : p(std::move(other.p)) {}
Bonjour::~Bonjour()
{
if (p && p->io_thread.joinable()) {
p->io_thread.detach();
}
}
Bonjour& Bonjour::set_protocol(std::string protocol)
{
if (p) { p->protocol = std::move(protocol); }
return *this;
}
Bonjour& Bonjour::set_txt_keys(TxtKeys txt_keys)
{
if (p) { p->txt_keys = std::move(txt_keys); }
return *this;
}
Bonjour& Bonjour::set_timeout(unsigned timeout)
{
if (p) { p->timeout = timeout; }
return *this;
}
Bonjour& Bonjour::set_hostname(const std::string& hostname)
{
if (p) { p->hostname = hostname; }
return *this;
}
Bonjour& Bonjour::set_retries(unsigned retries)
{
if (p && retries > 0) { p->retries = retries; }
return *this;
}
Bonjour& Bonjour::on_reply(ReplyFn fn)
{
if (p) { p->replyfn = std::move(fn); }
return *this;
}
Bonjour& Bonjour::on_complete(CompleteFn fn)
{
if (p) { p->completefn = std::move(fn); }
return *this;
}
Bonjour& Bonjour::on_resolve(ResolveFn fn)
{
if (p) { p->resolvefn = std::move(fn); }
return *this;
}
Bonjour::Ptr Bonjour::lookup()
{
auto self = std::make_shared<Bonjour>(std::move(*this));
if (self->p) {
auto io_thread = std::thread([self]() {
self->p->lookup_perform();
});
self->p->io_thread = std::move(io_thread);
}
return self;
}
Bonjour::Ptr Bonjour::resolve()
{
auto self = std::make_shared<Bonjour>(std::move(*this));
if (self->p) {
auto io_thread = std::thread([self]() {
self->p->resolve_perform();
});
self->p->io_thread = std::move(io_thread);
}
return self;
}
void Bonjour::resolve_sync()
{
if (p)
p->resolve_perform();
}
}