PrusaSlicer/src/slic3r/GUI/Gizmos/GLGizmoFlatten.cpp
Lukas Matena a4300b8e64 Naming of the entering/leaving snapshots is now more generic,
it uses the actual name of the gizmo. Also, the keyboard shortcut
is now appended to the name, instead of being duplicated in it.
2021-09-03 13:53:07 +02:00

376 lines
15 KiB
C++

// Include GLGizmoBase.hpp before I18N.hpp as it includes some libigl code, which overrides our localization "L" macro.
#include "GLGizmoFlatten.hpp"
#include "slic3r/GUI/GLCanvas3D.hpp"
#include "slic3r/GUI/Gizmos/GLGizmosCommon.hpp"
#include "libslic3r/Model.hpp"
#include <numeric>
#include <GL/glew.h>
namespace Slic3r {
namespace GUI {
GLGizmoFlatten::GLGizmoFlatten(GLCanvas3D& parent, const std::string& icon_filename, unsigned int sprite_id)
: GLGizmoBase(parent, icon_filename, sprite_id)
, m_normal(Vec3d::Zero())
, m_starting_center(Vec3d::Zero())
{
}
bool GLGizmoFlatten::on_init()
{
m_shortcut_key = WXK_CONTROL_F;
return true;
}
void GLGizmoFlatten::on_set_state()
{
}
CommonGizmosDataID GLGizmoFlatten::on_get_requirements() const
{
return CommonGizmosDataID::SelectionInfo;
}
std::string GLGizmoFlatten::on_get_name() const
{
return _u8L("Place on face");
}
bool GLGizmoFlatten::on_is_activable() const
{
// This is assumed in GLCanvas3D::do_rotate, do not change this
// without updating that function too.
return m_parent.get_selection().is_single_full_instance();
}
void GLGizmoFlatten::on_start_dragging()
{
if (m_hover_id != -1) {
assert(m_planes_valid);
m_normal = m_planes[m_hover_id].normal;
m_starting_center = m_parent.get_selection().get_bounding_box().center();
}
}
void GLGizmoFlatten::on_render()
{
const Selection& selection = m_parent.get_selection();
glsafe(::glClear(GL_DEPTH_BUFFER_BIT));
glsafe(::glEnable(GL_DEPTH_TEST));
glsafe(::glEnable(GL_BLEND));
if (selection.is_single_full_instance()) {
const Transform3d& m = selection.get_volume(*selection.get_volume_idxs().begin())->get_instance_transformation().get_matrix();
glsafe(::glPushMatrix());
glsafe(::glTranslatef(0.f, 0.f, selection.get_volume(*selection.get_volume_idxs().begin())->get_sla_shift_z()));
glsafe(::glMultMatrixd(m.data()));
if (this->is_plane_update_necessary())
update_planes();
for (int i = 0; i < (int)m_planes.size(); ++i) {
if (i == m_hover_id)
glsafe(::glColor4f(0.9f, 0.9f, 0.9f, 0.75f));
else
glsafe(::glColor4f(0.9f, 0.9f, 0.9f, 0.5f));
if (m_planes[i].vbo.has_VBOs())
m_planes[i].vbo.render();
}
glsafe(::glPopMatrix());
}
glsafe(::glEnable(GL_CULL_FACE));
glsafe(::glDisable(GL_BLEND));
}
void GLGizmoFlatten::on_render_for_picking()
{
const Selection& selection = m_parent.get_selection();
glsafe(::glDisable(GL_DEPTH_TEST));
glsafe(::glDisable(GL_BLEND));
if (selection.is_single_full_instance() && !wxGetKeyState(WXK_CONTROL)) {
const Transform3d& m = selection.get_volume(*selection.get_volume_idxs().begin())->get_instance_transformation().get_matrix();
glsafe(::glPushMatrix());
glsafe(::glTranslatef(0.f, 0.f, selection.get_volume(*selection.get_volume_idxs().begin())->get_sla_shift_z()));
glsafe(::glMultMatrixd(m.data()));
if (this->is_plane_update_necessary())
update_planes();
for (int i = 0; i < (int)m_planes.size(); ++i) {
glsafe(::glColor4fv(picking_color_component(i).data()));
m_planes[i].vbo.render();
}
glsafe(::glPopMatrix());
}
glsafe(::glEnable(GL_CULL_FACE));
}
void GLGizmoFlatten::set_flattening_data(const ModelObject* model_object)
{
m_starting_center = Vec3d::Zero();
if (model_object != m_old_model_object) {
m_planes.clear();
m_planes_valid = false;
}
}
void GLGizmoFlatten::update_planes()
{
const ModelObject* mo = m_c->selection_info()->model_object();
TriangleMesh ch;
for (const ModelVolume* vol : mo->volumes) {
if (vol->type() != ModelVolumeType::MODEL_PART)
continue;
TriangleMesh vol_ch = vol->get_convex_hull();
vol_ch.transform(vol->get_matrix());
ch.merge(vol_ch);
}
ch = ch.convex_hull_3d();
m_planes.clear();
const Transform3d& inst_matrix = mo->instances.front()->get_matrix(true);
// Following constants are used for discarding too small polygons.
const float minimal_area = 5.f; // in square mm (world coordinates)
const float minimal_side = 1.f; // mm
// Now we'll go through all the facets and append Points of facets sharing the same normal.
// This part is still performed in mesh coordinate system.
const int num_of_facets = ch.stl.stats.number_of_facets;
std::vector<int> facet_queue(num_of_facets, 0);
std::vector<bool> facet_visited(num_of_facets, false);
int facet_queue_cnt = 0;
const stl_normal* normal_ptr = nullptr;
while (1) {
// Find next unvisited triangle:
int facet_idx = 0;
for (; facet_idx < num_of_facets; ++ facet_idx)
if (!facet_visited[facet_idx]) {
facet_queue[facet_queue_cnt ++] = facet_idx;
facet_visited[facet_idx] = true;
normal_ptr = &ch.stl.facet_start[facet_idx].normal;
m_planes.emplace_back();
break;
}
if (facet_idx == num_of_facets)
break; // Everything was visited already
while (facet_queue_cnt > 0) {
int facet_idx = facet_queue[-- facet_queue_cnt];
const stl_normal& this_normal = ch.stl.facet_start[facet_idx].normal;
if (std::abs(this_normal(0) - (*normal_ptr)(0)) < 0.001 && std::abs(this_normal(1) - (*normal_ptr)(1)) < 0.001 && std::abs(this_normal(2) - (*normal_ptr)(2)) < 0.001) {
stl_vertex* first_vertex = ch.stl.facet_start[facet_idx].vertex;
for (int j=0; j<3; ++j)
m_planes.back().vertices.emplace_back(first_vertex[j].cast<double>());
facet_visited[facet_idx] = true;
for (int j = 0; j < 3; ++ j) {
int neighbor_idx = ch.stl.neighbors_start[facet_idx].neighbor[j];
if (! facet_visited[neighbor_idx])
facet_queue[facet_queue_cnt ++] = neighbor_idx;
}
}
}
m_planes.back().normal = normal_ptr->cast<double>();
Pointf3s& verts = m_planes.back().vertices;
// Now we'll transform all the points into world coordinates, so that the areas, angles and distances
// make real sense.
verts = transform(verts, inst_matrix);
// if this is a just a very small triangle, remove it to speed up further calculations (it would be rejected later anyway):
if (verts.size() == 3 &&
((verts[0] - verts[1]).norm() < minimal_side
|| (verts[0] - verts[2]).norm() < minimal_side
|| (verts[1] - verts[2]).norm() < minimal_side))
m_planes.pop_back();
}
// Let's prepare transformation of the normal vector from mesh to instance coordinates.
Geometry::Transformation t(inst_matrix);
Vec3d scaling = t.get_scaling_factor();
t.set_scaling_factor(Vec3d(1./scaling(0), 1./scaling(1), 1./scaling(2)));
// Now we'll go through all the polygons, transform the points into xy plane to process them:
for (unsigned int polygon_id=0; polygon_id < m_planes.size(); ++polygon_id) {
Pointf3s& polygon = m_planes[polygon_id].vertices;
const Vec3d& normal = m_planes[polygon_id].normal;
// transform the normal according to the instance matrix:
Vec3d normal_transformed = t.get_matrix() * normal;
// We are going to rotate about z and y to flatten the plane
Eigen::Quaterniond q;
Transform3d m = Transform3d::Identity();
m.matrix().block(0, 0, 3, 3) = q.setFromTwoVectors(normal_transformed, Vec3d::UnitZ()).toRotationMatrix();
polygon = transform(polygon, m);
// Now to remove the inner points. We'll misuse Geometry::convex_hull for that, but since
// it works in fixed point representation, we will rescale the polygon to avoid overflows.
// And yes, it is a nasty thing to do. Whoever has time is free to refactor.
Vec3d bb_size = BoundingBoxf3(polygon).size();
float sf = std::min(1./bb_size(0), 1./bb_size(1));
Transform3d tr = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), Vec3d(sf, sf, 1.f));
polygon = transform(polygon, tr);
polygon = Slic3r::Geometry::convex_hull(polygon);
polygon = transform(polygon, tr.inverse());
// Calculate area of the polygons and discard ones that are too small
float& area = m_planes[polygon_id].area;
area = 0.f;
for (unsigned int i = 0; i < polygon.size(); i++) // Shoelace formula
area += polygon[i](0)*polygon[i + 1 < polygon.size() ? i + 1 : 0](1) - polygon[i + 1 < polygon.size() ? i + 1 : 0](0)*polygon[i](1);
area = 0.5f * std::abs(area);
bool discard = false;
if (area < minimal_area)
discard = true;
else {
// We also check the inner angles and discard polygons with angles smaller than the following threshold
const double angle_threshold = ::cos(10.0 * (double)PI / 180.0);
for (unsigned int i = 0; i < polygon.size(); ++i) {
const Vec3d& prec = polygon[(i == 0) ? polygon.size() - 1 : i - 1];
const Vec3d& curr = polygon[i];
const Vec3d& next = polygon[(i == polygon.size() - 1) ? 0 : i + 1];
if ((prec - curr).normalized().dot((next - curr).normalized()) > angle_threshold) {
discard = true;
break;
}
}
}
if (discard) {
m_planes.erase(m_planes.begin() + (polygon_id--));
continue;
}
// We will shrink the polygon a little bit so it does not touch the object edges:
Vec3d centroid = std::accumulate(polygon.begin(), polygon.end(), Vec3d(0.0, 0.0, 0.0));
centroid /= (double)polygon.size();
for (auto& vertex : polygon)
vertex = 0.9f*vertex + 0.1f*centroid;
// Polygon is now simple and convex, we'll round the corners to make them look nicer.
// The algorithm takes a vertex, calculates middles of respective sides and moves the vertex
// towards their average (controlled by 'aggressivity'). This is repeated k times.
// In next iterations, the neighbours are not always taken at the middle (to increase the
// rounding effect at the corners, where we need it most).
const unsigned int k = 10; // number of iterations
const float aggressivity = 0.2f; // agressivity
const unsigned int N = polygon.size();
std::vector<std::pair<unsigned int, unsigned int>> neighbours;
if (k != 0) {
Pointf3s points_out(2*k*N); // vector long enough to store the future vertices
for (unsigned int j=0; j<N; ++j) {
points_out[j*2*k] = polygon[j];
neighbours.push_back(std::make_pair((int)(j*2*k-k) < 0 ? (N-1)*2*k+k : j*2*k-k, j*2*k+k));
}
for (unsigned int i=0; i<k; ++i) {
// Calculate middle of each edge so that neighbours points to something useful:
for (unsigned int j=0; j<N; ++j)
if (i==0)
points_out[j*2*k+k] = 0.5f * (points_out[j*2*k] + points_out[j==N-1 ? 0 : (j+1)*2*k]);
else {
float r = 0.2+0.3/(k-1)*i; // the neighbours are not always taken in the middle
points_out[neighbours[j].first] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].first-1];
points_out[neighbours[j].second] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].second+1];
}
// Now we have a triangle and valid neighbours, we can do an iteration:
for (unsigned int j=0; j<N; ++j)
points_out[2*k*j] = (1-aggressivity) * points_out[2*k*j] +
aggressivity*0.5f*(points_out[neighbours[j].first] + points_out[neighbours[j].second]);
for (auto& n : neighbours) {
++n.first;
--n.second;
}
}
polygon = points_out; // replace the coarse polygon with the smooth one that we just created
}
// Raise a bit above the object surface to avoid flickering:
for (auto& b : polygon)
b(2) += 0.1f;
// Transform back to 3D (and also back to mesh coordinates)
polygon = transform(polygon, inst_matrix.inverse() * m.inverse());
}
// We'll sort the planes by area and only keep the 254 largest ones (because of the picking pass limitations):
std::sort(m_planes.rbegin(), m_planes.rend(), [](const PlaneData& a, const PlaneData& b) { return a.area < b.area; });
m_planes.resize(std::min((int)m_planes.size(), 254));
// Planes are finished - let's save what we calculated it from:
m_volumes_matrices.clear();
m_volumes_types.clear();
for (const ModelVolume* vol : mo->volumes) {
m_volumes_matrices.push_back(vol->get_matrix());
m_volumes_types.push_back(vol->type());
}
m_first_instance_scale = mo->instances.front()->get_scaling_factor();
m_first_instance_mirror = mo->instances.front()->get_mirror();
m_old_model_object = mo;
// And finally create respective VBOs. The polygon is convex with
// the vertices in order, so triangulation is trivial.
for (auto& plane : m_planes) {
plane.vbo.reserve(plane.vertices.size());
for (const auto& vert : plane.vertices)
plane.vbo.push_geometry(vert, plane.normal);
for (size_t i=1; i<plane.vertices.size()-1; ++i)
plane.vbo.push_triangle(0, i, i+1); // triangle fan
plane.vbo.finalize_geometry(true);
// FIXME: vertices should really be local, they need not
// persist now when we use VBOs
plane.vertices.clear();
plane.vertices.shrink_to_fit();
}
m_planes_valid = true;
}
bool GLGizmoFlatten::is_plane_update_necessary() const
{
const ModelObject* mo = m_c->selection_info()->model_object();
if (m_state != On || ! mo || mo->instances.empty())
return false;
if (! m_planes_valid || mo != m_old_model_object
|| mo->volumes.size() != m_volumes_matrices.size())
return true;
// We want to recalculate when the scale changes - some planes could (dis)appear.
if (! mo->instances.front()->get_scaling_factor().isApprox(m_first_instance_scale)
|| ! mo->instances.front()->get_mirror().isApprox(m_first_instance_mirror))
return true;
for (unsigned int i=0; i < mo->volumes.size(); ++i)
if (! mo->volumes[i]->get_matrix().isApprox(m_volumes_matrices[i])
|| mo->volumes[i]->type() != m_volumes_types[i])
return true;
return false;
}
Vec3d GLGizmoFlatten::get_flattening_normal() const
{
Vec3d out = m_normal;
m_normal = Vec3d::Zero();
m_starting_center = Vec3d::Zero();
return out;
}
} // namespace GUI
} // namespace Slic3r