PrusaSlicer/src/libslic3r/GCode/PressureEqualizer.cpp

733 lines
30 KiB
C++

#include <memory.h>
#include <cstring>
#include <cfloat>
#include "../libslic3r.h"
#include "../PrintConfig.hpp"
#include "../LocalesUtils.hpp"
#include "../GCode.hpp"
#include "PressureEqualizer.hpp"
#include "fast_float/fast_float.h"
#include "GCodeWriter.hpp"
namespace Slic3r {
static const std::string EXTRUSION_ROLE_TAG = ";_EXTRUSION_ROLE:";
static const std::string EXTRUDE_END_TAG = ";_EXTRUDE_END";
static const std::string EXTRUDE_SET_SPEED_TAG = ";_EXTRUDE_SET_SPEED";
static const std::string EXTERNAL_PERIMETER_TAG = ";_EXTERNAL_PERIMETER";
// Maximum segment length to split a long segment if the initial and the final flow rate differ.
// Smaller value means a smoother transition between two different flow rates.
static constexpr float max_segment_length = 5.f;
// For how many GCode lines back will adjust a flow rate from the latest line.
// Bigger values affect the GCode export speed a lot, and smaller values could
// affect how distant will be propagated a flow rate adjustment.
static constexpr int max_look_back_limit = 128;
PressureEqualizer::PressureEqualizer(const Slic3r::GCodeConfig &config) : m_use_relative_e_distances(config.use_relative_e_distances.value)
{
// Preallocate some data, so that output_buffer.data() will return an empty string.
output_buffer.assign(32, 0);
output_buffer_length = 0;
output_buffer_prev_length = 0;
m_current_extruder = 0;
// Zero the position of the XYZE axes + the current feed
memset(m_current_pos, 0, sizeof(float) * 5);
m_current_extrusion_role = erNone;
// Expect the first command to fill the nozzle (deretract).
m_retracted = true;
// Calculate filamet crossections for the multiple extruders.
m_filament_crossections.clear();
for (double r : config.filament_diameter.values) {
double a = 0.25f * M_PI * r * r;
m_filament_crossections.push_back(float(a));
}
// Volumetric rate of a 0.45mm x 0.2mm extrusion at 60mm/s XY movement: 0.45*0.2*60*60=5.4*60 = 324 mm^3/min
// Volumetric rate of a 0.45mm x 0.2mm extrusion at 20mm/s XY movement: 0.45*0.2*20*60=1.8*60 = 108 mm^3/min
// Slope of the volumetric rate, changing from 20mm/s to 60mm/s over 2 seconds: (5.4-1.8)*60*60/2=60*60*1.8 = 6480 mm^3/min^2 = 1.8 mm^3/s^2
m_max_volumetric_extrusion_rate_slope_positive = float(config.max_volumetric_extrusion_rate_slope_positive.value) * 60.f * 60.f;
m_max_volumetric_extrusion_rate_slope_negative = float(config.max_volumetric_extrusion_rate_slope_negative.value) * 60.f * 60.f;
for (ExtrusionRateSlope &extrusion_rate_slope : m_max_volumetric_extrusion_rate_slopes) {
extrusion_rate_slope.negative = m_max_volumetric_extrusion_rate_slope_negative;
extrusion_rate_slope.positive = m_max_volumetric_extrusion_rate_slope_positive;
}
// Don't regulate the pressure before and after gap-fill and ironing.
for (const ExtrusionRole er : {erGapFill, erIroning}) {
m_max_volumetric_extrusion_rate_slopes[er].negative = 0;
m_max_volumetric_extrusion_rate_slopes[er].positive = 0;
}
opened_extrude_set_speed_block = false;
#ifdef PRESSURE_EQUALIZER_STATISTIC
m_stat.reset();
#endif
#ifdef PRESSURE_EQUALIZER_DEBUG
line_idx = 0;
#endif
}
void PressureEqualizer::process_layer(const std::string &gcode)
{
if (!gcode.empty()) {
const char *gcode_begin = gcode.c_str();
while (*gcode_begin != 0) {
// Find end of the line.
const char *gcode_end = gcode_begin;
// Slic3r always generates end of lines in a Unix style.
for (; *gcode_end != 0 && *gcode_end != '\n'; ++gcode_end);
m_gcode_lines.emplace_back();
if (!this->process_line(gcode_begin, gcode_end, m_gcode_lines.back())) {
// The line has to be forgotten. It contains comment marks, which shall be filtered out of the target g-code.
m_gcode_lines.pop_back();
}
gcode_begin = gcode_end;
if (*gcode_begin == '\n')
++gcode_begin;
}
assert(!this->opened_extrude_set_speed_block);
}
}
LayerResult PressureEqualizer::process_layer(LayerResult &&input)
{
const bool is_first_layer = m_layer_results.empty();
const size_t next_layer_first_idx = m_gcode_lines.size();
if (!input.nop_layer_result) {
this->process_layer(input.gcode);
input.gcode.clear(); // GCode is already processed, so it isn't needed to store it.
m_layer_results.emplace(new LayerResult(input));
}
if (is_first_layer) // Buffer previous input result and output NOP.
return LayerResult::make_nop_layer_result();
// Export previous layer.
LayerResult *prev_layer_result = m_layer_results.front();
m_layer_results.pop();
output_buffer_length = 0;
output_buffer_prev_length = 0;
for (size_t line_idx = 0; line_idx < next_layer_first_idx; ++line_idx)
output_gcode_line(line_idx);
m_gcode_lines.erase(m_gcode_lines.begin(), m_gcode_lines.begin() + int(next_layer_first_idx));
if (output_buffer_length > 0)
prev_layer_result->gcode = std::string(output_buffer.data());
assert(!input.nop_layer_result || m_layer_results.empty());
LayerResult out = *prev_layer_result;
delete prev_layer_result;
return out;
}
// Is a white space?
static inline bool is_ws(const char c) { return c == ' ' || c == '\t'; }
// Is it an end of line? Consider a comment to be an end of line as well.
static inline bool is_eol(const char c) { return c == 0 || c == '\r' || c == '\n' || c == ';'; }
// Is it a white space or end of line?
static inline bool is_ws_or_eol(const char c) { return is_ws(c) || is_eol(c); }
// Eat whitespaces.
static void eatws(const char *&line)
{
while (is_ws(*line))
++ line;
}
// Parse an int starting at the current position of a line.
// If succeeded, the line pointer is advanced.
static inline int parse_int(const char *&line)
{
char *endptr = nullptr;
long result = strtol(line, &endptr, 10);
if (endptr == nullptr || !is_ws_or_eol(*endptr))
throw Slic3r::InvalidArgument("PressureEqualizer: Error parsing an int");
line = endptr;
return int(result);
}
float string_to_float_decimal_point(const char *line, const size_t str_len, size_t* pos)
{
float out;
size_t p = fast_float::from_chars(line, line + str_len, out).ptr - line;
if (pos)
*pos = p;
return out;
}
// Parse an int starting at the current position of a line.
// If succeeded, the line pointer is advanced.
static inline float parse_float(const char *&line, const size_t line_length)
{
size_t endptr = 0;
auto result = string_to_float_decimal_point(line, line_length, &endptr);
if (endptr == 0 || !is_ws_or_eol(*(line + endptr)))
throw Slic3r::RuntimeError("PressureEqualizer: Error parsing a float");
line = line + endptr;
return result;
}
bool PressureEqualizer::process_line(const char *line, const char *line_end, GCodeLine &buf)
{
const size_t len = line_end - line;
if (strncmp(line, EXTRUSION_ROLE_TAG.data(), EXTRUSION_ROLE_TAG.length()) == 0) {
line += EXTRUSION_ROLE_TAG.length();
int role = atoi(line);
m_current_extrusion_role = ExtrusionRole(role);
#ifdef PRESSURE_EQUALIZER_DEBUG
++line_idx;
#endif
return false;
}
// Set the type, copy the line to the buffer.
buf.type = GCODELINETYPE_OTHER;
buf.modified = false;
if (buf.raw.size() < len + 1)
buf.raw.assign(line, line + len + 1);
else
memcpy(buf.raw.data(), line, len);
buf.raw[len] = 0;
buf.raw_length = len;
memcpy(buf.pos_start, m_current_pos, sizeof(float)*5);
memcpy(buf.pos_end, m_current_pos, sizeof(float)*5);
memset(buf.pos_provided, 0, 5);
buf.volumetric_extrusion_rate = 0.f;
buf.volumetric_extrusion_rate_start = 0.f;
buf.volumetric_extrusion_rate_end = 0.f;
buf.max_volumetric_extrusion_rate_slope_positive = 0.f;
buf.max_volumetric_extrusion_rate_slope_negative = 0.f;
buf.extrusion_role = m_current_extrusion_role;
std::string str_line(line, line_end);
const bool found_extrude_set_speed_tag = boost::contains(str_line, EXTRUDE_SET_SPEED_TAG);
const bool found_extrude_end_tag = boost::contains(str_line, EXTRUDE_END_TAG);
assert(!found_extrude_set_speed_tag || !found_extrude_end_tag);
if (found_extrude_set_speed_tag)
this->opened_extrude_set_speed_block = true;
else if (found_extrude_end_tag)
this->opened_extrude_set_speed_block = false;
// Parse the G-code line, store the result into the buf.
switch (toupper(*line ++)) {
case 'G': {
int gcode = -1;
try {
gcode = parse_int(line);
} catch (Slic3r::InvalidArgument &) {
// Ignore invalid GCodes.
eatws(line);
break;
}
assert(gcode != -1);
eatws(line);
switch (gcode) {
case 0:
case 1:
{
// G0, G1: A FFF 3D printer does not make a difference between the two.
buf.adjustable_flow = this->opened_extrude_set_speed_block;
buf.extrude_set_speed_tag = found_extrude_set_speed_tag;
buf.extrude_end_tag = found_extrude_end_tag;
float new_pos[5];
memcpy(new_pos, m_current_pos, sizeof(float)*5);
bool changed[5] = { false, false, false, false, false };
while (!is_eol(*line)) {
const char axis = toupper(*line++);
int i = -1;
switch (axis) {
case 'X':
case 'Y':
case 'Z':
i = axis - 'X';
break;
case 'E':
i = 3;
break;
case 'F':
i = 4;
break;
default:
break;
}
if (i != -1) {
buf.pos_provided[i] = true;
new_pos[i] = parse_float(line, line_end - line);
if (i == 3 && m_use_relative_e_distances)
new_pos[i] += m_current_pos[i];
changed[i] = new_pos[i] != m_current_pos[i];
eatws(line);
}
}
if (changed[3]) {
// Extrusion, retract or unretract.
float diff = new_pos[3] - m_current_pos[3];
if (diff < 0) {
buf.type = GCODELINETYPE_RETRACT;
m_retracted = true;
} else if (! changed[0] && ! changed[1] && ! changed[2]) {
// assert(m_retracted);
buf.type = GCODELINETYPE_UNRETRACT;
m_retracted = false;
} else {
assert(changed[0] || changed[1]);
// Moving in XY plane.
buf.type = GCODELINETYPE_EXTRUDE;
// Calculate the volumetric extrusion rate.
float diff[4];
for (size_t i = 0; i < 4; ++ i)
diff[i] = new_pos[i] - m_current_pos[i];
// volumetric extrusion rate = A_filament * F_xyz * L_e / L_xyz [mm^3/min]
float len2 = diff[0]*diff[0]+diff[1]*diff[1]+diff[2]*diff[2];
float rate = m_filament_crossections[m_current_extruder] * new_pos[4] * sqrt((diff[3]*diff[3])/len2);
buf.volumetric_extrusion_rate = rate;
buf.volumetric_extrusion_rate_start = rate;
buf.volumetric_extrusion_rate_end = rate;
#ifdef PRESSURE_EQUALIZER_STATISTIC
m_stat.update(rate, sqrt(len2));
#endif
#ifdef PRESSURE_EQUALIZER_DEBUG
if (rate < 40.f) {
printf("Extremely low flow rate: %f. Line %d, Length: %f, extrusion: %f Old position: (%f, %f, %f), new position: (%f, %f, %f)\n",
rate, int(line_idx), sqrt(len2), sqrt((diff[3] * diff[3]) / len2), m_current_pos[0], m_current_pos[1], m_current_pos[2],
new_pos[0], new_pos[1], new_pos[2]);
}
#endif
}
} else if (changed[0] || changed[1] || changed[2]) {
// Moving without extrusion.
buf.type = GCODELINETYPE_MOVE;
}
memcpy(m_current_pos, new_pos, sizeof(float) * 5);
break;
}
case 92:
{
// G92 : Set Position
// Set a logical coordinate position to a new value without actually moving the machine motors.
// Which axes to set?
while (!is_eol(*line)) {
const char axis = toupper(*line++);
switch (axis) {
case 'X':
case 'Y':
case 'Z':
m_current_pos[axis - 'X'] = (!is_ws_or_eol(*line)) ? parse_float(line, line_end - line) : 0.f;
break;
case 'E':
m_current_pos[3] = (!is_ws_or_eol(*line)) ? parse_float(line, line_end - line) : 0.f;
break;
default:
break;
}
eatws(line);
}
break;
}
case 10:
case 22:
// Firmware retract.
buf.type = GCODELINETYPE_RETRACT;
m_retracted = true;
break;
case 11:
case 23:
// Firmware unretract.
buf.type = GCODELINETYPE_UNRETRACT;
m_retracted = false;
break;
default:
// Ignore the rest.
break;
}
break;
}
case 'M': {
eatws(line);
// Ignore the rest of the M-codes.
break;
}
case 'T':
{
// Activate an extruder head.
int new_extruder = -1;
try {
new_extruder = parse_int(line);
} catch (Slic3r::InvalidArgument &) {
// Ignore invalid GCodes starting with T.
eatws(line);
break;
}
assert(new_extruder != -1);
if (new_extruder != int(m_current_extruder)) {
m_current_extruder = new_extruder;
m_retracted = true;
buf.type = GCODELINETYPE_TOOL_CHANGE;
} else {
buf.type = GCODELINETYPE_NOOP;
}
break;
}
}
buf.extruder_id = m_current_extruder;
memcpy(buf.pos_end, m_current_pos, sizeof(float)*5);
adjust_volumetric_rate();
#ifdef PRESSURE_EQUALIZER_DEBUG
++line_idx;
#endif
return true;
}
void PressureEqualizer::output_gcode_line(const size_t line_idx)
{
GCodeLine &line = m_gcode_lines[line_idx];
if (!line.modified) {
push_to_output(line.raw.data(), line.raw_length, true);
return;
}
// The line was modified.
// Find the comment.
const char *comment = line.raw.data();
while (*comment != ';' && *comment != 0) ++comment;
if (*comment != ';')
comment = nullptr;
// Emit the line with lowered extrusion rates.
float l = line.dist_xyz();
if (auto nSegments = size_t(ceil(l / max_segment_length)); nSegments == 1) { // Just update this segment.
push_line_to_output(line_idx, line.feedrate() * line.volumetric_correction_avg(), comment);
} else {
bool accelerating = line.volumetric_extrusion_rate_start < line.volumetric_extrusion_rate_end;
// Update the initial and final feed rate values.
line.pos_start[4] = line.volumetric_extrusion_rate_start * line.pos_end[4] / line.volumetric_extrusion_rate;
line.pos_end [4] = line.volumetric_extrusion_rate_end * line.pos_end[4] / line.volumetric_extrusion_rate;
float feed_avg = 0.5f * (line.pos_start[4] + line.pos_end[4]);
// Limiting volumetric extrusion rate slope for this segment.
float max_volumetric_extrusion_rate_slope = accelerating ? line.max_volumetric_extrusion_rate_slope_positive :
line.max_volumetric_extrusion_rate_slope_negative;
// Total time for the segment, corrected for the possibly lowered volumetric feed rate,
// if accelerating / decelerating over the complete segment.
float t_total = line.dist_xyz() / feed_avg;
// Time of the acceleration / deceleration part of the segment, if accelerating / decelerating
// with the maximum volumetric extrusion rate slope.
float t_acc = 0.5f * (line.volumetric_extrusion_rate_start + line.volumetric_extrusion_rate_end) / max_volumetric_extrusion_rate_slope;
float l_acc = l;
float l_steady = 0.f;
if (t_acc < t_total) {
// One may achieve higher print speeds if part of the segment is not speed limited.
l_acc = t_acc * feed_avg;
l_steady = l - l_acc;
if (l_steady < 0.5f * max_segment_length) {
l_acc = l;
l_steady = 0.f;
} else
nSegments = size_t(ceil(l_acc / max_segment_length));
}
float pos_start[5];
float pos_end[5];
float pos_end2[4];
memcpy(pos_start, line.pos_start, sizeof(float) * 5);
memcpy(pos_end, line.pos_end, sizeof(float) * 5);
if (l_steady > 0.f) {
// There will be a steady feed segment emitted.
if (accelerating) {
// Prepare the final steady feed rate segment.
memcpy(pos_end2, pos_end, sizeof(float)*4);
float t = l_acc / l;
for (int i = 0; i < 4; ++ i) {
pos_end[i] = pos_start[i] + (pos_end[i] - pos_start[i]) * t;
line.pos_provided[i] = true;
}
} else {
// Emit the steady feed rate segment.
float t = l_steady / l;
for (int i = 0; i < 4; ++ i) {
line.pos_end[i] = pos_start[i] + (pos_end[i] - pos_start[i]) * t;
line.pos_provided[i] = true;
}
push_line_to_output(line_idx, pos_start[4], comment);
comment = nullptr;
float new_pos_start_feedrate = pos_start[4];
memcpy(line.pos_start, line.pos_end, sizeof(float)*5);
memcpy(pos_start, line.pos_end, sizeof(float)*5);
line.pos_start[4] = new_pos_start_feedrate;
pos_start[4] = new_pos_start_feedrate;
}
}
// Split the segment into pieces.
for (size_t i = 1; i < nSegments; ++ i) {
float t = float(i) / float(nSegments);
for (size_t j = 0; j < 4; ++ j) {
line.pos_end[j] = pos_start[j] + (pos_end[j] - pos_start[j]) * t;
line.pos_provided[j] = true;
}
// Interpolate the feed rate at the center of the segment.
push_line_to_output(line_idx, pos_start[4] + (pos_end[4] - pos_start[4]) * (float(i) - 0.5f) / float(nSegments), comment);
comment = nullptr;
memcpy(line.pos_start, line.pos_end, sizeof(float)*5);
}
if (l_steady > 0.f && accelerating) {
for (int i = 0; i < 4; ++ i) {
line.pos_end[i] = pos_end2[i];
line.pos_provided[i] = true;
}
push_line_to_output(line_idx, pos_end[4], comment);
} else {
for (int i = 0; i < 4; ++ i) {
line.pos_end[i] = pos_end[i];
line.pos_provided[i] = true;
}
push_line_to_output(line_idx, pos_end[4], comment);
}
}
}
void PressureEqualizer::adjust_volumetric_rate()
{
if (m_gcode_lines.size() < 2)
return;
// Go back from the current circular_buffer_pos and lower the feedtrate to decrease the slope of the extrusion rate changes.
size_t fist_line_idx = size_t(std::max<int>(0, int(m_gcode_lines.size()) - max_look_back_limit));
const size_t last_line_idx = m_gcode_lines.size() - 1;
size_t line_idx = last_line_idx;
if (line_idx == fist_line_idx || !m_gcode_lines[line_idx].extruding())
// Nothing to do, the last move is not extruding.
return;
std::array<float, erCount> feedrate_per_extrusion_role{};
feedrate_per_extrusion_role.fill(std::numeric_limits<float>::max());
feedrate_per_extrusion_role[m_gcode_lines[line_idx].extrusion_role] = m_gcode_lines[line_idx].volumetric_extrusion_rate_start;
while (line_idx != fist_line_idx) {
size_t idx_prev = line_idx - 1;
for (; !m_gcode_lines[idx_prev].extruding() && idx_prev != fist_line_idx; --idx_prev);
if (!m_gcode_lines[idx_prev].extruding())
break;
// Don't decelerate before ironing and gap-fill.
if (m_gcode_lines[line_idx].extrusion_role == erIroning || m_gcode_lines[line_idx].extrusion_role == erGapFill) {
line_idx = idx_prev;
continue;
}
// Volumetric extrusion rate at the start of the succeding segment.
float rate_succ = m_gcode_lines[line_idx].volumetric_extrusion_rate_start;
// What is the gradient of the extrusion rate between idx_prev and idx?
line_idx = idx_prev;
GCodeLine &line = m_gcode_lines[line_idx];
for (size_t iRole = 1; iRole < erCount; ++ iRole) {
const float &rate_slope = m_max_volumetric_extrusion_rate_slopes[iRole].negative;
if (rate_slope == 0 || feedrate_per_extrusion_role[iRole] == std::numeric_limits<float>::max())
continue; // The negative rate is unlimited or the rate for ExtrusionRole iRole is unlimited.
float rate_end = feedrate_per_extrusion_role[iRole];
if (iRole == line.extrusion_role && rate_succ < rate_end)
// Limit by the succeeding volumetric flow rate.
rate_end = rate_succ;
if (!line.adjustable_flow || line.extrusion_role == erExternalPerimeter || line.extrusion_role == erGapFill || line.extrusion_role == erBridgeInfill || line.extrusion_role == erIroning) {
rate_end = line.volumetric_extrusion_rate_end;
} else if (line.volumetric_extrusion_rate_end > rate_end) {
line.volumetric_extrusion_rate_end = rate_end;
line.max_volumetric_extrusion_rate_slope_negative = rate_slope;
line.modified = true;
} else if (iRole == line.extrusion_role) {
rate_end = line.volumetric_extrusion_rate_end;
} else {
// Use the original, 'floating' extrusion rate as a starting point for the limiter.
}
if (line.adjustable_flow) {
float rate_start = rate_end + rate_slope * line.time_corrected();
if (rate_start < line.volumetric_extrusion_rate_start) {
// Limit the volumetric extrusion rate at the start of this segment due to a segment
// of ExtrusionType iRole, which will be extruded in the future.
line.volumetric_extrusion_rate_start = rate_start;
line.max_volumetric_extrusion_rate_slope_negative = rate_slope;
line.modified = true;
}
}
// feedrate_per_extrusion_role[iRole] = (iRole == line.extrusion_role) ? line.volumetric_extrusion_rate_start : rate_start;
// Don't store feed rate for ironing and gap-fill.
if (line.extrusion_role != erIroning && line.extrusion_role != erGapFill)
feedrate_per_extrusion_role[iRole] = line.volumetric_extrusion_rate_start;
}
}
feedrate_per_extrusion_role.fill(std::numeric_limits<float>::max());
feedrate_per_extrusion_role[m_gcode_lines[line_idx].extrusion_role] = m_gcode_lines[line_idx].volumetric_extrusion_rate_end;
assert(m_gcode_lines[line_idx].extruding());
while (line_idx != last_line_idx) {
size_t idx_next = line_idx + 1;
for (; !m_gcode_lines[idx_next].extruding() && idx_next != last_line_idx; ++idx_next);
if (!m_gcode_lines[idx_next].extruding())
break;
// Don't accelerate after ironing and gap-fill.
if (m_gcode_lines[line_idx].extrusion_role == erIroning || m_gcode_lines[line_idx].extrusion_role == erGapFill) {
line_idx = idx_next;
continue;
}
float rate_prec = m_gcode_lines[line_idx].volumetric_extrusion_rate_end;
// What is the gradient of the extrusion rate between idx_prev and idx?
line_idx = idx_next;
GCodeLine &line = m_gcode_lines[line_idx];
for (size_t iRole = 1; iRole < erCount; ++ iRole) {
const float &rate_slope = m_max_volumetric_extrusion_rate_slopes[iRole].positive;
if (rate_slope == 0 || feedrate_per_extrusion_role[iRole] == std::numeric_limits<float>::max())
continue; // The positive rate is unlimited or the rate for ExtrusionRole iRole is unlimited.
float rate_start = feedrate_per_extrusion_role[iRole];
if (!line.adjustable_flow || line.extrusion_role == erExternalPerimeter || line.extrusion_role == erGapFill || line.extrusion_role == erBridgeInfill || line.extrusion_role == erIroning) {
rate_start = line.volumetric_extrusion_rate_start;
} else if (iRole == line.extrusion_role && rate_prec < rate_start)
rate_start = rate_prec;
if (line.volumetric_extrusion_rate_start > rate_start) {
line.volumetric_extrusion_rate_start = rate_start;
line.max_volumetric_extrusion_rate_slope_positive = rate_slope;
line.modified = true;
} else if (iRole == line.extrusion_role) {
rate_start = line.volumetric_extrusion_rate_start;
} else {
// Use the original, 'floating' extrusion rate as a starting point for the limiter.
}
if (line.adjustable_flow) {
float rate_end = rate_start + rate_slope * line.time_corrected();
if (rate_end < line.volumetric_extrusion_rate_end) {
// Limit the volumetric extrusion rate at the start of this segment due to a segment
// of ExtrusionType iRole, which was extruded before.
line.volumetric_extrusion_rate_end = rate_end;
line.max_volumetric_extrusion_rate_slope_positive = rate_slope;
line.modified = true;
}
}
// feedrate_per_extrusion_role[iRole] = (iRole == line.extrusion_role) ? line.volumetric_extrusion_rate_end : rate_end;
// Don't store feed rate for ironing and gap-fill.
if (line.extrusion_role != erIroning && line.extrusion_role != erGapFill)
feedrate_per_extrusion_role[iRole] = line.volumetric_extrusion_rate_end;
}
}
}
inline void PressureEqualizer::push_to_output(GCodeG1Formatter &formatter)
{
return this->push_to_output(formatter.string(), false);
}
inline void PressureEqualizer::push_to_output(const std::string &text, bool add_eol)
{
return this->push_to_output(text.data(), text.size(), add_eol);
}
inline void PressureEqualizer::push_to_output(const char *text, const size_t len, bool add_eol)
{
// New length of the output buffer content.
size_t len_new = output_buffer_length + len + 1;
if (add_eol)
++len_new;
// Resize the output buffer to a power of 2 higher than the required memory.
if (output_buffer.size() < len_new) {
size_t v = len_new;
// Compute the next highest power of 2 of 32-bit v
// http://graphics.stanford.edu/~seander/bithacks.html
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
output_buffer.resize(v);
}
// Copy the text to the output.
if (len != 0) {
memcpy(output_buffer.data() + output_buffer_length, text, len);
this->output_buffer_prev_length = this->output_buffer_length;
output_buffer_length += len;
}
if (add_eol)
output_buffer[output_buffer_length++] = '\n';
output_buffer[output_buffer_length] = 0;
}
inline bool is_just_line_with_extrude_set_speed_tag(const std::string &line)
{
if (line.empty() && !boost::starts_with(line, "G1 ") && !boost::ends_with(line, EXTRUDE_SET_SPEED_TAG))
return false;
const char *p_line = line.data() + 3;
const char *const line_end = line.data() + line.length() - 1;
while (!is_eol(*p_line)) {
if (toupper(*p_line++) == 'F')
break;
else
return false;
}
parse_float(p_line, line_end - p_line);
eatws(p_line);
p_line += EXTRUDE_SET_SPEED_TAG.length();
return p_line <= line_end && is_eol(*p_line);
}
void PressureEqualizer::push_line_to_output(const size_t line_idx, const float new_feedrate, const char *comment)
{
const GCodeLine &line = m_gcode_lines[line_idx];
if (line_idx > 0 && output_buffer_length > 0) {
const std::string prev_line_str = std::string(output_buffer.begin() + int(this->output_buffer_prev_length),
output_buffer.begin() + int(this->output_buffer_length) + 1);
if (is_just_line_with_extrude_set_speed_tag(prev_line_str))
this->output_buffer_length = this->output_buffer_prev_length; // Remove the last line because it only sets the speed for an empty block of g-code lines, so it is useless.
else
push_to_output(EXTRUDE_END_TAG.data(), EXTRUDE_END_TAG.length(), true);
} else
push_to_output(EXTRUDE_END_TAG.data(), EXTRUDE_END_TAG.length(), true);
GCodeG1Formatter feedrate_formatter;
feedrate_formatter.emit_f(new_feedrate);
feedrate_formatter.emit_string(std::string(EXTRUDE_SET_SPEED_TAG.data(), EXTRUDE_SET_SPEED_TAG.length()));
if (line.extrusion_role == erExternalPerimeter)
feedrate_formatter.emit_string(std::string(EXTERNAL_PERIMETER_TAG.data(), EXTERNAL_PERIMETER_TAG.length()));
push_to_output(feedrate_formatter);
GCodeG1Formatter extrusion_formatter;
for (size_t axis_idx = 0; axis_idx < 3; ++axis_idx)
if (line.pos_provided[axis_idx])
extrusion_formatter.emit_axis(char('X' + axis_idx), line.pos_end[axis_idx], GCodeFormatter::XYZF_EXPORT_DIGITS);
extrusion_formatter.emit_axis('E', m_use_relative_e_distances ? (line.pos_end[3] - line.pos_start[3]) : line.pos_end[3], GCodeFormatter::E_EXPORT_DIGITS);
if (comment != nullptr)
extrusion_formatter.emit_string(std::string(comment));
push_to_output(extrusion_formatter);
}
} // namespace Slic3r