PrusaSlicer/xs/src/libslic3r/GCodeTimeEstimator.cpp
2017-12-06 14:12:10 +01:00

663 lines
20 KiB
C++

#include "GCodeTimeEstimator.hpp"
#include <boost/bind.hpp>
#include <cmath>
//###########################################################################################################
#include <fstream>
static const std::string AXIS_STR = "XYZE";
static const float MMMIN_TO_MMSEC = 1.0f / 60.0f;
static const float MILLISEC_TO_SEC = 0.001f;
static const float INCHES_TO_MM = 25.4f;
static const float DEFAULT_FEEDRATE = 0.0f; // <<<<<<<<< FIND A PROPER VALUE
static const float DEFAULT_ACCELERATION = 3000.0f;
static const float DEFAULT_AXIS_MAX_FEEDRATE[] = { 600.0f, 600.0f, 40.0f, 25.0f };
static const float DEFAULT_AXIS_MAX_ACCELERATION[] = { 9000.0f, 9000.0f, 100.0f, 10000.0f };
static const float DEFAULT_AXIS_MAX_JERK[] = { 10.0f, 10.0f, 0.2f, 2.5f }; // from firmware
// static const float DEFAULT_AXIS_MAX_JERK[] = { 20.0f, 20.0f, 0.4f, 5.0f }; / from CURA
static const float MINIMUM_FEEDRATE = 0.01f;
static const float MINIMUM_PLANNER_SPEED = 0.05f; // <<<<<<<< WHAT IS THIS ???
static const float FEEDRATE_THRESHOLD = 0.0001f;
//###########################################################################################################
namespace Slic3r {
//###########################################################################################################
float My_GCodeTimeEstimator::Block::move_length() const
{
float length = ::sqrt(sqr(delta_pos[X]) + sqr(delta_pos[Y]) + sqr(delta_pos[Z]));
return (length > 0.0f) ? length : ::abs(delta_pos[E]);
}
void My_GCodeTimeEstimator::Block::calculate_trapezoid()
{
float accelerate_distance = estimate_acceleration_distance(entry_feedrate, feedrate, acceleration);
float decelerate_distance = estimate_acceleration_distance(feedrate, exit_feedrate, -acceleration);
float distance = move_length();
float plateau_distance = distance - accelerate_distance - decelerate_distance;
// Not enough space to reach the nominal feedrate.
// This means no cruising, and we'll have to use intersection_distance() to calculate when to abort acceleration
// and start braking in order to reach the exit_feedrate exactly at the end of this block.
if (plateau_distance < 0.0f)
{
accelerate_distance = clamp(0.0f, distance, intersection_distance(entry_feedrate, exit_feedrate, acceleration, distance));
plateau_distance = 0.0f;
}
trapezoid.distance = distance;
trapezoid.accelerate_until = accelerate_distance;
trapezoid.decelerate_after = accelerate_distance + plateau_distance;
trapezoid.entry_feedrate = entry_feedrate;
trapezoid.exit_feedrate = exit_feedrate;
}
float My_GCodeTimeEstimator::Block::max_allowable_speed(float acceleration, float target_velocity, float distance)
{
return ::sqrt(sqr(target_velocity) - 2.0f * acceleration * distance);
}
float My_GCodeTimeEstimator::Block::estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
{
return (acceleration == 0.0f) ? 0.0f : (sqr(target_rate) - sqr(initial_rate)) / (2.0f * acceleration);
}
float My_GCodeTimeEstimator::Block::intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
{
return (acceleration == 0.0f) ? 0.0f : (2.0f * acceleration * distance - sqr(initial_rate) + sqr(final_rate)) / (4.0f * acceleration);
}
float My_GCodeTimeEstimator::Block::acceleration_time_from_distance(float initial_feedrate, float distance, float acceleration)
{
float discriminant = sqr(initial_feedrate) + 2.0f * acceleration * distance;
// If discriminant is negative, we're moving in the wrong direction.
// Making the discriminant 0 then gives the extremum of the parabola instead of the intersection.
discriminant = std::max(0.0f, discriminant);
return (-initial_feedrate + ::sqrt(discriminant)) / acceleration;
}
My_GCodeTimeEstimator::My_GCodeTimeEstimator()
{
}
void My_GCodeTimeEstimator::parse(const std::string& gcode)
{
_reset();
GCodeReader::parse(gcode, boost::bind(&My_GCodeTimeEstimator::_process_gcode_line, this, _1, _2));
}
void My_GCodeTimeEstimator::parse_file(const std::string& file)
{
_reset();
GCodeReader::parse_file(file, boost::bind(&My_GCodeTimeEstimator::_process_gcode_line, this, _1, _2));
}
void My_GCodeTimeEstimator::calculate_time()
{
_time = get_additional_time();
for (const Block& block : _blocks)
{
const Block::Trapezoid& trapezoid = block.trapezoid;
float plateau_distance = trapezoid.decelerate_after - trapezoid.accelerate_until;
_time += Block::acceleration_time_from_distance(block.entry_feedrate, trapezoid.accelerate_until, block.acceleration);
_time += plateau_distance / block.feedrate;
_time += Block::acceleration_time_from_distance(block.exit_feedrate, (trapezoid.distance - trapezoid.decelerate_after), block.acceleration);
}
}
void My_GCodeTimeEstimator::set_axis_position(EAxis axis, float position)
{
_state.axis[axis].position = position;
}
void My_GCodeTimeEstimator::set_axis_max_feedrate(EAxis axis, float feedrate_mm_sec)
{
_state.axis[axis].max_feedrate = feedrate_mm_sec;
}
void My_GCodeTimeEstimator::set_axis_max_acceleration(EAxis axis, float acceleration)
{
_state.axis[axis].max_acceleration = acceleration;
}
void My_GCodeTimeEstimator::set_axis_max_jerk(EAxis axis, float jerk)
{
_state.axis[axis].max_jerk = jerk;
}
float My_GCodeTimeEstimator::get_axis_position(EAxis axis) const
{
return _state.axis[axis].position;
}
float My_GCodeTimeEstimator::get_axis_max_feedrate(EAxis axis) const
{
return _state.axis[axis].max_feedrate;
}
float My_GCodeTimeEstimator::get_axis_max_acceleration(EAxis axis) const
{
return _state.axis[axis].max_acceleration;
}
float My_GCodeTimeEstimator::get_axis_max_jerk(EAxis axis) const
{
return _state.axis[axis].max_jerk;
}
void My_GCodeTimeEstimator::set_feedrate(float feedrate_mm_sec)
{
_state.feedrate = std::max(feedrate_mm_sec, MINIMUM_FEEDRATE);
}
float My_GCodeTimeEstimator::get_feedrate() const
{
return _state.feedrate;
}
void My_GCodeTimeEstimator::set_acceleration(float acceleration)
{
_state.acceleration = acceleration;
}
float My_GCodeTimeEstimator::get_acceleration() const
{
return _state.acceleration;
}
void My_GCodeTimeEstimator::set_dialect(My_GCodeTimeEstimator::EDialect dialect)
{
_state.dialect = dialect;
}
My_GCodeTimeEstimator::EDialect My_GCodeTimeEstimator::get_dialect() const
{
return _state.dialect;
}
void My_GCodeTimeEstimator::set_units(My_GCodeTimeEstimator::EUnits units)
{
_state.units = units;
}
My_GCodeTimeEstimator::EUnits My_GCodeTimeEstimator::get_units() const
{
return _state.units;
}
void My_GCodeTimeEstimator::set_positioningType(My_GCodeTimeEstimator::EPositioningType type)
{
_state.positioningType = type;
}
My_GCodeTimeEstimator::EPositioningType My_GCodeTimeEstimator::get_positioningType() const
{
return _state.positioningType;
}
void My_GCodeTimeEstimator::add_additional_time(float timeSec)
{
_state.additional_time += timeSec;
}
float My_GCodeTimeEstimator::get_additional_time() const
{
return _state.additional_time;
}
void My_GCodeTimeEstimator::set_default()
{
set_units(Millimeters);
set_dialect(Unknown);
set_positioningType(Absolute);
set_feedrate(DEFAULT_FEEDRATE);
set_acceleration(DEFAULT_ACCELERATION);
for (unsigned char a = X; a < Num_Axis; ++a)
{
EAxis axis = (EAxis)a;
set_axis_max_feedrate(axis, DEFAULT_AXIS_MAX_FEEDRATE[a]);
set_axis_max_acceleration(axis, DEFAULT_AXIS_MAX_ACCELERATION[a]);
set_axis_max_jerk(axis, DEFAULT_AXIS_MAX_JERK[a]);
}
}
float My_GCodeTimeEstimator::get_time() const
{
return _time;
}
const My_GCodeTimeEstimator::BlocksList& My_GCodeTimeEstimator::get_blocks() const
{
return _blocks;
}
// void My_GCodeTimeEstimator::print_counters() const
// {
// std::cout << std::endl;
// for (const CmdToCounterMap::value_type& counter : _cmdCounters)
// {
// std::cout << counter.first << " : " << counter.second << std::endl;
// }
// }
void My_GCodeTimeEstimator::_reset()
{
// _cmdCounters.clear();
_blocks.clear();
set_default();
set_axis_position(X, 0.0f);
set_axis_position(Y, 0.0f);
set_axis_position(Z, 0.0f);
_state.additional_time = 0.0f;
}
void My_GCodeTimeEstimator::_process_gcode_line(GCodeReader&, const GCodeReader::GCodeLine& line)
{
if (line.cmd.length() > 1)
{
switch (line.cmd[0])
{
case 'G':
{
switch (::atoi(&line.cmd[1]))
{
case 1: // Move
{
_processG1(line);
break;
}
case 4: // Dwell
{
_processG4(line);
break;
}
case 20: // Set Units to Inches
{
_processG20(line);
break;
}
case 21: // Set Units to Millimeters
{
_processG21(line);
break;
}
case 28: // Move to Origin (Home)
{
_processG28(line);
break;
}
case 90: // Set to Absolute Positioning
{
_processG90(line);
break;
}
case 91: // Set to Relative Positioning
{
_processG91(line);
break;
}
case 92: // Set Position
{
_processG92(line);
break;
}
}
break;
}
case 'M':
{
switch (::atoi(&line.cmd[1]))
{
case 109: // Set Extruder Temperature and Wait
{
_processM109(line);
break;
}
case 203: // Set maximum feedrate
{
_processM203(line);
break;
}
case 204: // Set default acceleration
{
_processM204(line);
break;
}
case 566: // Set allowable instantaneous speed change
{
_processM566(line);
break;
}
}
break;
}
}
// CmdToCounterMap::iterator it = _cmdCounters.find(line.cmd);
// if (it == _cmdCounters.end())
// _cmdCounters.insert(CmdToCounterMap::value_type(line.cmd, 1));
// else
// ++it->second;
}
}
void My_GCodeTimeEstimator::_processG1(const GCodeReader::GCodeLine& line)
{
float lengthsScaleFactor = (get_units() == Inches) ? INCHES_TO_MM : 1.0f;
// gets position changes from line, if present
float new_pos[Num_Axis];
if (get_positioningType() == Absolute)
{
for (unsigned char a = X; a < Num_Axis; ++a)
{
new_pos[a] = line.has(AXIS_STR[a]) ? line.get_float(AXIS_STR[a]) * lengthsScaleFactor : get_axis_position((EAxis)a);
}
}
else // get_positioningType() == Relative
{
for (unsigned char a = X; a < Num_Axis; ++a)
{
new_pos[a] = get_axis_position((EAxis)a);
new_pos[a] += (line.has(AXIS_STR[a]) ? line.get_float(AXIS_STR[a]) * lengthsScaleFactor : 0.0f);
}
}
// updates feedrate from line, if present
if (line.has('F'))
set_feedrate(line.get_float('F') * MMMIN_TO_MMSEC);
// fills block data
Block block;
// calculates block movement deltas
float max_abs_delta = 0.0f;
for (unsigned char a = X; a < Num_Axis; ++a)
{
block.delta_pos[a] = new_pos[a] - get_axis_position((EAxis)a);
max_abs_delta = std::max(max_abs_delta, ::abs(block.delta_pos[a]));
}
// is it a move ?
if (max_abs_delta == 0.0f)
return;
// calculates block feedrate
float feedrate = get_feedrate();
float distance = block.move_length();
float invDistance = 1.0f / distance;
float axis_feedrate[Num_Axis];
float min_feedrate_factor = 1.0f;
for (unsigned char a = X; a < Num_Axis; ++a)
{
axis_feedrate[a] = feedrate * ::abs(block.delta_pos[a]) * invDistance;
if (axis_feedrate[a] > 0.0f)
min_feedrate_factor = std::min(min_feedrate_factor, get_axis_max_feedrate((EAxis)a) / axis_feedrate[a]);
}
block.feedrate = min_feedrate_factor * feedrate;
for (unsigned char a = X; a < Num_Axis; ++a)
{
axis_feedrate[a] *= min_feedrate_factor;
}
// calculates block acceleration
float acceleration = get_acceleration();
for (unsigned char a = X; a < Num_Axis; ++a)
{
float axis_max_acceleration = get_axis_max_acceleration((EAxis)a);
if (acceleration * ::abs(block.delta_pos[a]) * invDistance > axis_max_acceleration)
acceleration = axis_max_acceleration;
}
block.acceleration = acceleration;
// calculates block exit feedrate
float exit_feedrate = block.feedrate;
for (unsigned char a = X; a < Num_Axis; ++a)
{
float half_axis_max_jerk = 0.5f * get_axis_max_jerk((EAxis)a);
if (axis_feedrate[a] > half_axis_max_jerk)
exit_feedrate = std::min(exit_feedrate, half_axis_max_jerk);
}
block.exit_feedrate = exit_feedrate;
// calculates block entry feedrate
float vmax_junction = exit_feedrate;
if (!_blocks.empty() && (_prev.feedrate > FEEDRATE_THRESHOLD))
{
vmax_junction = block.feedrate;
float vmax_junction_factor = 1.0f;
for (unsigned char a = X; a < Num_Axis; ++a)
{
float abs_delta_axis_feedrate = ::abs(axis_feedrate[a] - _prev.axis_feedrate[a]);
float axis_max_jerk = get_axis_max_jerk((EAxis)a);
if (abs_delta_axis_feedrate > axis_max_jerk)
vmax_junction_factor = std::min(vmax_junction_factor, axis_max_jerk / abs_delta_axis_feedrate);
}
// limit vmax to not exceed previous feedrate
vmax_junction = std::min(_prev.feedrate, vmax_junction * vmax_junction_factor);
}
block.entry_feedrate = std::min(vmax_junction, Block::max_allowable_speed(-acceleration, MINIMUM_PLANNER_SPEED, distance));
// calculates block trapezoid
block.calculate_trapezoid();
// updates previous cache
_prev.feedrate = feedrate;
for (unsigned char a = X; a < Num_Axis; ++a)
{
_prev.axis_feedrate[a] = axis_feedrate[a];
}
// updates axis positions
for (unsigned char a = X; a < Num_Axis; ++a)
{
set_axis_position((EAxis)a, new_pos[a]);
}
// adds block to blocks list
_blocks.push_back(block);
}
void My_GCodeTimeEstimator::_processG4(const GCodeReader::GCodeLine& line)
{
EDialect dialect = get_dialect();
if (line.has('P'))
add_additional_time(line.get_float('P') * MILLISEC_TO_SEC);
// see: http://reprap.org/wiki/G-code#G4:_Dwell
if ((dialect == Repetier) ||
(dialect == Marlin) ||
(dialect == Smoothieware) ||
(dialect == RepRapFirmware))
{
if (line.has('S'))
add_additional_time(line.get_float('S'));
}
}
void My_GCodeTimeEstimator::_processG20(const GCodeReader::GCodeLine& line)
{
set_units(Inches);
}
void My_GCodeTimeEstimator::_processG21(const GCodeReader::GCodeLine& line)
{
set_units(Millimeters);
}
void My_GCodeTimeEstimator::_processG28(const GCodeReader::GCodeLine& line)
{
// todo
}
void My_GCodeTimeEstimator::_processG90(const GCodeReader::GCodeLine& line)
{
set_positioningType(Absolute);
}
void My_GCodeTimeEstimator::_processG91(const GCodeReader::GCodeLine& line)
{
// >>>>>>>> THERE ARE DIALECT VARIANTS
set_positioningType(Relative);
}
void My_GCodeTimeEstimator::_processG92(const GCodeReader::GCodeLine& line)
{
// todo
}
void My_GCodeTimeEstimator::_processM109(const GCodeReader::GCodeLine& line)
{
// todo
}
void My_GCodeTimeEstimator::_processM203(const GCodeReader::GCodeLine& line)
{
EDialect dialect = get_dialect();
// see http://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate
if (dialect == Repetier)
return;
// see http://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate
float factor = (dialect == Marlin) ? 1.0f : MMMIN_TO_MMSEC;
if (line.has('X'))
set_axis_max_feedrate(X, line.get_float('X') * factor);
if (line.has('Y'))
set_axis_max_feedrate(Y, line.get_float('Y') * factor);
if (line.has('Z'))
set_axis_max_feedrate(Z, line.get_float('Z') * factor);
if (line.has('E'))
set_axis_max_feedrate(E, line.get_float('E') * factor);
}
void My_GCodeTimeEstimator::_processM204(const GCodeReader::GCodeLine& line)
{
if (line.has('S'))
set_acceleration(line.get_float('S')); // <<<< Is this correct ?
if (line.has('T'))
{
// what to do ?
}
}
void My_GCodeTimeEstimator::_processM566(const GCodeReader::GCodeLine& line)
{
if (line.has('X'))
set_axis_max_jerk(X, line.get_float('X') * MMMIN_TO_MMSEC);
if (line.has('Y'))
set_axis_max_jerk(Y, line.get_float('Y') * MMMIN_TO_MMSEC);
if (line.has('Z'))
set_axis_max_jerk(Z, line.get_float('Z') * MMMIN_TO_MMSEC);
if (line.has('E'))
set_axis_max_jerk(E, line.get_float('E') * MMMIN_TO_MMSEC);
}
//###########################################################################################################
void
GCodeTimeEstimator::parse(const std::string &gcode)
{
GCodeReader::parse(gcode, boost::bind(&GCodeTimeEstimator::_parser, this, _1, _2));
}
void
GCodeTimeEstimator::parse_file(const std::string &file)
{
GCodeReader::parse_file(file, boost::bind(&GCodeTimeEstimator::_parser, this, _1, _2));
}
void
GCodeTimeEstimator::_parser(GCodeReader&, const GCodeReader::GCodeLine &line)
{
// std::cout << "[" << this->time << "] " << line.raw << std::endl;
if (line.cmd == "G1") {
const float dist_XY = line.dist_XY();
const float new_F = line.new_F();
if (dist_XY > 0) {
//this->time += dist_XY / new_F * 60;
this->time += _accelerated_move(dist_XY, new_F/60, this->acceleration);
} else {
//this->time += std::abs(line.dist_E()) / new_F * 60;
this->time += _accelerated_move(std::abs(line.dist_E()), new_F/60, this->acceleration);
}
//this->time += std::abs(line.dist_Z()) / new_F * 60;
this->time += _accelerated_move(std::abs(line.dist_Z()), new_F/60, this->acceleration);
} else if (line.cmd == "M204" && line.has('S')) {
this->acceleration = line.get_float('S');
} else if (line.cmd == "G4") { // swell
if (line.has('S')) {
this->time += line.get_float('S');
} else if (line.has('P')) {
this->time += line.get_float('P')/1000;
}
}
}
// Wildly optimistic acceleration "bell" curve modeling.
// Returns an estimate of how long the move with a given accel
// takes in seconds.
// It is assumed that the movement is smooth and uniform.
float
GCodeTimeEstimator::_accelerated_move(double length, double v, double acceleration)
{
// for half of the move, there are 2 zones, where the speed is increasing/decreasing and
// where the speed is constant.
// Since the slowdown is assumed to be uniform, calculate the average velocity for half of the
// expected displacement.
// final velocity v = a*t => a * (dx / 0.5v) => v^2 = 2*a*dx
// v_avg = 0.5v => 2*v_avg = v
// d_x = v_avg*t => t = d_x / v_avg
acceleration = (acceleration == 0.0 ? 4000.0 : acceleration); // Set a default accel to use for print time in case it's 0 somehow.
auto half_length = length / 2.0;
auto t_init = v / acceleration; // time to final velocity
auto dx_init = (0.5*v*t_init); // Initial displacement for the time to get to final velocity
auto t = 0.0;
if (half_length >= dx_init) {
half_length -= (0.5*v*t_init);
t += t_init;
t += (half_length / v); // rest of time is at constant speed.
} else {
// If too much displacement for the expected final velocity, we don't hit the max, so reduce
// the average velocity to fit the displacement we actually are looking for.
t += std::sqrt(std::abs(length) * 2.0 * acceleration) / acceleration;
}
return 2.0*t; // cut in half before, so double to get full time spent.
}
}