PrusaSlicer/src/libslic3r/GCode/SeamPerimeters.cpp
Martin Šach 61291d9219 SPE-2495: Do not put scarft seam start on overhangs and blockers
Update the function offset_along_lines to offset along
perimeters and add a stop condition.
2025-02-14 12:02:29 +01:00

676 lines
24 KiB
C++

#include <oneapi/tbb/blocked_range.h>
#include <oneapi/tbb/parallel_for.h>
#include <cstdint>
#include <iterator>
#include <tuple>
#include <limits>
#include <boost/hana/functional/overload_linearly.hpp>
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/Layer.hpp"
#include "libslic3r/GCode/SeamGeometry.hpp"
#include "libslic3r/GCode/SeamPerimeters.hpp"
#include "libslic3r/ExPolygon.hpp"
#include "libslic3r/GCode/SeamPainting.hpp"
#include "libslic3r/MultiPoint.hpp"
#include "tcbspan/span.hpp"
namespace Slic3r::Seams::Perimeters::Impl {
PerimeterPoints oversample_painted(
PerimeterPoints &points,
const std::function<bool(Vec3f, double)> &is_painted,
const double slice_z,
const double max_distance
) {
PerimeterPoints result;
for (std::size_t index{0}; index < points.size(); ++index) {
result.push_back(points[index]);
const Vec2d &point{points[index].position};
const std::size_t next_index{index == points.size() - 1 ? 0 : index + 1};
const Vec2d &next_point{points[next_index].position};
const float next_point_distance{static_cast<float>((point - next_point).norm())};
const Vec2d middle_point{(point + next_point) / 2.0};
Vec3f point3d{to_3d(middle_point, slice_z).cast<float>()};
if (is_painted(point3d, next_point_distance / 2.0)) {
for (const Vec2d &edge_point : Geometry::oversample_edge(point, next_point, max_distance)) {
PerimeterPoint perimeter_point;
perimeter_point.position = edge_point;
if (points[next_index].classification != PointClassification::common) {
perimeter_point.classification = points[next_index].classification;
}
if (points[index].classification != PointClassification::common) {
perimeter_point.classification = points[index].classification;
}
result.push_back(std::move(perimeter_point));
}
}
}
return result;
}
PerimeterPoints remove_redundant_points(
const PerimeterPoints &points,
const double tolerance
) {
PerimeterPoints result;
auto range_start{points.begin()};
for (auto iterator{points.begin()}; iterator != points.end(); ++iterator) {
const std::int64_t index{std::distance(points.begin(), iterator)};
if (
next(iterator) == points.end()
|| points[index].type != points[index + 1].type
|| points[index].classification != points[index + 1].classification
) {
douglas_peucker<double>(
range_start, next(iterator), std::back_inserter(result), tolerance,
[](const PerimeterPoint &point) {
return point.position;
}
);
range_start = next(iterator);
}
}
return result;
}
PerimeterPoints get_point_types(
const PerimeterPoints &perimeter_points,
const ModelInfo::Painting &painting,
const double slice_z,
const double painting_radius
) {
PerimeterPoints result;
result.reserve(perimeter_points.size());
using std::transform, std::back_inserter;
transform(
perimeter_points.begin(), perimeter_points.end(), back_inserter(result),
[&](PerimeterPoint point) {
const Vec3f point3d{to_3d(point.position.cast<float>(), static_cast<float>(slice_z))};
if (painting.is_blocked(point3d, painting_radius)) {
point.type = PointType::blocker;
} else if (painting.is_enforced(point3d, painting_radius)) {
point.type = PointType::enforcer;
} else {
point.type = PointType::common;
}
return point;
}
);
return result;
}
void project_overhang(
PerimeterPoints &points,
const AABBTreeLines::LinesDistancer<Linef> &points_distancer,
const Geometry::Overhang &overhang,
std::map<int, PerimeterPoints>& output
) {
const auto [start_distance, start_line_index, start_point]{
points_distancer.distance_from_lines_extra<false>(
unscaled(overhang.start)
)
};
PerimeterPoint common_start_point{};
common_start_point.position = start_point;
common_start_point.classification = PointClassification::common;
output[start_line_index].push_back(common_start_point);
PerimeterPoint perimeter_start_point{};
perimeter_start_point.position = start_point;
perimeter_start_point.classification = PointClassification::overhang;
output[start_line_index].push_back(perimeter_start_point);
const auto [end_distance, end_line_index, end_point]{
points_distancer.distance_from_lines_extra<false>(
unscaled(overhang.end)
)
};
PerimeterPoint perimeter_end_point{};
perimeter_end_point.position = end_point;
perimeter_end_point.classification = PointClassification::overhang;
output[end_line_index].push_back(perimeter_end_point);
PerimeterPoint common_end_point{};
common_end_point.position = end_point;
common_end_point.classification = PointClassification::common;
output[end_line_index].push_back(common_end_point);
}
double get_overhang_angle(
const Vec2d& point,
const AABBTreeLines::LinesDistancer<Linef> &previous_layer_perimeter_distancer,
const double layer_height
) {
const double distance{previous_layer_perimeter_distancer.distance_from_lines<true>(point)};
return distance > 0 ? M_PI / 2 - std::atan(layer_height / distance) : 0.0;
}
Linesf to_lines(const PerimeterPoints &points) {
Linesf lines;
for (std::size_t i{0}; i < points.size(); ++i) {
const std::size_t current_index{i};
const std::size_t next_index{i == points.size() - 1 ? 0 : i + 1};
const Vec2d a{points[current_index].position};
const Vec2d b{points[next_index].position};
lines.push_back(Linef{a, b});
}
return lines;
}
PerimeterPoints classify_overhangs(
PerimeterPoints &&points,
const Geometry::Overhangs &overhangs,
const LayerInfo &layer_info,
const double overhang_threshold
) {
using boost::apply_visitor;
using boost::hana::overload_linearly;
PerimeterPoints classified_points{std::move(points)};
if (!layer_info.previous_distancer) {
return classified_points;
}
const AABBTreeLines::LinesDistancer<Linef> points_distancer{to_lines(classified_points)};
std::map<int, PerimeterPoints> points_to_add_to_lines;
for (const auto &overhang : overhangs) {
apply_visitor(overload_linearly(
[&](const Geometry::Overhang& overhang) {
project_overhang(
classified_points,
points_distancer,
overhang,
points_to_add_to_lines
);
},
[&](const Geometry::LoopOverhang&) {
for (PerimeterPoint &point : classified_points) {
point.classification = PointClassification::overhang;
}
}
), overhang);
}
PerimeterPoints result;
for (std::size_t i{0}; i < classified_points.size(); ++i) {
PerimeterPoint &point{classified_points[i]};
if (point.classification != PointClassification::overhang) {
const double overhang_aangle{
get_overhang_angle(point.position, *layer_info.previous_distancer, layer_info.height)};
point.classification = overhang_aangle > overhang_threshold ?
PointClassification::overhang :
point.classification;
}
result.push_back(point);
if (points_to_add_to_lines.count(i) > 0) {
for (const PerimeterPoint &point : points_to_add_to_lines[i]) {
result.push_back(point);
}
}
}
return result;
}
PerimeterPoints classify_points(
PerimeterPoints &&points,
const Geometry::Overhangs &overhangs,
const double embedding_threshold,
const LayerInfo& layer_info,
const double overhang_threshold
) {
PerimeterPoints result{classify_overhangs(std::move(points), overhangs, layer_info, overhang_threshold)};
for (PerimeterPoint& point : result) {
if (point.classification != PointClassification::common) {
continue;
}
// This is an optimization avoiding distance_from_lines<true> which is expensive.
const double embedding_distance{layer_info.distancer.distance_from_lines<false>(point.position)};
if (embedding_distance < embedding_threshold) {
continue;
}
if (layer_info.distancer.outside(point.position) == 1) {
continue;
}
point.classification = PointClassification::embedded;
}
return result;
}
std::vector<AngleType> get_angle_types(
const std::vector<double> &angles, const double convex_threshold, const double concave_threshold
) {
std::vector<AngleType> result;
using std::transform, std::back_inserter;
transform(angles.begin(), angles.end(), back_inserter(result), [&](const double angle) {
if (angle > convex_threshold) {
return AngleType::convex;
}
if (angle < -concave_threshold) {
return AngleType::concave;
}
return AngleType::smooth;
});
return result;
}
std::vector<AngleType> merge_angle_types(
const std::vector<AngleType> &angle_types,
const std::vector<AngleType> &smooth_angle_types,
const std::vector<Vec2d> &points,
const double min_arm_length
) {
std::vector<AngleType> result;
result.reserve(angle_types.size());
for (std::size_t index{0}; index < angle_types.size(); ++index) {
const AngleType &angle_type{angle_types[index]};
const AngleType &smooth_angle_type{smooth_angle_types[index]};
AngleType resulting_type{angle_type};
if (smooth_angle_type != angle_type && smooth_angle_type != AngleType::smooth) {
resulting_type = smooth_angle_type;
// Check if there is a sharp angle in the vicinity. If so, do not use the smooth angle.
Geometry::visit_forward(index, angle_types.size(), [&](const std::size_t forward_index) {
const double distance{(points[forward_index] - points[index]).norm()};
if (distance > min_arm_length) {
return true;
}
if (angle_types[forward_index] == smooth_angle_type) {
resulting_type = angle_type;
}
return false;
});
Geometry::visit_backward(index, angle_types.size(), [&](const std::size_t backward_index) {
const double distance{(points[backward_index] - points[index]).norm()};
if (distance > min_arm_length) {
return true;
}
if (angle_types[backward_index] == smooth_angle_type) {
resulting_type = angle_type;
}
return false;
});
}
result.push_back(resulting_type);
}
return result;
}
PerimeterPoints get_perimeter_points(const std::vector<Vec2d> &points){
PerimeterPoints perimeter_points;
std::transform(
points.begin(),
points.end(),
std::back_inserter(perimeter_points),
[](const Vec2d &point){
PerimeterPoint perimeter_point;
perimeter_point.position = point;
return perimeter_point;
}
);
return perimeter_points;
}
} // namespace Slic3r::Seams::Perimeters::Impl
namespace Slic3r::Seams::Perimeters {
LayerInfos get_layer_infos(
tcb::span<const Slic3r::Layer* const> object_layers, const double elephant_foot_compensation
) {
LayerInfos result(object_layers.size());
using Range = tbb::blocked_range<size_t>;
const Range range{0, object_layers.size()};
tbb::parallel_for(range, [&](Range range) {
for (std::size_t layer_index{range.begin()}; layer_index < range.end(); ++layer_index) {
result[layer_index] = LayerInfo::create(
*object_layers[layer_index], layer_index, elephant_foot_compensation
);
}
});
return result;
}
LayerInfo LayerInfo::create(
const Slic3r::Layer &object_layer,
const std::size_t index,
const double elephant_foot_compensation
) {
AABBTreeLines::LinesDistancer<Linef> perimeter_distancer{
to_unscaled_linesf({object_layer.lslices})};
using PreviousLayerDistancer = std::optional<AABBTreeLines::LinesDistancer<Linef>>;
PreviousLayerDistancer previous_layer_perimeter_distancer;
if (object_layer.lower_layer != nullptr) {
previous_layer_perimeter_distancer = PreviousLayerDistancer{
to_unscaled_linesf(object_layer.lower_layer->lslices)};
}
return {
std::move(perimeter_distancer),
std::move(previous_layer_perimeter_distancer),
index,
object_layer.height,
object_layer.slice_z,
index == 0 ? elephant_foot_compensation : 0.0};
}
double Perimeter::IndexToCoord::operator()(const size_t index, size_t dim) const {
return positions[index][dim];
}
Perimeter::PointTrees get_kd_trees(
const PointType point_type,
const std::vector<PointType> &all_point_types,
const std::vector<PointClassification> &point_classifications,
const Perimeter::IndexToCoord &index_to_coord
) {
std::vector<std::size_t> overhang_indexes;
std::vector<std::size_t> embedded_indexes;
std::vector<std::size_t> common_indexes;
for (std::size_t i{0}; i < all_point_types.size(); ++i) {
if (all_point_types[i] == point_type) {
switch (point_classifications[i]) {
case PointClassification::overhang: overhang_indexes.push_back(i); break;
case PointClassification::embedded: embedded_indexes.push_back(i); break;
case PointClassification::common: common_indexes.push_back(i); break;
}
}
}
Perimeter::PointTrees trees;
if (!overhang_indexes.empty()) {
trees.overhanging_points = Perimeter::PointTree{index_to_coord};
trees.overhanging_points->build(overhang_indexes);
}
if (!embedded_indexes.empty()) {
trees.embedded_points = Perimeter::PointTree{index_to_coord};
trees.embedded_points->build(embedded_indexes);
}
if (!common_indexes.empty()) {
trees.common_points = Perimeter::PointTree{index_to_coord};
trees.common_points->build(common_indexes);
}
return trees;
}
Perimeter::Perimeter(
const double slice_z,
const std::size_t layer_index,
const bool is_hole,
std::vector<Vec2d> &&positions,
std::vector<double> &&angles,
std::vector<PointType> &&point_types,
std::vector<PointClassification> &&point_classifications,
std::vector<AngleType> &&angle_types
)
: slice_z(slice_z)
, layer_index(layer_index)
, is_hole(is_hole)
, positions(std::move(positions))
, angles(std::move(angles))
, index_to_coord(IndexToCoord{tcb::span{this->positions}})
, point_types(std::move(point_types))
, point_classifications(std::move(point_classifications))
, angle_types(std::move(angle_types))
, enforced_points(get_kd_trees(
PointType::enforcer, this->point_types, this->point_classifications, this->index_to_coord
))
, common_points(get_kd_trees(
PointType::common, this->point_types, this->point_classifications, this->index_to_coord
))
, blocked_points(get_kd_trees(
PointType::blocker, this->point_types, this->point_classifications, this->index_to_coord
)) {}
Perimeter Perimeter::create_degenerate(
std::vector<Vec2d> &&points, const double slice_z, const std::size_t layer_index
) {
std::vector<PointType> point_types(points.size(), PointType::common);
std::vector<PointClassification>
point_classifications(points.size(), PointClassification::common);
std::vector<double> angles(points.size());
std::vector<AngleType> angle_types(points.size(), AngleType::smooth);
Perimeter perimeter{
slice_z,
layer_index,
false,
std::move(points),
std::move(angles),
std::move(point_types),
std::move(point_classifications),
std::move(angle_types)};
perimeter.is_degenerate = true;
return perimeter;
}
Perimeter Perimeter::create(
const Polygon &polygon,
const Geometry::Overhangs &overhangs,
const ModelInfo::Painting &painting,
const LayerInfo &layer_info,
const PerimeterParams &params
) {
if (polygon.size() < 3) {
return Perimeter::create_degenerate(
Geometry::unscaled(polygon.points), layer_info.slice_z, layer_info.index
);
}
std::vector<Vec2d> points;
if (layer_info.elephant_foot_compensation > 0) {
const Polygons expanded{expand(polygon, scaled(layer_info.elephant_foot_compensation))};
if (expanded.empty()) {
points = Geometry::unscaled(polygon.points);
} else {
points = Geometry::unscaled(expanded.front().points);
}
} else {
points = Geometry::unscaled(polygon.points);
}
PerimeterPoints perimeter_points{Impl::get_perimeter_points(points)};
perimeter_points = Impl::classify_points(
std::move(perimeter_points),
overhangs,
params.embedding_threshold,
layer_info,
params.overhang_threshold
);
const auto is_painted{[&](const Vec3f &point, const double radius) {
return painting.is_enforced(point, radius) || painting.is_blocked(point, radius);
}};
perimeter_points = Impl::oversample_painted(
perimeter_points,
is_painted,
layer_info.slice_z,
params.oversampling_max_distance
);
perimeter_points = Impl::get_point_types(perimeter_points, painting, layer_info.slice_z, params.painting_radius);
perimeter_points = Impl::remove_redundant_points(perimeter_points, params.simplification_epsilon);
std::vector<Vec2d> positions{};
std::vector<PointType> point_types{};
std::vector<PointClassification> point_classifications{};
for (const PerimeterPoint &point : perimeter_points) {
positions.push_back(point.position);
point_types.push_back(point.type);
point_classifications.push_back(point.classification);
}
std::vector<double> smooth_angles{Geometry::get_vertex_angles(positions, params.smooth_angle_arm_length)};
std::vector<double> angles{Geometry::get_vertex_angles(positions, params.sharp_angle_arm_length)};
std::vector<AngleType> angle_types{
Impl::get_angle_types(angles, params.convex_threshold, params.concave_threshold)};
std::vector<AngleType> smooth_angle_types{
Impl::get_angle_types(smooth_angles, params.convex_threshold, params.concave_threshold)};
angle_types = Impl::merge_angle_types(angle_types, smooth_angle_types, positions, params.smooth_angle_arm_length);
const bool is_hole{polygon.is_clockwise()};
return Perimeter{
layer_info.slice_z,
layer_info.index,
is_hole,
std::move(positions),
std::move(angles),
std::move(point_types),
std::move(point_classifications),
std::move(angle_types)};
}
LayerPerimeters create_perimeters(
const std::vector<Geometry::BoundedPolygons> &polygons,
const std::vector<LayerInfo> &layer_infos,
const ModelInfo::Painting &painting,
const PerimeterParams &params
) {
LayerPerimeters result;
result.reserve(polygons.size());
std::transform(
polygons.begin(), polygons.end(), std::back_inserter(result),
[](const Geometry::BoundedPolygons &layer) { return BoundedPerimeters(layer.size()); }
);
Geometry::iterate_nested(
polygons,
[&](const std::size_t layer_index, const std::size_t polygon_index) {
const Geometry::BoundedPolygons &layer{polygons[layer_index]};
const Geometry::BoundedPolygon &bounded_polygon{layer[polygon_index]};
const LayerInfo &layer_info{layer_infos[layer_index]};
result[layer_index][polygon_index] = BoundedPerimeter{
Perimeter::create(
bounded_polygon.polygon,
bounded_polygon.overhangs,
painting,
layer_info,
params
),
bounded_polygon.bounding_box};
}
);
return result;
}
std::optional<PointOnPerimeter> offset_along_perimeter(
const PointOnPerimeter &point,
const Perimeter& perimeter,
const double offset,
const Seams::Geometry::Direction1D direction,
const std::function<bool(const Perimeter&, const std::size_t)> &early_stop_condition
) {
using Dir = Seams::Geometry::Direction1D;
const Linef initial_line{
perimeter.positions[point.previous_index], perimeter.positions[point.next_index]};
double distance{
direction == Dir::forward ?
(initial_line.b - point.position).norm() :
(point.position - initial_line.a).norm()};
if (distance >= offset) {
const Vec2d edge_direction{(initial_line.b - initial_line.a).normalized()};
const Vec2d offset_point{direction == Dir::forward ? Vec2d{point.position + offset * edge_direction} : Vec2d{point.position - offset * edge_direction}};
return {{point.previous_index, point.next_index, offset_point}};
}
std::optional<PointOnPerimeter> offset_point;
bool skip_first{direction == Dir::forward};
const auto visitor{[&](std::size_t index) {
if (skip_first) {
skip_first = false;
return false;
}
const std::size_t previous_index{
direction == Dir::forward ?
(index == 0 ? perimeter.positions.size() - 1 : index - 1) :
(index == perimeter.positions.size() - 1 ? 0 : index + 1)};
const Vec2d previous_point{perimeter.positions[previous_index]};
const Vec2d next_point{perimeter.positions[index]};
const Vec2d edge{next_point - previous_point};
if (early_stop_condition(perimeter, index)) {
offset_point = PointOnPerimeter{previous_index, previous_index, perimeter.positions[previous_index]};
return true;
}
if (distance + edge.norm() > offset) {
const double remaining_distance{offset - distance};
const Vec2d result{previous_point + remaining_distance * edge.normalized()};
if (direction == Dir::forward) {
offset_point = PointOnPerimeter{previous_index, index, result};
} else {
offset_point = PointOnPerimeter{index, previous_index, result};
}
return true;
}
distance += edge.norm();
return false;
}};
if (direction == Dir::forward) {
Geometry::visit_forward(point.next_index, perimeter.positions.size(), visitor);
} else {
Geometry::visit_backward(point.previous_index, perimeter.positions.size(), visitor);
}
return offset_point;
}
unsigned get_point_value(const PointType point_type, const PointClassification point_classification) {
// Better be explicit than smart.
switch (point_type) {
case PointType::enforcer:
switch (point_classification) {
case PointClassification::embedded: return 9;
case PointClassification::common: return 8;
case PointClassification::overhang: return 7;
}
case PointType::common:
switch (point_classification) {
case PointClassification::embedded: return 6;
case PointClassification::common: return 5;
case PointClassification::overhang: return 4;
}
case PointType::blocker:
switch (point_classification) {
case PointClassification::embedded: return 3;
case PointClassification::common: return 2;
case PointClassification::overhang: return 1;
}
}
return 0;
}
} // namespace Slic3r::Seams::Perimeter