PrusaSlicer/src/libslic3r/GCode/GCodeBinarizer.cpp

1977 lines
68 KiB
C++

#include "GCodeBinarizer.hpp"
#if ENABLE_BINARIZED_GCODE_DEBUG
#define NOMINMAX
#include <windows.h>
#include <debugapi.h>
#endif // ENABLE_BINARIZED_GCODE_DEBUG
#if ENABLE_FILE_CONVERSION_INTERFACE
#include <boost/beast/core/detail/base64.hpp>
#endif // ENABLE_FILE_CONVERSION_INTERFACE
extern "C" {
#include <heatshrink/heatshrink_encoder.h>
#include <heatshrink/heatshrink_decoder.h>
}
#include <zlib.h>
#include <algorithm>
#include <cassert>
namespace bgcode {
static size_t g_checksum_max_cache_size = 65536;
static constexpr const size_t MAX_GCODE_CACHE_SIZE = 65536;
namespace MeatPack {
static constexpr const uint8_t Command_None{ 0 };
//#Command_TogglePacking = 253 -- Currently unused, byte 253 can be reused later.
static constexpr const uint8_t Command_EnablePacking{ 251 };
static constexpr const uint8_t Command_DisablePacking{ 250 };
static constexpr const uint8_t Command_ResetAll{ 249 };
static constexpr const uint8_t Command_QueryConfig{ 248 };
static constexpr const uint8_t Command_EnableNoSpaces{ 247 };
static constexpr const uint8_t Command_DisableNoSpaces{ 246 };
static constexpr const uint8_t Command_SignalByte{ 0xFF };
static constexpr const uint8_t Flag_OmitWhitespaces{ 0x01 };
static constexpr const uint8_t Flag_RemoveComments{ 0x02 };
static constexpr const uint8_t BothUnpackable{ 0b11111111 };
static constexpr const char SpaceReplacedCharacter{ 'E' };
static const std::unordered_map<char, uint8_t> ReverseLookupTbl = {
{ '0', 0b00000000 },
{ '1', 0b00000001 },
{ '2', 0b00000010 },
{ '3', 0b00000011 },
{ '4', 0b00000100 },
{ '5', 0b00000101 },
{ '6', 0b00000110 },
{ '7', 0b00000111 },
{ '8', 0b00001000 },
{ '9', 0b00001001 },
{ '.', 0b00001010 },
{ ' ', 0b00001011 },
{ '\n', 0b00001100 },
{ 'G', 0b00001101 },
{ 'X', 0b00001110 },
{ '\0', 0b00001111 } // never used, 0b1111 is used to indicate the next 8-bits is a full character
};
class MPBinarizer
{
public:
explicit MPBinarizer(uint8_t flags = 0) : m_flags(flags) {}
void initialize(std::vector<uint8_t>& dst) {
initialize_lookup_tables();
append_command(Command_EnablePacking, dst);
m_binarizing = true;
}
void finalize(std::vector<uint8_t>& dst) {
if ((m_flags & Flag_RemoveComments) != 0) {
assert(m_binarizing);
append_command(Command_ResetAll, dst);
m_binarizing = false;
}
}
void binarize_line(const std::string& line, std::vector<uint8_t>& dst) {
auto unified_method = [this](const std::string& line) {
const std::string::size_type g_idx = line.find('G');
if (g_idx != std::string::npos) {
if (g_idx + 1 < line.size() && line[g_idx + 1] >= '0' && line[g_idx + 1] <= '9') {
if ((m_flags & Flag_OmitWhitespaces) != 0) {
std::string result = line;
std::replace(result.begin(), result.end(), 'e', 'E');
std::replace(result.begin(), result.end(), 'x', 'X');
std::replace(result.begin(), result.end(), 'g', 'G');
result.erase(std::remove(result.begin(), result.end(), ' '), result.end());
if (result.find('*') != std::string::npos) {
size_t checksum = 0;
result.erase(std::remove(result.begin(), result.end(), '*'), result.end());
for (size_t i = 0; i < result.size(); ++i) {
checksum ^= static_cast<uint8_t>(result[i]);
}
result += "*" + std::to_string(checksum);
}
result += '\n';
return result;
}
else {
std::string result = line;
std::replace(result.begin(), result.end(), 'x', 'X');
std::replace(result.begin(), result.end(), 'g', 'G');
result.erase(std::remove(result.begin(), result.end(), ' '), result.end());
if (result.find('*') != std::string::npos) {
size_t checksum = 0;
result.erase(std::remove(result.begin(), result.end(), '*'), result.end());
for (size_t i = 0; i < result.size(); ++i) {
checksum ^= static_cast<uint8_t>(result[i]);
}
result += "*" + std::to_string(checksum);
}
result += '\n';
return result;
}
}
}
return line;
};
auto is_packable = [](char c) {
return (s_lookup_tables.packable[static_cast<uint8_t>(c)] != 0);
};
auto pack_chars = [](char low, char high) {
return (((s_lookup_tables.value[static_cast<uint8_t>(high)] & 0xF) << 4) |
(s_lookup_tables.value[static_cast<uint8_t>(low)] & 0xF));
};
if (!line.empty()) {
if ((m_flags & Flag_RemoveComments) == 0) {
if (line[0] == ';') {
if (m_binarizing) {
append_command(Command_DisablePacking, dst);
m_binarizing = false;
}
dst.insert(dst.end(), line.begin(), line.end());
return;
}
}
if (line[0] == ';' ||
line[0] == '\n' ||
line[0] == '\r' ||
line.size() < 2)
return;
std::string modifiedLine = line.substr(0, line.find(';'));
if (modifiedLine.empty())
return;
auto trim_right = [](const std::string& str) {
if (str.back() != ' ')
return str;
auto bit = str.rbegin();
while (bit != str.rend() && *bit == ' ') {
++bit;
}
return str.substr(0, std::distance(str.begin(), bit.base()));
};
modifiedLine = trim_right(modifiedLine);
modifiedLine = unified_method(modifiedLine);
if (modifiedLine.back() != '\n')
modifiedLine.push_back('\n');
const size_t line_len = modifiedLine.size();
std::vector<uint8_t> temp_buffer;
temp_buffer.reserve(line_len);
for (size_t line_idx = 0; line_idx < line_len; line_idx += 2) {
const bool skip_last = line_idx == (line_len - 1);
const char char_1 = modifiedLine[line_idx];
const char char_2 = (skip_last ? '\n' : modifiedLine[line_idx + 1]);
const bool c1_p = is_packable(char_1);
const bool c2_p = is_packable(char_2);
if (c1_p) {
if (c2_p)
temp_buffer.emplace_back(static_cast<uint8_t>(pack_chars(char_1, char_2)));
else {
temp_buffer.emplace_back(static_cast<uint8_t>(pack_chars(char_1, '\0')));
temp_buffer.emplace_back(static_cast<uint8_t>(char_2));
}
}
else {
if (c2_p) {
temp_buffer.emplace_back(static_cast<uint8_t>(pack_chars('\0', char_2)));
temp_buffer.emplace_back(static_cast<uint8_t>(char_1));
}
else {
temp_buffer.emplace_back(static_cast<uint8_t>(BothUnpackable));
temp_buffer.emplace_back(static_cast<uint8_t>(char_1));
temp_buffer.emplace_back(static_cast<uint8_t>(char_2));
}
}
}
if (!m_binarizing && !temp_buffer.empty()) {
append_command(Command_EnablePacking, dst);
m_binarizing = true;
}
dst.insert(dst.end(), temp_buffer.begin(), temp_buffer.end());
}
}
private:
unsigned char m_flags{ 0 };
bool m_binarizing{ false };
struct LookupTables
{
std::array<uint8_t, 256> packable;
std::array<uint8_t, 256> value;
bool initialized;
unsigned char flags;
};
static LookupTables s_lookup_tables;
void append_command(unsigned char cmd, std::vector<uint8_t>& dst) {
dst.emplace_back(Command_SignalByte);
dst.emplace_back(Command_SignalByte);
dst.emplace_back(cmd);
}
void initialize_lookup_tables() {
if (s_lookup_tables.initialized && m_flags == s_lookup_tables.flags)
return;
for (const auto& [c, value] : ReverseLookupTbl) {
const int index = static_cast<int>(c);
s_lookup_tables.packable[index] = 1;
s_lookup_tables.value[index] = value;
}
if ((m_flags & Flag_OmitWhitespaces) != 0) {
s_lookup_tables.value[static_cast<uint8_t>(SpaceReplacedCharacter)] = ReverseLookupTbl.at(' ');
s_lookup_tables.packable[static_cast<uint8_t>(SpaceReplacedCharacter)] = 1;
s_lookup_tables.packable[static_cast<uint8_t>(' ')] = 0;
}
else {
s_lookup_tables.packable[static_cast<uint8_t>(SpaceReplacedCharacter)] = 0;
s_lookup_tables.packable[static_cast<uint8_t>(' ')] = 1;
}
s_lookup_tables.initialized = true;
s_lookup_tables.flags = m_flags;
}
};
MPBinarizer::LookupTables MPBinarizer::s_lookup_tables = { { 0 }, { 0 }, false, 0 };
static constexpr const unsigned char SecondNotPacked{ 0b11110000 };
static constexpr const unsigned char FirstNotPacked{ 0b00001111 };
static constexpr const unsigned char NextPackedFirst{ 0b00000001 };
static constexpr const unsigned char NextPackedSecond{ 0b00000010 };
// See for reference: https://github.com/scottmudge/Prusa-Firmware-MeatPack/blob/MK3_sm_MeatPack/Firmware/meatpack.cpp
static void unbinarize(const std::vector<uint8_t>& src, std::string& dst) {
bool unbinarizing = false;
bool cmd_active = false; // Is a command pending
uint8_t char_buf = 0; // Buffers a character if dealing with out-of-sequence pairs
size_t cmd_count = 0; // Counts how many command bytes are received (need 2)
size_t full_char_queue = 0; // Counts how many full-width characters are to be received
std::array<uint8_t, 2> char_out_buf; // Output buffer for caching up to 2 characters
size_t char_out_count = 0; // Stores number of characters to be read out
auto handle_command = [&](uint8_t c) {
switch (c)
{
case Command_EnablePacking: { unbinarizing = true; break; }
case Command_DisablePacking: { unbinarizing = false; break; }
case Command_ResetAll: { unbinarizing = false; break; }
default:
case Command_QueryConfig: { break; }
}
};
auto handle_output_char = [&](uint8_t c) {
char_out_buf[char_out_count++] = c;
};
auto get_char = [](uint8_t c) {
switch (c)
{
case 0b0000: { return '0'; }
case 0b0001: { return '1'; }
case 0b0010: { return '2'; }
case 0b0011: { return '3'; }
case 0b0100: { return '4'; }
case 0b0101: { return '5'; }
case 0b0110: { return '6'; }
case 0b0111: { return '7'; }
case 0b1000: { return '8'; }
case 0b1001: { return '9'; }
case 0b1010: { return '.'; }
case 0b1011: { return 'E'; }
case 0b1100: { return '\n'; }
case 0b1101: { return 'G'; }
case 0b1110: { return 'X'; }
}
return '\0';
};
auto unpack_chars = [&](uint8_t pk, std::array<uint8_t, 2>& chars_out) {
uint8_t out = 0;
// If lower 4 bytes is 0b1111, the higher 4 are unused, and next char is full.
if ((pk & FirstNotPacked) == FirstNotPacked)
out |= NextPackedFirst;
else
chars_out[0] = get_char(pk & 0xF); // Assign lower char
// Check if upper 4 bytes is 0b1111... if so, we don't need the second char.
if ((pk & SecondNotPacked) == SecondNotPacked)
out |= NextPackedSecond;
else
chars_out[1] = get_char((pk >> 4) & 0xF); // Assign upper char
return out;
};
auto handle_rx_char = [&](uint8_t c) {
if (unbinarizing) {
if (full_char_queue > 0) {
handle_output_char(c);
if (char_buf > 0) {
handle_output_char(char_buf);
char_buf = 0;
}
--full_char_queue;
}
else {
std::array<uint8_t, 2> buf = { 0, 0 };
const uint8_t res = unpack_chars(c, buf);
if ((res & NextPackedFirst) != 0) {
++full_char_queue;
if ((res & NextPackedSecond) != 0)
++full_char_queue;
else
char_buf = buf[1];
}
else {
handle_output_char(buf[0]);
if (buf[0] != '\n') {
if ((res & NextPackedSecond) != 0)
++full_char_queue;
else
handle_output_char(buf[1]);
}
}
}
}
else // Packing not enabled, just copy character to output
handle_output_char(c);
};
auto get_result_char = [&](std::array<char, 2>& chars_out) {
if (char_out_count > 0) {
const size_t res = char_out_count;
for (uint8_t i = 0; i < char_out_count; ++i) {
chars_out[i] = (char)char_out_buf[i];
}
char_out_count = 0;
return res;
}
return (size_t)0;
};
std::vector<uint8_t> unbin_buffer(2 * src.size(), 0);
auto it_unbin_end = unbin_buffer.begin();
#if ENABLE_BINARIZED_GCODE_DEBUG
size_t line_start = 0;
#endif // ENABLE_BINARIZED_GCODE_DEBUG
bool add_space = false;
auto begin = src.begin();
auto end = src.end();
auto it_bin = begin;
while (it_bin != end) {
uint8_t c_bin = *it_bin;
if (c_bin == Command_SignalByte) {
if (cmd_count > 0) {
cmd_active = true;
cmd_count = 0;
}
else
++cmd_count;
}
else {
if (cmd_active) {
handle_command(c_bin);
cmd_active = false;
}
else {
if (cmd_count > 0) {
handle_rx_char(Command_SignalByte);
cmd_count = 0;
}
handle_rx_char(c_bin);
}
}
auto is_gline_parameter = [](const char c) {
static const std::vector<char> parameters = {
// G0, G1
'X', 'Y', 'Z', 'E', 'F',
// G2, G3
'I', 'J', 'R',
// G29
'P', 'W', 'H', 'C', 'A'
};
return std::find(parameters.begin(), parameters.end(), c) != parameters.end();
};
std::array<char, 2> c_unbin{ 0, 0 };
const size_t char_count = get_result_char(c_unbin);
for (size_t i = 0; i < char_count; ++i) {
// GCodeReader::parse_line_internal() is unable to parse a G line where the data are not separated by spaces
// so we add them where needed
const size_t curr_unbin_buffer_length = std::distance(unbin_buffer.begin(), it_unbin_end);
if (c_unbin[i] == 'G' && (curr_unbin_buffer_length == 0 || *std::prev(it_unbin_end, 1) == '\n'))
add_space = true;
else if (c_unbin[i] == '\n')
add_space = false;
if (add_space && (curr_unbin_buffer_length == 0 || *std::prev(it_unbin_end, 1) != ' ') &&
is_gline_parameter(c_unbin[i])) {
*it_unbin_end = ' ';
++it_unbin_end;
}
if (c_unbin[i] != '\n' || std::distance(unbin_buffer.begin(), it_unbin_end) == 0 || *std::prev(it_unbin_end, 1) != '\n') {
*it_unbin_end = c_unbin[i];
++it_unbin_end;
}
#if ENABLE_BINARIZED_GCODE_DEBUG
if (c_unbin[i] == '\n') {
const std::string out(unbin_buffer.begin() + line_start, it_unbin_end);
if (!out.empty()) {
OutputDebugStringA(out.c_str());
line_start = std::distance(unbin_buffer.begin(), it_unbin_end);
}
}
#endif // ENABLE_BINARIZED_GCODE_DEBUG
}
++it_bin;
}
dst.insert(dst.end(), unbin_buffer.begin(), it_unbin_end);
}
} // namespace MeatPack
std::string translate_result(EResult result)
{
switch (result)
{
case EResult::Success: { return "Success"; }
case EResult::ReadError: { return "Read error"; }
case EResult::WriteError: { return "Write error"; }
case EResult::InvalidMagicNumber: { return "Invalid magic number"; }
case EResult::InvalidVersionNumber: { return "Invalid version number"; }
case EResult::InvalidChecksumType: { return "Invalid checksum type"; }
case EResult::InvalidBlockType: { return "Invalid block type"; }
case EResult::InvalidCompressionType: { return "Invalid compression type"; }
case EResult::InvalidMetadataEncodingType: { return "Invalid metadata encoding type"; }
case EResult::InvalidGCodeEncodingType: { return "Invalid gcode encoding type"; }
case EResult::DataCompressionError: { return "Data compression error"; }
case EResult::DataUncompressionError: { return "Data uncompression error"; }
case EResult::MetadataEncodingError: { return "Data encoding error"; }
case EResult::MetadataDecodingError: { return "Data decoding error"; }
case EResult::GCodeEncodingError: { return "GCode encoding error"; }
case EResult::GCodeDecodingError: { return "GCode decoding error"; }
case EResult::BlockNotFound: { return "Block not found"; }
case EResult::InvalidChecksum: { return "Invalid checksum"; }
case EResult::InvalidThumbnailFormat: { return "Invalid thumbnail format"; }
case EResult::InvalidThumbnailWidth: { return "Invalid thumbnail width"; }
case EResult::InvalidThumbnailHeight: { return "Invalid thumbnail height"; }
case EResult::InvalidThumbnailDataSize: { return "Invalid thumbnail data size"; }
case EResult::InvalidBinaryGCodeFile: { return "Invalid binary GCode file"; }
case EResult::InvalidSequenceOfBlocks: { return "Invalid sequence of blocks"; }
}
return std::string();
}
size_t get_checksum_max_cache_size() { return g_checksum_max_cache_size; }
void set_checksum_max_cache_size(size_t size) { g_checksum_max_cache_size = size; }
static uint16_t checksum_types_count() { return 1 + (uint16_t)EChecksumType::CRC32; }
static uint16_t block_types_count() { return 1 + (uint16_t)EBlockType::Thumbnail; }
static uint16_t compression_types_count() { return 1 + (uint16_t)ECompressionType::Heatshrink_12_4; }
static uint16_t thumbnail_formats_count() { return 1 + (uint16_t)EThumbnailFormat::QOI; }
static uint16_t metadata_encoding_types_count() { return 1 + (uint16_t)EMetadataEncodingType::INI; }
static uint16_t gcode_encoding_types_count() { return 1 + (uint16_t)EGCodeEncodingType::MeatPackComments; }
static bool write_to_file(FILE& file, const void* data, size_t data_size)
{
fwrite(data, 1, data_size, &file);
return !ferror(&file);
}
static bool read_from_file(FILE& file, void* data, size_t data_size)
{
fread(data, 1, data_size, &file);
return !ferror(&file);
}
static bool encode_metadata(const std::vector<std::pair<std::string, std::string>>& src, std::vector<uint8_t>& dst,
EMetadataEncodingType encoding_type)
{
for (const auto& [key, value] : src) {
switch (encoding_type)
{
case EMetadataEncodingType::INI:
{
dst.insert(dst.end(), key.begin(), key.end());
dst.emplace_back('=');
dst.insert(dst.end(), value.begin(), value.end());
dst.emplace_back('\n');
break;
}
}
}
return true;
}
static bool decode_metadata(const std::vector<uint8_t>& src, std::vector<std::pair<std::string, std::string>>& dst,
EMetadataEncodingType encoding_type)
{
switch (encoding_type)
{
case EMetadataEncodingType::INI:
{
auto begin_it = src.begin();
auto end_it = src.begin();
while (end_it != src.end()) {
while (end_it != src.end() && *end_it != '\n') {
++end_it;
}
const std::string item(begin_it, end_it);
const size_t pos = item.find_first_of('=');
if (pos != std::string::npos) {
dst.emplace_back(std::make_pair(item.substr(0, pos), item.substr(pos + 1)));
begin_it = ++end_it;
}
}
break;
}
}
return true;
}
static bool encode_gcode(const std::string& src, std::vector<uint8_t>& dst, EGCodeEncodingType encoding_type)
{
switch (encoding_type)
{
case EGCodeEncodingType::None:
{
dst.insert(dst.end(), src.begin(), src.end());
break;
}
case EGCodeEncodingType::MeatPack:
case EGCodeEncodingType::MeatPackComments:
{
uint8_t binarizer_flags = (encoding_type == EGCodeEncodingType::MeatPack) ? MeatPack::Flag_RemoveComments : 0;
binarizer_flags |= MeatPack::Flag_OmitWhitespaces;
MeatPack::MPBinarizer binarizer(binarizer_flags);
binarizer.initialize(dst);
auto begin_it = src.begin();
auto end_it = src.begin();
while (end_it != src.end()) {
while (end_it != src.end() && *end_it != '\n') {
++end_it;
}
const std::string line(begin_it, ++end_it);
binarizer.binarize_line(line, dst);
begin_it = end_it;
}
binarizer.finalize(dst);
break;
}
}
return true;
}
static bool decode_gcode(const std::vector<uint8_t>& src, std::string& dst, EGCodeEncodingType encoding_type)
{
switch (encoding_type)
{
case EGCodeEncodingType::None:
{
dst.insert(dst.end(), src.begin(), src.end());
break;
}
case EGCodeEncodingType::MeatPack:
case EGCodeEncodingType::MeatPackComments:
{
MeatPack::unbinarize(src, dst);
break;
}
}
return true;
}
static bool compress(const std::vector<uint8_t>& src, std::vector<uint8_t>& dst, ECompressionType compression_type)
{
switch (compression_type)
{
case ECompressionType::Deflate:
{
dst.clear();
const size_t BUFSIZE = 2048;
std::vector<uint8_t> temp_buffer(BUFSIZE);
z_stream strm{};
strm.next_in = const_cast<uint8_t*>(src.data());
strm.avail_in = (uInt)src.size();
strm.next_out = temp_buffer.data();
strm.avail_out = BUFSIZE;
const int level = Z_DEFAULT_COMPRESSION;
int res = deflateInit(&strm, level);
if (res != Z_OK)
return false;
while (strm.avail_in > 0) {
res = deflate(&strm, Z_NO_FLUSH);
if (res != Z_OK) {
deflateEnd(&strm);
return false;
}
if (strm.avail_out == 0) {
dst.insert(dst.end(), temp_buffer.data(), temp_buffer.data() + BUFSIZE);
strm.next_out = temp_buffer.data();
strm.avail_out = BUFSIZE;
}
}
int deflate_res = Z_OK;
while (deflate_res == Z_OK) {
if (strm.avail_out == 0) {
dst.insert(dst.end(), temp_buffer.data(), temp_buffer.data() + BUFSIZE);
strm.next_out = temp_buffer.data();
strm.avail_out = BUFSIZE;
}
deflate_res = deflate(&strm, Z_FINISH);
}
if (deflate_res != Z_STREAM_END) {
deflateEnd(&strm);
return false;
}
dst.insert(dst.end(), temp_buffer.data(), temp_buffer.data() + BUFSIZE - strm.avail_out);
deflateEnd(&strm);
break;
}
case ECompressionType::Heatshrink_11_4:
case ECompressionType::Heatshrink_12_4:
{
const uint8_t window_sz = (compression_type == ECompressionType::Heatshrink_11_4) ? 11 : 12;
const uint8_t lookahead_sz = 4;
heatshrink_encoder* encoder = heatshrink_encoder_alloc(window_sz, lookahead_sz);
if (encoder == nullptr)
return false;
// calculate the maximum compressed size (assuming a conservative estimate)
const size_t src_size = src.size();
const size_t max_compressed_size = src_size + (src_size >> 2);
dst.resize(max_compressed_size);
uint8_t* buf = const_cast<uint8_t*>(src.data());
uint8_t* outbuf = dst.data();
// compress data
size_t tosink = src_size;
size_t output_size = 0;
while (tosink > 0) {
size_t sunk = 0;
const HSE_sink_res sink_res = heatshrink_encoder_sink(encoder, buf, tosink, &sunk);
if (sink_res != HSER_SINK_OK) {
heatshrink_encoder_free(encoder);
return false;
}
if (sunk == 0)
// all input data processed
break;
tosink -= sunk;
buf += sunk;
size_t polled = 0;
const HSE_poll_res poll_res = heatshrink_encoder_poll(encoder, outbuf + output_size, max_compressed_size - output_size, &polled);
if (poll_res < 0) {
heatshrink_encoder_free(encoder);
return false;
}
output_size += polled;
}
// input data finished
const HSE_finish_res finish_res = heatshrink_encoder_finish(encoder);
if (finish_res < 0) {
heatshrink_encoder_free(encoder);
return false;
}
// poll for final output
size_t polled = 0;
const HSE_poll_res poll_res = heatshrink_encoder_poll(encoder, outbuf + output_size, max_compressed_size - output_size, &polled);
if (poll_res < 0) {
heatshrink_encoder_free(encoder);
return false;
}
dst.resize(output_size + polled);
heatshrink_encoder_free(encoder);
break;
}
case ECompressionType::None:
default:
{
break;
}
}
return true;
}
static bool uncompress(const std::vector<uint8_t>& src, std::vector<uint8_t>& dst, ECompressionType compression_type, size_t uncompressed_size)
{
switch (compression_type)
{
case ECompressionType::Deflate:
{
dst.clear();
dst.reserve(uncompressed_size);
const size_t BUFSIZE = 2048;
std::vector<uint8_t> temp_buffer(BUFSIZE);
z_stream strm{};
strm.next_in = const_cast<uint8_t*>(src.data());
strm.avail_in = (uInt)src.size();
strm.next_out = temp_buffer.data();
strm.avail_out = BUFSIZE;
int res = inflateInit(&strm);
if (res != Z_OK)
return false;
while (strm.avail_in > 0) {
res = inflate(&strm, Z_NO_FLUSH);
if (res != Z_OK && res != Z_STREAM_END) {
inflateEnd(&strm);
return false;
}
if (strm.avail_out == 0) {
dst.insert(dst.end(), temp_buffer.data(), temp_buffer.data() + BUFSIZE);
strm.next_out = temp_buffer.data();
strm.avail_out = BUFSIZE;
}
}
int inflate_res = Z_OK;
while (inflate_res == Z_OK) {
if (strm.avail_out == 0) {
dst.insert(dst.end(), temp_buffer.data(), temp_buffer.data() + BUFSIZE);
strm.next_out = temp_buffer.data();
strm.avail_out = BUFSIZE;
}
inflate_res = inflate(&strm, Z_FINISH);
}
if (inflate_res != Z_STREAM_END) {
inflateEnd(&strm);
return false;
}
dst.insert(dst.end(), temp_buffer.data(), temp_buffer.data() + BUFSIZE - strm.avail_out);
inflateEnd(&strm);
break;
}
case ECompressionType::Heatshrink_11_4:
case ECompressionType::Heatshrink_12_4:
{
const uint8_t window_sz = (compression_type == ECompressionType::Heatshrink_11_4) ? 11 : 12;
const uint8_t lookahead_sz = 4;
const uint16_t input_buffer_size = 2048;
heatshrink_decoder* decoder = heatshrink_decoder_alloc(input_buffer_size, window_sz, lookahead_sz);
if (decoder == nullptr)
return false;
dst.resize(uncompressed_size);
uint8_t* buf = const_cast<uint8_t*>(src.data());
uint8_t* outbuf = dst.data();
uint32_t sunk = 0;
uint32_t polled = 0;
const size_t compressed_size = src.size();
while (sunk < compressed_size) {
size_t count = 0;
const HSD_sink_res sink_res = heatshrink_decoder_sink(decoder, &buf[sunk], compressed_size - sunk, &count);
if (sink_res < 0) {
heatshrink_decoder_free(decoder);
return false;
}
sunk += (uint32_t)count;
HSD_poll_res poll_res;
do {
poll_res = heatshrink_decoder_poll(decoder, &outbuf[polled], uncompressed_size - polled, &count);
if (poll_res < 0) {
heatshrink_decoder_free(decoder);
return false;
}
polled += (uint32_t)count;
} while (polled < uncompressed_size && poll_res == HSDR_POLL_MORE);
}
const HSD_finish_res finish_res = heatshrink_decoder_finish(decoder);
if (finish_res < 0) {
heatshrink_decoder_free(decoder);
return false;
}
heatshrink_decoder_free(decoder);
break;
}
case ECompressionType::None:
default:
{
break;
}
}
return true;
}
static uint32_t crc32_sw(const uint8_t* buffer, uint32_t length, uint32_t crc)
{
uint32_t value = crc ^ 0xFFFFFFFF;
while (length--) {
value ^= (uint32_t)*buffer++;
for (int bit = 0; bit < 8; bit++) {
if (value & 1)
value = (value >> 1) ^ 0xEDB88320;
else
value >>= 1;
}
}
value ^= 0xFFFFFFFF;
return value;
}
std::vector<uint8_t> encode(const void* data, size_t data_size)
{
std::vector<uint8_t> ret(data_size);
memcpy(ret.data(), data, data_size);
return ret;
}
Checksum::Checksum(EChecksumType type)
: m_type(type)
{
if (m_type != EChecksumType::None)
m_checksum = std::vector<uint8_t>(checksum_size(m_type), '\0');
}
EChecksumType Checksum::get_type() const
{
return m_type;
}
void Checksum::append(const std::vector<uint8_t>& data)
{
size_t remaining_data_size = std::distance(data.begin(), data.end());
auto it_begin = data.begin();
while (remaining_data_size + m_cache.size() > g_checksum_max_cache_size) {
update();
if (remaining_data_size > g_checksum_max_cache_size) {
m_cache.insert(m_cache.end(), it_begin, it_begin + g_checksum_max_cache_size);
it_begin += g_checksum_max_cache_size;
remaining_data_size -= g_checksum_max_cache_size;
}
}
m_cache.insert(m_cache.end(), it_begin, data.end());
}
bool Checksum::matches(Checksum& other)
{
update();
other.update();
return m_checksum == other.m_checksum;
}
EResult Checksum::write(FILE& file)
{
if (m_type != EChecksumType::None) {
update();
if (!write_to_file(file, (const void*)m_checksum.data(), m_checksum.size()))
return EResult::WriteError;
}
return EResult::Success;
}
EResult Checksum::read(FILE& file)
{
if (m_type != EChecksumType::None) {
if (!read_from_file(file, (void*)m_checksum.data(), m_checksum.size()))
return EResult::ReadError;
}
return EResult::Success;
}
void Checksum::update()
{
if (m_cache.empty())
return;
switch (m_type)
{
case EChecksumType::None:
{
break;
}
case EChecksumType::CRC32:
{
const uint32_t old_crc = *(uint32_t*)m_checksum.data();
const uint32_t new_crc = crc32_sw(m_cache.data(), (uint32_t)m_cache.size(), old_crc);
*(uint32_t*)m_checksum.data() = new_crc;
break;
}
}
m_cache.clear();
}
EResult FileHeader::write(FILE& file) const
{
if (magic != *(uint32_t*)(MAGIC.data()))
return EResult::InvalidMagicNumber;
if (checksum_type >= checksum_types_count())
return EResult::InvalidChecksumType;
if (!write_to_file(file, (const void*)&magic, sizeof(magic)))
return EResult::WriteError;
if (!write_to_file(file, (const void*)&version, sizeof(version)))
return EResult::WriteError;
if (!write_to_file(file, (const void*)&checksum_type, sizeof(checksum_type)))
return EResult::WriteError;
return EResult::Success;
}
EResult FileHeader::read(FILE& file, const uint32_t* const max_version)
{
if (!read_from_file(file, (void*)&magic, sizeof(magic)))
return EResult::ReadError;
if (magic != *(uint32_t*)(MAGIC.data()))
return EResult::InvalidMagicNumber;
if (!read_from_file(file, (void*)&version, sizeof(version)))
return EResult::ReadError;
if (max_version != nullptr && version > *max_version)
return EResult::InvalidVersionNumber;
if (!read_from_file(file, (void*)&checksum_type, sizeof(checksum_type)))
return EResult::ReadError;
if (checksum_type >= checksum_types_count())
return EResult::InvalidChecksumType;
return EResult::Success;
}
void BlockHeader::update_checksum(Checksum& checksum) const
{
checksum.append(encode((const void*)&type, sizeof(type)));
checksum.append(encode((const void*)&compression, sizeof(compression)));
checksum.append(encode((const void*)&uncompressed_size, sizeof(uncompressed_size)));
if (compression != (uint16_t)ECompressionType::None)
checksum.append(encode((const void*)&compressed_size, sizeof(compressed_size)));
}
EResult BlockHeader::write(FILE& file) const
{
if (!write_to_file(file, (const void*)&type, sizeof(type)))
return EResult::WriteError;
if (!write_to_file(file, (const void*)&compression, sizeof(compression)))
return EResult::WriteError;
if (!write_to_file(file, (const void*)&uncompressed_size, sizeof(uncompressed_size)))
return EResult::WriteError;
if (compression != (uint16_t)ECompressionType::None) {
if (!write_to_file(file, (const void*)&compressed_size, sizeof(compressed_size)))
return EResult::WriteError;
}
return EResult::Success;
}
EResult BlockHeader::read(FILE& file)
{
if (!read_from_file(file, (void*)&type, sizeof(type)))
return EResult::ReadError;
if (type >= block_types_count())
return EResult::InvalidBlockType;
if (!read_from_file(file, (void*)&compression, sizeof(compression)))
return EResult::ReadError;
if (compression >= compression_types_count())
return EResult::InvalidCompressionType;
if (!read_from_file(file, (void*)&uncompressed_size, sizeof(uncompressed_size)))
return EResult::ReadError;
if (compression != (uint16_t)ECompressionType::None) {
if (!read_from_file(file, (void*)&compressed_size, sizeof(compressed_size)))
return EResult::ReadError;
}
return EResult::Success;
}
EResult BaseMetadataBlock::write(FILE& file, EBlockType block_type, ECompressionType compression_type, Checksum& checksum) const
{
if (encoding_type > metadata_encoding_types_count())
return EResult::InvalidMetadataEncodingType;
BlockHeader block_header = { (uint16_t)block_type, (uint16_t)compression_type, (uint32_t)0 };
std::vector<uint8_t> out_data;
if (!raw_data.empty()) {
// process payload encoding
std::vector<uint8_t> uncompressed_data;
if (!encode_metadata(raw_data, uncompressed_data, (EMetadataEncodingType)encoding_type))
return EResult::MetadataEncodingError;
// process payload compression
block_header.uncompressed_size = (uint32_t)uncompressed_data.size();
std::vector<uint8_t> compressed_data;
if (compression_type != ECompressionType::None) {
if (!compress(uncompressed_data, compressed_data, compression_type))
return EResult::DataCompressionError;
block_header.compressed_size = (uint32_t)compressed_data.size();
}
out_data.swap((compression_type == ECompressionType::None) ? uncompressed_data : compressed_data);
}
// write block header
EResult res = block_header.write(file);
if (res != EResult::Success)
// propagate error
return res;
// write block payload
if (!write_to_file(file, (const void*)&encoding_type, sizeof(encoding_type)))
return EResult::WriteError;
if (!out_data.empty()) {
if (!write_to_file(file, (const void*)out_data.data(), out_data.size()))
return EResult::WriteError;
}
if (checksum.get_type() != EChecksumType::None) {
// update checksum with block header
block_header.update_checksum(checksum);
// update checksum with block payload
checksum.append(encode((const void*)&encoding_type, sizeof(encoding_type)));
if (!out_data.empty())
checksum.append(out_data);
}
return EResult::Success;
}
EResult BaseMetadataBlock::read_data(FILE& file, const BlockHeader& block_header)
{
const ECompressionType compression_type = (ECompressionType)block_header.compression;
if (!read_from_file(file, (void*)&encoding_type, sizeof(encoding_type)))
return EResult::ReadError;
if (encoding_type > metadata_encoding_types_count())
return EResult::InvalidMetadataEncodingType;
std::vector<uint8_t> data;
const size_t data_size = (compression_type == ECompressionType::None) ? block_header.uncompressed_size : block_header.compressed_size;
if (data_size > 0) {
data.resize(data_size);
if (!read_from_file(file, (void*)data.data(), data_size))
return EResult::ReadError;
}
std::vector<uint8_t> uncompressed_data;
if (compression_type != ECompressionType::None) {
if (!uncompress(data, uncompressed_data, compression_type, block_header.uncompressed_size))
return EResult::DataUncompressionError;
}
if (!decode_metadata((compression_type == ECompressionType::None) ? data : uncompressed_data, raw_data, (EMetadataEncodingType)encoding_type))
return EResult::MetadataDecodingError;
return EResult::Success;
}
EResult FileMetadataBlock::write(FILE& file, ECompressionType compression_type, EChecksumType checksum_type) const
{
Checksum cs(checksum_type);
// write block header, payload
EResult res = BaseMetadataBlock::write(file, EBlockType::FileMetadata, compression_type, cs);
if (res != EResult::Success)
// propagate error
return res;
// write block checksum
if (checksum_type != EChecksumType::None)
return cs.write(file);
return EResult::Success;
}
EResult FileMetadataBlock::read_data(FILE& file, const FileHeader& file_header, const BlockHeader& block_header)
{
// read block payload
EResult res = BaseMetadataBlock::read_data(file, block_header);
if (res != EResult::Success)
// propagate error
return res;
const EChecksumType checksum_type = (EChecksumType)file_header.checksum_type;
if (checksum_type != EChecksumType::None) {
// read block checksum
Checksum cs(checksum_type);
res = cs.read(file);
if (res != EResult::Success)
// propagate error
return res;
}
return EResult::Success;
}
EResult ThumbnailBlock::write(FILE& file, EChecksumType checksum_type) const
{
if (format >= thumbnail_formats_count())
return EResult::InvalidThumbnailFormat;
if (width == 0)
return EResult::InvalidThumbnailWidth;
if (height == 0)
return EResult::InvalidThumbnailHeight;
if (data.size() == 0)
return EResult::InvalidThumbnailDataSize;
// write block header
const BlockHeader block_header = { (uint16_t)EBlockType::Thumbnail, (uint16_t)ECompressionType::None, (uint32_t)data.size() };
EResult res = block_header.write(file);
if (res != EResult::Success)
// propagate error
return res;
// write block payload
if (!write_to_file(file, (const void*)&format, sizeof(format)))
return EResult::WriteError;
if (!write_to_file(file, (const void*)&width, sizeof(width)))
return EResult::WriteError;
if (!write_to_file(file, (const void*)&height, sizeof(height)))
return EResult::WriteError;
if (!write_to_file(file, (const void*)data.data(), data.size()))
return EResult::WriteError;
if (checksum_type != EChecksumType::None) {
Checksum cs(checksum_type);
// update checksum with block header
block_header.update_checksum(cs);
// update checksum with block payload
update_checksum(cs);
// write block checksum
res = cs.write(file);
if (res != EResult::Success)
// propagate error
return res;
}
return EResult::Success;
}
EResult ThumbnailBlock::read_data(FILE& file, const FileHeader& file_header, const BlockHeader& block_header)
{
// read block payload
if (!read_from_file(file, (void*)&format, sizeof(format)))
return EResult::ReadError;
if (format >= thumbnail_formats_count())
return EResult::InvalidThumbnailFormat;
if (!read_from_file(file, (void*)&width, sizeof(width)))
return EResult::ReadError;
if (width == 0)
return EResult::InvalidThumbnailWidth;
if (!read_from_file(file, (void*)&height, sizeof(height)))
return EResult::ReadError;
if (height == 0)
return EResult::InvalidThumbnailHeight;
if (block_header.uncompressed_size == 0)
return EResult::InvalidThumbnailDataSize;
data.resize(block_header.uncompressed_size);
if (!read_from_file(file, (void*)data.data(), block_header.uncompressed_size))
return EResult::ReadError;
const EChecksumType checksum_type = (EChecksumType)file_header.checksum_type;
if (checksum_type != EChecksumType::None) {
// read block checksum
Checksum cs(checksum_type);
const EResult res = cs.read(file);
if (res != EResult::Success)
// propagate error
return res;
}
return EResult::Success;
}
void ThumbnailBlock::update_checksum(Checksum& checksum) const
{
checksum.append(encode((const void*)&format, sizeof(format)));
checksum.append(encode((const void*)&width, sizeof(width)));
checksum.append(encode((const void*)&height, sizeof(height)));
checksum.append(data);
}
EResult PrinterMetadataBlock::write(FILE& file, ECompressionType compression_type, EChecksumType checksum_type) const
{
Checksum cs(checksum_type);
// write block header, payload
EResult res = BaseMetadataBlock::write(file, EBlockType::PrinterMetadata, compression_type, cs);
if (res != EResult::Success)
// propagate error
return res;
// write block checksum
if (checksum_type != EChecksumType::None)
return cs.write(file);
return EResult::Success;
}
EResult PrinterMetadataBlock::read_data(FILE& file, const FileHeader& file_header, const BlockHeader& block_header)
{
// read block payload
EResult res = BaseMetadataBlock::read_data(file, block_header);
if (res != EResult::Success)
// propagate error
return res;
const EChecksumType checksum_type = (EChecksumType)file_header.checksum_type;
if (checksum_type != EChecksumType::None) {
// read block checksum
Checksum cs(checksum_type);
res = cs.read(file);
if (res != EResult::Success)
// propagate error
return res;
}
return EResult::Success;
}
EResult PrintMetadataBlock::write(FILE& file, ECompressionType compression_type, EChecksumType checksum_type) const
{
Checksum cs(checksum_type);
// write block header, payload
EResult res = BaseMetadataBlock::write(file, EBlockType::PrintMetadata, compression_type, cs);
if (res != EResult::Success)
// propagate error
return res;
// write block checksum
if (checksum_type != EChecksumType::None)
return cs.write(file);
return EResult::Success;
}
EResult PrintMetadataBlock::read_data(FILE& file, const FileHeader& file_header, const BlockHeader& block_header)
{
// read block payload
EResult res = BaseMetadataBlock::read_data(file, block_header);
if (res != EResult::Success)
// propagate error
return res;
const EChecksumType checksum_type = (EChecksumType)file_header.checksum_type;
if (checksum_type != EChecksumType::None) {
// read block checksum
Checksum cs(checksum_type);
res = cs.read(file);
if (res != EResult::Success)
// propagate error
return res;
}
return EResult::Success;
}
EResult SlicerMetadataBlock::write(FILE& file, ECompressionType compression_type, EChecksumType checksum_type) const
{
Checksum cs(checksum_type);
// write block header, payload
EResult res = BaseMetadataBlock::write(file, EBlockType::SlicerMetadata, compression_type, cs);
if (res != EResult::Success)
// propagate error
return res;
// write block checksum
if (checksum_type != EChecksumType::None)
return cs.write(file);
return EResult::Success;
}
EResult SlicerMetadataBlock::read_data(FILE& file, const FileHeader& file_header, const BlockHeader& block_header)
{
// read block payload
EResult res = BaseMetadataBlock::read_data(file, block_header);
if (res != EResult::Success)
// propagate error
return res;
const EChecksumType checksum_type = (EChecksumType)file_header.checksum_type;
if (checksum_type != EChecksumType::None) {
// read block checksum
Checksum cs(checksum_type);
res = cs.read(file);
if (res != EResult::Success)
// propagate error
return res;
}
return EResult::Success;
}
EResult GCodeBlock::write(FILE& file, ECompressionType compression_type, EChecksumType checksum_type) const
{
if (encoding_type > gcode_encoding_types_count())
return EResult::InvalidGCodeEncodingType;
BlockHeader block_header = { (uint16_t)EBlockType::GCode, (uint16_t)compression_type, (uint32_t)0 };
std::vector<uint8_t> out_data;
if (!raw_data.empty()) {
// process payload encoding
std::vector<uint8_t> uncompressed_data;
if (!encode_gcode(raw_data, uncompressed_data, (EGCodeEncodingType)encoding_type))
return EResult::GCodeEncodingError;
// process payload compression
block_header.uncompressed_size = (uint32_t)uncompressed_data.size();
std::vector<uint8_t> compressed_data;
if (compression_type != ECompressionType::None) {
if (!compress(uncompressed_data, compressed_data, compression_type))
return EResult::DataCompressionError;
block_header.compressed_size = (uint32_t)compressed_data.size();
}
out_data.swap((compression_type == ECompressionType::None) ? uncompressed_data : compressed_data);
}
// write block header
EResult res = block_header.write(file);
if (res != EResult::Success)
// propagate error
return res;
// write block payload
if (!write_to_file(file, (const void*)&encoding_type, sizeof(encoding_type)))
return EResult::WriteError;
if (!out_data.empty()) {
#if ENABLE_BINARIZED_GCODE_DEBUG
const std::string out = "GCodeBlock data size:" + std::to_string(out_data.size()) + "\n";
OutputDebugStringA(out.c_str());
#endif // ENABLE_BINARIZED_GCODE_DEBUG
if (!write_to_file(file, (const void*)out_data.data(), out_data.size()))
return EResult::WriteError;
}
// write checksum
if (checksum_type != EChecksumType::None) {
Checksum cs(checksum_type);
// update checksum with block header
block_header.update_checksum(cs);
// update checksum with block payload
cs.append(encode((const void*)&encoding_type, sizeof(encoding_type)));
if (!out_data.empty())
cs.append(out_data);
res = cs.write(file);
if (res != EResult::Success)
// propagate error
return res;
}
return EResult::Success;
}
EResult GCodeBlock::read_data(FILE& file, const FileHeader& file_header, const BlockHeader& block_header)
{
const ECompressionType compression_type = (ECompressionType)block_header.compression;
if (!read_from_file(file, (void*)&encoding_type, sizeof(encoding_type)))
return EResult::ReadError;
if (encoding_type > gcode_encoding_types_count())
return EResult::InvalidGCodeEncodingType;
std::vector<uint8_t> data;
const size_t data_size = (compression_type == ECompressionType::None) ? block_header.uncompressed_size : block_header.compressed_size;
if (data_size > 0) {
data.resize(data_size);
if (!read_from_file(file, (void*)data.data(), data_size))
return EResult::ReadError;
}
std::vector<uint8_t> uncompressed_data;
if (compression_type != ECompressionType::None) {
if (!uncompress(data, uncompressed_data, compression_type, block_header.uncompressed_size))
return EResult::DataUncompressionError;
}
if (!decode_gcode((compression_type == ECompressionType::None) ? data : uncompressed_data, raw_data, (EGCodeEncodingType)encoding_type))
return EResult::GCodeDecodingError;
const EChecksumType checksum_type = (EChecksumType)file_header.checksum_type;
if (checksum_type != EChecksumType::None) {
// read block checksum
Checksum cs(checksum_type);
const EResult res = cs.read(file);
if (res != EResult::Success)
// propagate error
return res;
}
return EResult::Success;
}
#if ENABLE_CHECKSUM_BLOCK
EResult ChecksumBlock::write(FILE& file) const
{
if (!data.empty()) {
const BlockHeader block_header = { (uint16_t)EBlockType::Checksum, (uint16_t)ECompressionType::None, (uint32_t)data.size() };
// write block header
const EResult res = block_header.write(file);
if (res != EResult::Success)
// propagate error
return res;
// write block payload
if (!write_to_file(file, (const void*)data.data(), data.size()))
return EResult::WriteError;
}
return EResult::Success;
}
EResult ChecksumBlock::read_data(FILE& file, const BlockHeader& block_header)
{
if (block_header.uncompressed_size > 0) {
data.resize(block_header.uncompressed_size);
if (!read_from_file(file, (void*)data.data(), block_header.uncompressed_size))
return EResult::ReadError;
}
else
data.clear();
return EResult::Success;
}
#endif // ENABLE_CHECKSUM_BLOCK
EResult Binarizer::initialize(FILE& file, const BinarizerConfig& config)
{
if (!m_enabled)
return EResult::Success;
m_file = &file;
m_config = config;
#if ENABLE_CHECKSUM_BLOCK
// initialize checksum
m_checksum = ChecksumBlock();
#endif // ENABLE_CHECKSUM_BLOCK
// save header
FileHeader file_header;
file_header.checksum_type = (uint16_t)m_config.checksum;
EResult res = file_header.write(*m_file);
if (res != EResult::Success)
return res;
// save file metadata block
res = m_binary_data.file_metadata.write(*m_file, m_config.compression.file_metadata, m_config.checksum);
if (res != EResult::Success)
return res;
// save printer metadata block
res = m_binary_data.printer_metadata.write(*m_file, m_config.compression.printer_metadata, m_config.checksum);
if (res != EResult::Success)
return res;
// save thumbnail blocks
for (const ThumbnailBlock& block : m_binary_data.thumbnails) {
res = block.write(*m_file, m_config.checksum);
if (res != EResult::Success)
return res;
}
// save print metadata block
res = m_binary_data.print_metadata.write(*m_file, m_config.compression.print_metadata, m_config.checksum);
if (res != EResult::Success)
return res;
// save slicer metadata block
res = m_binary_data.slicer_metadata.write(*m_file, m_config.compression.slicer_metadata, m_config.checksum);
if (res != EResult::Success)
return res;
return EResult::Success;
}
static EResult write_gcode_block(FILE& file, const std::string& raw_data, const BinarizerConfig& config)
{
GCodeBlock block;
block.encoding_type = (uint16_t)config.gcode_encoding;
block.raw_data = raw_data;
return block.write(file, config.compression.gcode, config.checksum);
}
EResult Binarizer::append_gcode(const std::string& gcode)
{
if (gcode.empty())
return EResult::Success;
assert(m_file != nullptr);
if (m_file == nullptr)
return EResult::WriteError;
auto it_begin = gcode.begin();
do {
const size_t begin_pos = std::distance(gcode.begin(), it_begin);
const size_t end_line_pos = gcode.find_first_of('\n', begin_pos);
if (end_line_pos == std::string::npos)
return EResult::WriteError;
const size_t line_size = 1 + end_line_pos - begin_pos;
if (line_size + m_gcode_cache.length() > MAX_GCODE_CACHE_SIZE) {
if (!m_gcode_cache.empty()) {
const EResult res = write_gcode_block(*m_file, m_gcode_cache, m_config);
if (res != EResult::Success)
// propagate error
return res;
m_gcode_cache.clear();
}
}
if (line_size > MAX_GCODE_CACHE_SIZE)
return EResult::WriteError;
m_gcode_cache.insert(m_gcode_cache.end(), it_begin, it_begin + line_size);
it_begin += line_size;
}
while (it_begin != gcode.end());
return EResult::Success;
}
EResult Binarizer::finalize()
{
if (!m_enabled)
return EResult::Success;
// save gcode cache, if not empty
if (!m_gcode_cache.empty()) {
const EResult res = write_gcode_block(*m_file, m_gcode_cache, m_config);
if (res != EResult::Success)
// propagate error
return res;
}
#if ENABLE_CHECKSUM_BLOCK
if (m_checksum_type != EChecksumType::None) {
// save checksum
// dummy checksum until it is not properly implemented
switch (m_checksum_type)
{
case EChecksumType::CRC32:
case EChecksumType::MD5:
{
m_checksum.data.clear();
break;
}
}
res = m_checksum.write(file);
if (res != EResult::Success)
return res;
}
#endif // ENABLE_CHECKSUM_BLOCK
return EResult::Success;
}
bool is_valid_binary_gcode(FILE& file)
{
// cache file position
const long curr_pos = ftell(&file);
rewind(&file);
std::array<uint8_t, 4> magic;
fread((void*)magic.data(), 1, magic.size(), &file);
if (ferror(&file))
return false;
else {
// restore file position
fseek(&file, curr_pos, SEEK_SET);
return magic == MAGIC;
}
}
EResult read_header(FILE& file, FileHeader& header, const uint32_t* const max_version)
{
rewind(&file);
return header.read(file, max_version);
}
static EResult checksums_match(FILE& file, const FileHeader& file_header, const BlockHeader& block_header)
{
// cache file position
const long curr_pos = ftell(&file);
Checksum curr_cs((EChecksumType)file_header.checksum_type);
// update block checksum block header
block_header.update_checksum(curr_cs);
// read block payload
size_t remaining_payload_size = block_payload_size(block_header);
while (remaining_payload_size > 0) {
const size_t size_to_read = std::min(remaining_payload_size, g_checksum_max_cache_size);
std::vector<uint8_t> payload(size_to_read);
if (!read_from_file(file, payload.data(), payload.size()))
return EResult::ReadError;
curr_cs.append(payload);
remaining_payload_size -= size_to_read;
}
// read checksum
Checksum read_cs((EChecksumType)file_header.checksum_type);
EResult res = read_cs.read(file);
if (res != EResult::Success)
// propagate error
return res;
// Verify checksum
if (!curr_cs.matches(read_cs))
return EResult::InvalidChecksum;
// restore file position
fseek(&file, curr_pos, SEEK_SET);
return EResult::Success;
}
EResult read_next_block_header(FILE& file, const FileHeader& file_header, BlockHeader& block_header, bool verify_checksum)
{
if (verify_checksum && (EChecksumType)file_header.checksum_type != EChecksumType::None) {
const EResult res = block_header.read(file);
if (res != EResult::Success)
// propagate error
return res;
return checksums_match(file, file_header, block_header);
}
else
return block_header.read(file);
}
EResult read_next_block_header(FILE& file, const FileHeader& file_header, BlockHeader& block_header, EBlockType type, bool verify_checksum)
{
// cache file position
const long curr_pos = ftell(&file);
do {
EResult res = read_next_block_header(file, file_header, block_header, false);
if (res != EResult::Success)
// propagate error
return res;
else if (feof(&file)) {
// block not found
// restore file position
fseek(&file, curr_pos, SEEK_SET);
return EResult::BlockNotFound;
}
else if ((EBlockType)block_header.type == type) {
// block found
if (verify_checksum) {
res = checksums_match(file, file_header, block_header);
if (res != EResult::Success)
// propagate error
return res;
else
break;
}
}
if (!feof(&file)) {
res = skip_block_content(file, file_header, block_header);
if (res != EResult::Success)
// propagate error
return res;
}
} while (true);
return EResult::Success;
}
EResult skip_block_payload(FILE& file, const BlockHeader& block_header)
{
fseek(&file, (long)block_payload_size(block_header), SEEK_CUR);
return ferror(&file) ? EResult::ReadError : EResult::Success;
}
EResult skip_block_content(FILE& file, const FileHeader& file_header, const BlockHeader& block_header)
{
fseek(&file, (long)block_content_size(file_header, block_header), SEEK_CUR);
return ferror(&file) ? EResult::ReadError : EResult::Success;
}
size_t block_parameters_size(EBlockType type)
{
switch (type)
{
case EBlockType::FileMetadata: { return FileMetadataBlock::get_parameters_size(); }
case EBlockType::GCode: { return GCodeBlock::get_parameters_size(); }
case EBlockType::SlicerMetadata: { return SlicerMetadataBlock::get_parameters_size(); }
case EBlockType::PrinterMetadata: { return PrinterMetadataBlock::get_parameters_size(); }
case EBlockType::PrintMetadata: { return PrintMetadataBlock::get_parameters_size(); }
case EBlockType::Thumbnail: { return ThumbnailBlock::get_parameters_size(); }
}
return 0;
}
size_t block_payload_size(const BlockHeader& block_header)
{
size_t ret = block_parameters_size((EBlockType)block_header.type);
ret += ((ECompressionType)block_header.compression == ECompressionType::None) ?
block_header.uncompressed_size : block_header.compressed_size;
return ret;
}
size_t checksum_size(EChecksumType type)
{
switch (type)
{
case EChecksumType::None: { return 0; }
case EChecksumType::CRC32: { return 4; }
}
return 0;
}
extern size_t block_content_size(const FileHeader& file_header, const BlockHeader& block_header)
{
#if ENABLE_CHECKSUM_BLOCK
return ((EBlockType)block_header.type == EBlockType::Checksum) ?
block_payload_size(block_header) : block_payload_size(block_header) + checksum_size((EChecksumType)file_header.checksum_type);
#else
return block_payload_size(block_header) + checksum_size((EChecksumType)file_header.checksum_type);
#endif // ENABLE_CHECKSUM_BLOCK
}
#if ENABLE_FILE_CONVERSION_INTERFACE
EResult from_ascii_to_binary(FILE& src_file, FILE& dst_file)
{
return EResult::WriteError;
}
EResult from_binary_to_ascii(FILE& src_file, FILE& dst_file, bool verify_checksum)
{
auto write_line = [&](const std::string& line) {
fwrite(line.data(), 1, line.length(), &dst_file);
return !ferror(&dst_file);
};
auto write_metadata = [&](const std::vector<std::pair<std::string, std::string>>& data) {
for (const auto& [key, value] : data) {
if (!write_line("; " + key + " = " + value + "\n"))
return false;
}
return !ferror(&dst_file);
};
if (!is_valid_binary_gcode(src_file))
return EResult::InvalidBinaryGCodeFile;
fseek(&src_file, 0, SEEK_END);
const long file_size = ftell(&src_file);
rewind(&src_file);
//
// read file header
//
FileHeader file_header;
EResult res = read_header(src_file, file_header, nullptr);
if (res != EResult::Success)
// propagate error
return res;
//
// convert file metadata block
//
BlockHeader block_header;
res = read_next_block_header(src_file, file_header, block_header, verify_checksum);
if (res != EResult::Success)
// propagate error
return res;
if ((EBlockType)block_header.type != EBlockType::FileMetadata)
return EResult::InvalidSequenceOfBlocks;
FileMetadataBlock file_metadata_block;
res = file_metadata_block.read_data(src_file, file_header, block_header);
if (res != EResult::Success)
// propagate error
return res;
auto producer_it = std::find_if(file_metadata_block.raw_data.begin(), file_metadata_block.raw_data.end(),
[](const std::pair<std::string, std::string>& item) { return item.first == "Producer"; });
const std::string producer_str = (producer_it != file_metadata_block.raw_data.end()) ? producer_it->second : "Unknown";
if (!write_line("; generated by " + producer_str + "\n\n\n"))
return EResult::WriteError;
//
// convert printer metadata block
//
res = read_next_block_header(src_file, file_header, block_header, verify_checksum);
if (res != EResult::Success)
// propagate error
return res;
if ((EBlockType)block_header.type != EBlockType::PrinterMetadata)
return EResult::InvalidSequenceOfBlocks;
PrinterMetadataBlock printer_metadata_block;
res = printer_metadata_block.read_data(src_file, file_header, block_header);
if (res != EResult::Success)
// propagate error
return res;
if (!write_metadata(printer_metadata_block.raw_data))
return EResult::WriteError;
//
// convert thumbnail blocks
//
long restore_position = ftell(&src_file);
res = read_next_block_header(src_file, file_header, block_header, verify_checksum);
if (res != EResult::Success)
// propagate error
return res;
while ((EBlockType)block_header.type == EBlockType::Thumbnail) {
ThumbnailBlock thumbnail_block;
res = thumbnail_block.read_data(src_file, file_header, block_header);
if (res != EResult::Success)
// propagate error
return res;
static constexpr const size_t max_row_length = 78;
std::string encoded;
encoded.resize(boost::beast::detail::base64::encoded_size(thumbnail_block.data.size()));
encoded.resize(boost::beast::detail::base64::encode((void*)encoded.data(), (const void*)thumbnail_block.data.data(), thumbnail_block.data.size()));
std::string format;
switch ((EThumbnailFormat)thumbnail_block.format)
{
default:
case EThumbnailFormat::PNG: { format = "thumbnail"; break; }
case EThumbnailFormat::JPG: { format = "thumbnail_JPG"; break; }
case EThumbnailFormat::QOI: { format = "thumbnail_QOI"; break; }
}
if (!write_line(";\n; " + format + " begin " + std::to_string(thumbnail_block.width) + "x" + std::to_string(thumbnail_block.height) +
" " + std::to_string(encoded.length()) + "\n"))
return EResult::WriteError;
while (encoded.size() > max_row_length) {
if (!write_line("; " + encoded.substr(0, max_row_length) + "\n"))
return EResult::WriteError;
encoded = encoded.substr(max_row_length);
}
if (encoded.size() > 0) {
if (!write_line("; " + encoded + "\n"))
return EResult::WriteError;
}
if (!write_line("; " + format + " end\n;\n\n"))
return EResult::WriteError;
restore_position = ftell(&src_file);
res = read_next_block_header(src_file, file_header, block_header, verify_checksum);
if (res != EResult::Success)
// propagate error
return res;
}
//
// convert gcode blocks
//
res = skip_block_content(src_file, file_header, block_header);
if (res != EResult::Success)
// propagate error
return res;
res = read_next_block_header(src_file, file_header, block_header, EBlockType::GCode, verify_checksum);
if (res != EResult::Success)
// propagate error
return res;
while ((EBlockType)block_header.type == EBlockType::GCode) {
GCodeBlock block;
res = block.read_data(src_file, file_header, block_header);
if (res != EResult::Success)
// propagate error
return res;
if (!write_line(block.raw_data))
return EResult::WriteError;
if (ftell(&src_file) == file_size)
break;
res = read_next_block_header(src_file, file_header, block_header, verify_checksum);
if (res != EResult::Success)
// propagate error
return res;
}
//
// convert print metadata block
//
fseek(&src_file, restore_position, SEEK_SET);
res = read_next_block_header(src_file, file_header, block_header, verify_checksum);
if (res != EResult::Success)
// propagate error
return res;
if ((EBlockType)block_header.type != EBlockType::PrintMetadata)
return EResult::InvalidSequenceOfBlocks;
PrintMetadataBlock print_metadata_block;
res = print_metadata_block.read_data(src_file, file_header, block_header);
if (res != EResult::Success)
// propagate error
return res;
if (!write_line("\n"))
return EResult::WriteError;
if (!write_metadata(print_metadata_block.raw_data))
return EResult::WriteError;
//
// convert slicer metadata block
//
res = read_next_block_header(src_file, file_header, block_header, verify_checksum);
if (res != EResult::Success)
// propagate error
return res;
if ((EBlockType)block_header.type != EBlockType::SlicerMetadata)
return EResult::InvalidSequenceOfBlocks;
SlicerMetadataBlock slicer_metadata_block;
res = slicer_metadata_block.read_data(src_file, file_header, block_header);
if (res != EResult::Success)
// propagate error
return res;
if (!write_line("\n; prusaslicer_config = begin\n"))
return EResult::WriteError;
if (!write_metadata(slicer_metadata_block.raw_data))
return EResult::WriteError;
if (!write_line("; prusaslicer_config = end\n\n"))
return EResult::WriteError;
return EResult::Success;
}
#endif // ENABLE_FILE_CONVERSION_INTERFACE
} // namespace bgcode