PrusaSlicer/src/libslic3r/SupportableIssuesSearch.cpp
PavelMikus cfe9b27a6d refactoring,
initial work on weight distribution matrix
2022-08-22 11:01:58 +02:00

475 lines
18 KiB
C++

#include "SupportableIssuesSearch.hpp"
#include "tbb/parallel_for.h"
#include "tbb/blocked_range.h"
#include "tbb/parallel_reduce.h"
#include <boost/log/trivial.hpp>
#include <cmath>
#include <stack>
#include "libslic3r/Layer.hpp"
#include "libslic3r/ClipperUtils.hpp"
#include "PolygonPointTest.hpp"
#define DEBUG_FILES
#ifdef DEBUG_FILES
#include <boost/nowide/cstdio.hpp>
#endif
namespace Slic3r {
namespace SupportableIssues {
void Issues::add(const Issues &layer_issues) {
supports_nedded.insert(supports_nedded.end(),
layer_issues.supports_nedded.begin(), layer_issues.supports_nedded.end());
curling_up.insert(curling_up.end(), layer_issues.curling_up.begin(),
layer_issues.curling_up.end());
}
bool Issues::empty() const {
return supports_nedded.empty() && curling_up.empty();
}
struct Cell {
float weight;
char last_extrusion_id;
};
struct WeightDistributionMatrix {
// Lets make Z coord half the size of X (and Y).
// This corresponds to angle of ~26 degrees between center of one cell and other one up and sideways
// which is approximately a limiting printable angle.
WeightDistributionMatrix(const PrintObject *po, size_t layer_idx_begin, size_t layer_idx_end) {
Vec3crd object_origin = scaled(po->trafo_centered() * Vec3d::Zero());
Vec3crd min = object_origin - po->size() / 2 - Vec3crd::Ones();
Vec3crd max = object_origin + po->size() / 2 + Vec3crd::Ones();
cell_size = Vec3crd { int(cell_height * 2), int(cell_height * 2), int(cell_height) };
global_origin = min;
global_size = max - min;
global_cell_count = global_size.cwiseQuotient(cell_size);
coord_t local_min_z = scale_(po->layers()[layer_idx_begin]->slice_z);
coord_t local_max_z = scale_(po->layers()[layer_idx_end]->slice_z);
coord_t local_min_z_index = local_min_z / cell_size.z();
coord_t local_max_z_index = local_max_z / cell_size.z();
local_z_index_offset = local_min_z_index;
local_z_cell_count = local_max_z_index - local_min_z_index + 1;
cells.resize(local_z_cell_count * global_cell_count.y() * global_cell_count.x());
}
Vec3i to_global_cell_coords(const Point &p, float slice_z) const {
Vec3crd position = Vec3crd { p.x(), p.y(), coord_t(scale_(slice_z)) };
Vec3i cell_coords = position.cwiseQuotient(cell_size);
return cell_coords;
}
Vec3i to_local_cell_coords(const Point &p, float slice_z) const {
Vec3i cell_coords = to_global_cell_coords(p, slice_z);
Vec3i local_cell_coords = cell_coords - local_z_index_offset * Vec3i::UnitZ();
return local_cell_coords;
}
size_t to_cell_index(const Vec3i &local_cell_coords) {
assert(local_cell_coords.x() >= 0);
assert(local_cell_coords.x() < global_cell_count.x());
assert(local_cell_coords.y() >= 0);
assert(local_cell_coords.y() < global_cell_count.y());
assert(local_cell_coords.z() >= 0);
assert(local_cell_coords.z() < local_z_cell_count);
return local_cell_coords.z() * global_cell_count.x() * global_cell_count.y()
+ local_cell_coords.y() * global_cell_count.x() +
local_cell_coords.x();
}
Vec3crd cell_center(const Vec3i &global_cell_coords) {
return global_origin + global_cell_coords.cwiseProduct(cell_size);
}
Cell& access_cell(const Point &p, float slice_z) {
return cells[to_cell_index(to_local_cell_coords(p, slice_z))];
}
Cell& access_cell(const Vec3i& local_cell_coords) {
return cells[to_cell_index(local_cell_coords)];
}
#ifdef DEBUG_FILES
void debug_export(std::string file_name) {
Slic3r::CNumericLocalesSetter locales_setter;
{
FILE *fp = boost::nowide::fopen(debug_out_path((file_name + "_matrix.obj").c_str()).c_str(), "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error)
<< "Debug files: Couldn't open " << file_name << " for writing";
return;
}
for (int x = 0; x < global_cell_count.x(); ++x) {
for (int y = 0; y < global_cell_count.y(); ++y) {
for (int z = 0; z < local_z_cell_count; ++z) {
Vec3f center = unscale(cell_center(Vec3i(x, y, z + local_z_index_offset))).cast<float>();
Cell &cell = access_cell(Vec3i(x, y, z));
fprintf(fp, "v %f %f %f %f %f %f\n",
center(0), center(1),
center(2),
cell.weight, 0.0, 0.0
);
}
}
}
fclose(fp);
}
}
#endif
static constexpr float cell_height = scale_(0.15f);
Vec3crd cell_size;
Vec3crd global_origin;
Vec3crd global_size;
Vec3i global_cell_count;
int local_z_index_offset;
int local_z_cell_count;
std::vector<Cell> cells;
};
namespace Impl {
#ifdef DEBUG_FILES
void debug_export(Issues issues, std::string file_name) {
Slic3r::CNumericLocalesSetter locales_setter;
{
FILE *fp = boost::nowide::fopen(debug_out_path((file_name + "_supports.obj").c_str()).c_str(), "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error)
<< "Debug files: Couldn't open " << file_name << " for writing";
return;
}
for (size_t i = 0; i < issues.supports_nedded.size(); ++i) {
fprintf(fp, "v %f %f %f %f %f %f\n",
issues.supports_nedded[i](0), issues.supports_nedded[i](1), issues.supports_nedded[i](2),
1.0, 0.0, 0.0
);
}
fclose(fp);
}
{
FILE *fp = boost::nowide::fopen(debug_out_path((file_name + "_curling.obj").c_str()).c_str(), "w");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error)
<< "Debug files: Couldn't open " << file_name << " for writing";
return;
}
for (size_t i = 0; i < issues.curling_up.size(); ++i) {
fprintf(fp, "v %f %f %f %f %f %f\n",
issues.curling_up[i](0), issues.curling_up[i](1), issues.curling_up[i](2),
0.0, 1.0, 0.0
);
}
fclose(fp);
}
}
#endif
EdgeGridWrapper compute_layer_edge_grid(const Layer *layer) {
float min_region_flow_width { 1.0f };
for (const auto *region : layer->regions()) {
min_region_flow_width = std::min(min_region_flow_width, region->flow(FlowRole::frExternalPerimeter).width());
}
std::vector<Points> lines;
for (const LayerRegion *layer_region : layer->regions()) {
for (const ExtrusionEntity *ex_entity : layer_region->perimeters.entities) {
lines.push_back(Points { });
ex_entity->collect_points(lines.back());
} // ex_entity
for (const ExtrusionEntity *ex_entity : layer_region->fills.entities) {
lines.push_back(Points { });
ex_entity->collect_points(lines.back());
} // ex_entity
}
return EdgeGridWrapper(scale_(min_region_flow_width), lines);
}
//TODO needs revision
coordf_t get_flow_width(const LayerRegion *region, ExtrusionRole role) {
switch (role) {
case ExtrusionRole::erBridgeInfill:
return region->flow(FlowRole::frExternalPerimeter).scaled_width();
case ExtrusionRole::erExternalPerimeter:
return region->flow(FlowRole::frExternalPerimeter).scaled_width();
case ExtrusionRole::erGapFill:
return region->flow(FlowRole::frInfill).scaled_width();
case ExtrusionRole::erPerimeter:
return region->flow(FlowRole::frPerimeter).scaled_width();
case ExtrusionRole::erSolidInfill:
return region->flow(FlowRole::frSolidInfill).scaled_width();
default:
return region->flow(FlowRole::frPerimeter).scaled_width();
}
}
coordf_t get_max_allowed_distance(ExtrusionRole role, coord_t flow_width, bool external_perimeters_first,
const Params &params) { // <= distance / flow_width (can be larger for perimeter, if not external perimeter first)
if ((role == ExtrusionRole::erExternalPerimeter || role == ExtrusionRole::erOverhangPerimeter)
&& (external_perimeters_first)
) {
return params.max_first_ex_perim_unsupported_distance_factor * flow_width;
} else {
return params.max_unsupported_distance_factor * flow_width;
}
}
struct SegmentAccumulator {
float distance = 0; //accumulated distance
float curvature = 0; //accumulated signed ccw angles
float max_curvature = 0; //max absolute accumulated value
void add_distance(float dist) {
distance += dist;
}
void add_angle(float ccw_angle) {
curvature += ccw_angle;
max_curvature = std::max(max_curvature, std::abs(curvature));
}
void reset() {
distance = 0;
curvature = 0;
max_curvature = 0;
}
};
Issues check_extrusion_entity_stability(const ExtrusionEntity *entity,
float slice_z,
const LayerRegion *layer_region,
const EdgeGridWrapper &supported_grid,
const Params &params) {
Issues issues { };
if (entity->is_collection()) {
for (const auto *e : static_cast<const ExtrusionEntityCollection*>(entity)->entities) {
issues.add(check_extrusion_entity_stability(e, slice_z, layer_region, supported_grid, params));
}
} else { //single extrusion path, with possible varying parameters
//prepare stack of points on the extrusion path. If there are long segments, additional points might be pushed onto the stack during the algorithm.
std::stack<Point> points { };
for (const auto &p : entity->as_polyline().points) {
points.push(p);
}
SegmentAccumulator supports_acc { };
supports_acc.add_distance(params.bridge_distance + 1.0f); // initialize unsupported distance with larger than tolerable distance ->
// -> it prevents extruding perimeter start and short loops into air.
SegmentAccumulator curling_acc { };
const auto to_vec3f = [slice_z](const Point &point) {
Vec2f tmp = unscale(point).cast<float>();
return Vec3f(tmp.x(), tmp.y(), slice_z);
};
Vec3f prev_fpoint = to_vec3f(points.top()); // prev point of the path. Initialize with first point.
coordf_t flow_width = get_flow_width(layer_region, entity->role());
bool external_perimters_first = layer_region->region().config().external_perimeters_first;
const coordf_t max_allowed_dist_from_prev_layer = get_max_allowed_distance(entity->role(), flow_width,
external_perimters_first, params);
while (!points.empty()) {
Point point = points.top();
points.pop();
Vec2f tmp = unscale(point).cast<float>();
Vec3f fpoint = Vec3f(tmp.x(), tmp.y(), slice_z);
float edge_len = (fpoint - prev_fpoint).norm();
coordf_t dist_from_prev_layer { 0 };
if (!supported_grid.signed_distance(point, flow_width, dist_from_prev_layer)) { // dist from prev layer not found, assume empty layer
issues.supports_nedded.push_back(fpoint);
supports_acc.reset();
}
float angle = 0;
if (!points.empty()) {
const Vec2f v1 = (fpoint - prev_fpoint).head<2>();
const Vec2f v2 = unscale(points.top()).cast<float>() - fpoint.head<2>();
float dot = v1(0) * v2(0) + v1(1) * v2(1);
float cross = v1(0) * v2(1) - v1(1) * v2(0);
angle = float(atan2(float(cross), float(dot))); // ccw angle, TODO replace with angle func, once it gets into master
}
supports_acc.add_angle(angle);
curling_acc.add_angle(angle);
if (dist_from_prev_layer > max_allowed_dist_from_prev_layer) { //extrusion point is unsupported
supports_acc.add_distance(edge_len); // for algorithm simplicity, expect that the whole line between prev and current point is unsupported
if (supports_acc.distance // if unsupported distance is larger than bridge distance linearly decreased by curvature, enforce supports.
> params.bridge_distance
/ (1.0f
+ (supports_acc.max_curvature
* params.bridge_distance_decrease_by_curvature_factor / PI))) {
issues.supports_nedded.push_back(fpoint);
supports_acc.reset();
}
} else {
supports_acc.reset();
}
// Estimation of short curvy segments which are not supported -> problems with curling
if (dist_from_prev_layer > 0.0f) { //extrusion point is unsupported or poorly supported
curling_acc.add_distance(edge_len);
if (curling_acc.max_curvature / (PI * curling_acc.distance) > params.limit_curvature) {
issues.curling_up.push_back(fpoint);
curling_acc.reset();
}
} else {
curling_acc.reset();
}
prev_fpoint = fpoint;
if (!points.empty()) { //oversampling if necessary
Vec2f next = unscale(points.top()).cast<float>();
Vec2f reverse_v = fpoint.head<2>() - next; // vector from next to current
float dist_to_next = reverse_v.norm();
reverse_v.normalize();
int new_points_count = dist_to_next / params.bridge_distance;
float step_size = dist_to_next / (new_points_count + 1);
for (int i = 1; i <= new_points_count; ++i) {
points.push(Point::new_scale(Vec2f(next + reverse_v * (i * step_size))));
}
}
}
}
return issues;
}
Issues check_layer_stability(const PrintObject *po, size_t layer_idx, bool full_check, const Params &params) {
std::cout << "Checking: " << layer_idx << std::endl;
if (layer_idx == 0) {
// first layer is usually ok
return {};
}
const Layer *layer = po->get_layer(layer_idx);
//Prepare edge grid of previous layer, will be used to check if the extrusion path is supported
EdgeGridWrapper supported_grid = compute_layer_edge_grid(layer->lower_layer);
Issues issues { };
if (full_check) { // If full checkm check stability of perimeters, gap fills, and bridges.
for (const LayerRegion *layer_region : layer->regions()) {
for (const ExtrusionEntity *ex_entity : layer_region->perimeters.entities) {
for (const ExtrusionEntity *perimeter : static_cast<const ExtrusionEntityCollection*>(ex_entity)->entities) {
issues.add(check_extrusion_entity_stability(perimeter,
layer->slice_z, layer_region,
supported_grid, params));
} // perimeter
} // ex_entity
for (const ExtrusionEntity *ex_entity : layer_region->fills.entities) {
for (const ExtrusionEntity *fill : static_cast<const ExtrusionEntityCollection*>(ex_entity)->entities) {
if (fill->role() == ExtrusionRole::erGapFill || fill->role() == ExtrusionRole::erBridgeInfill) {
issues.add(check_extrusion_entity_stability(fill,
layer->slice_z, layer_region,
supported_grid, params));
}
} // fill
} // ex_entity
} // region
} else { // If NOT full check, check only external perimeters
for (const LayerRegion *layer_region : layer->regions()) {
for (const ExtrusionEntity *ex_entity : layer_region->perimeters.entities) {
for (const ExtrusionEntity *perimeter : static_cast<const ExtrusionEntityCollection*>(ex_entity)->entities) {
if (perimeter->role() == ExtrusionRole::erExternalPerimeter
|| perimeter->role() == ExtrusionRole::erOverhangPerimeter) {
issues.add(check_extrusion_entity_stability(perimeter,
layer->slice_z, layer_region,
supported_grid, params));
}; // ex_perimeter
} // perimeter
} // ex_entity
} //region
}
return issues;
}
} //Impl End
std::vector<size_t> quick_search(const PrintObject *po, const Params &params) {
using namespace Impl;
size_t layer_count = po->layer_count();
std::vector<bool> layer_needs_supports(layer_count, false);
tbb::parallel_for(tbb::blocked_range<size_t>(1, layer_count),
[&](tbb::blocked_range<size_t> r) {
for (size_t layer_idx = r.begin(); layer_idx < r.end(); ++layer_idx) {
auto layer_issues = check_layer_stability(po, layer_idx,
false, params);
if (!layer_issues.supports_nedded.empty()) {
layer_needs_supports[layer_idx] = true;
}
}
});
std::vector<size_t> problematic_layers;
for (size_t index = 0; index < layer_needs_supports.size(); ++index) {
if (layer_needs_supports[index]) {
problematic_layers.push_back(index);
}
}
return problematic_layers;
}
Issues full_search(const PrintObject *po, const Params &params) {
using namespace Impl;
WeightDistributionMatrix matrix { po, 0, po->layers().size() };
matrix.debug_export("matrix");
size_t layer_count = po->layer_count();
Issues found_issues = tbb::parallel_reduce(tbb::blocked_range<size_t>(1, layer_count), Issues { },
[&](tbb::blocked_range<size_t> r, const Issues &init) {
Issues issues = init;
for (size_t layer_idx = r.begin(); layer_idx < r.end(); ++layer_idx) {
auto layer_issues = check_layer_stability(po, layer_idx, true, params);
if (!layer_issues.empty()) {
issues.add(layer_issues);
}
}
return issues;
},
[](Issues left, const Issues &right) {
left.add(right);
return left;
}
);
#ifdef DEBUG_FILES
Impl::debug_export(found_issues, "issues");
#endif
return found_issues;
}
}
}