PrusaSlicer/src/libslic3r/SLA/Hollowing.cpp

589 lines
20 KiB
C++

#include <functional>
#include <optional>
#include <libslic3r/OpenVDBUtils.hpp>
#include <libslic3r/TriangleMesh.hpp>
#include <libslic3r/TriangleMeshSlicer.hpp>
#include <libslic3r/SLA/Hollowing.hpp>
#include <libslic3r/AABBMesh.hpp>
#include <libslic3r/ClipperUtils.hpp>
#include <libslic3r/QuadricEdgeCollapse.hpp>
#include <libslic3r/SLA/SupportTreeMesher.hpp>
#include <libslic3r/Execution/ExecutionSeq.hpp>
#include <boost/log/trivial.hpp>
#include <openvdb/tools/FastSweeping.h>
#include <libslic3r/MTUtils.hpp>
#include <libslic3r/I18N.hpp>
//! macro used to mark string used at localization,
//! return same string
#define L(s) Slic3r::I18N::translate(s)
namespace Slic3r {
namespace sla {
struct Interior {
indexed_triangle_set mesh;
openvdb::FloatGrid::Ptr gridptr;
mutable std::optional<openvdb::FloatGrid::ConstAccessor> accessor;
double iso_surface = 0.;
double thickness = 0.;
double voxel_scale = 1.;
double full_narrowb = 2.;
void reset_accessor() const // This resets the accessor and its cache
// Not a thread safe call!
{
if (gridptr)
accessor = gridptr->getConstAccessor();
}
};
void InteriorDeleter::operator()(Interior *p)
{
delete p;
}
indexed_triangle_set &get_mesh(Interior &interior)
{
return interior.mesh;
}
const indexed_triangle_set &get_mesh(const Interior &interior)
{
return interior.mesh;
}
static InteriorPtr generate_interior_verbose(const TriangleMesh & mesh,
const JobController &ctl,
double min_thickness,
double voxel_scale,
double closing_dist)
{
double offset = voxel_scale * min_thickness;
double D = voxel_scale * closing_dist;
float in_range = 1.1f * float(offset + D);
auto narrowb = 1.;
float out_range = narrowb;
if (ctl.stopcondition()) return {};
else ctl.statuscb(0, L("Hollowing"));
auto gridptr = mesh_to_grid(mesh.its, {}, voxel_scale, out_range, in_range);
assert(gridptr);
if (!gridptr) {
BOOST_LOG_TRIVIAL(error) << "Returned OpenVDB grid is NULL";
return {};
}
if (ctl.stopcondition()) return {};
else ctl.statuscb(30, L("Hollowing"));
double iso_surface = D;
if (D > EPSILON) {
in_range = narrowb;
gridptr = redistance_grid(*gridptr, -(offset + D), narrowb, in_range);
constexpr int DilateIterations = 1;
gridptr = openvdb::tools::dilateSdf(
*gridptr, std::ceil(iso_surface),
openvdb::tools::NN_FACE_EDGE_VERTEX, DilateIterations,
openvdb::tools::FastSweepingDomain::SWEEP_GREATER_THAN_ISOVALUE);
out_range = iso_surface;
} else {
iso_surface = -offset;
}
if (ctl.stopcondition()) return {};
else ctl.statuscb(70, L("Hollowing"));
double adaptivity = 0.;
InteriorPtr interior = InteriorPtr{new Interior{}};
interior->mesh = grid_to_mesh(*gridptr, iso_surface, adaptivity);
interior->gridptr = gridptr;
if (ctl.stopcondition()) return {};
else ctl.statuscb(100, L("Hollowing"));
interior->iso_surface = iso_surface;
interior->thickness = offset;
interior->voxel_scale = voxel_scale;
interior->full_narrowb = out_range + in_range;
return interior;
}
InteriorPtr generate_interior(const TriangleMesh & mesh,
const HollowingConfig &hc,
const JobController & ctl)
{
static constexpr double MIN_SAMPLES_IN_WALL = 3.5;
static constexpr double MAX_OVERSAMPL = 8.;
static constexpr double UNIT_VOLUME = 500000; // empiric
// I can't figure out how to increase the grid resolution through openvdb
// API so the model will be scaled up before conversion and the result
// scaled down. Voxels have a unit size. If I set voxelSize smaller, it
// scales the whole geometry down, and doesn't increase the number of
// voxels.
//
// First an allowed range for voxel scale is determined from an initial
// range of <MIN_SAMPLES_IN_WALL, MAX_OVERSAMPL>. The final voxel scale is
// then chosen from this range using the 'quality:<0, 1>' parameter.
// The minimum can be lowered if the wall thickness is great enough and
// the maximum is lowered if the model volume very big.
double mesh_vol = its_volume(mesh.its);
double sc_divider = std::max(1.0, (mesh_vol / UNIT_VOLUME));
double min_oversampl = std::max(MIN_SAMPLES_IN_WALL / hc.min_thickness, 1.);
double max_oversampl_scaled = std::max(min_oversampl, MAX_OVERSAMPL / sc_divider);
auto voxel_scale = min_oversampl + (max_oversampl_scaled - min_oversampl) * hc.quality;
BOOST_LOG_TRIVIAL(debug) << "Hollowing: max oversampl will be: " << max_oversampl_scaled;
BOOST_LOG_TRIVIAL(debug) << "Hollowing: voxel scale will be: " << voxel_scale;
BOOST_LOG_TRIVIAL(debug) << "Hollowing: mesh volume is: " << mesh_vol;
InteriorPtr interior = generate_interior_verbose(mesh, ctl,
hc.min_thickness,
voxel_scale,
hc.closing_distance);
if (interior && !interior->mesh.empty()) {
// flip normals back...
swap_normals(interior->mesh);
// simplify mesh lossless
float loss_less_max_error = 2*std::numeric_limits<float>::epsilon();
its_quadric_edge_collapse(interior->mesh, 0U, &loss_less_max_error);
its_compactify_vertices(interior->mesh);
its_merge_vertices(interior->mesh);
// flip normals back...
swap_normals(interior->mesh);
}
return interior;
}
indexed_triangle_set DrainHole::to_mesh() const
{
auto r = double(radius);
auto h = double(height);
indexed_triangle_set hole = sla::cylinder(r, h, steps);
Eigen::Quaternionf q;
q.setFromTwoVectors(Vec3f{0.f, 0.f, 1.f}, normal);
for(auto& p : hole.vertices) p = q * p + pos;
return hole;
}
bool DrainHole::operator==(const DrainHole &sp) const
{
return (pos == sp.pos) && (normal == sp.normal) &&
is_approx(radius, sp.radius) &&
is_approx(height, sp.height);
}
bool DrainHole::is_inside(const Vec3f& pt) const
{
Eigen::Hyperplane<float, 3> plane(normal, pos);
float dist = plane.signedDistance(pt);
if (dist < float(EPSILON) || dist > height)
return false;
Eigen::ParametrizedLine<float, 3> axis(pos, normal);
if ( axis.squaredDistance(pt) < pow(radius, 2.f))
return true;
return false;
}
// Given a line s+dir*t, find parameter t of intersections with the hole
// and the normal (points inside the hole). Outputs through out reference,
// returns true if two intersections were found.
bool DrainHole::get_intersections(const Vec3f& s, const Vec3f& dir,
std::array<std::pair<float, Vec3d>, 2>& out)
const
{
assert(is_approx(normal.norm(), 1.f));
const Eigen::ParametrizedLine<float, 3> ray(s, dir.normalized());
for (size_t i=0; i<2; ++i)
out[i] = std::make_pair(AABBMesh::hit_result::infty(), Vec3d::Zero());
const float sqr_radius = pow(radius, 2.f);
// first check a bounding sphere of the hole:
Vec3f center = pos+normal*height/2.f;
float sqr_dist_limit = pow(height/2.f, 2.f) + sqr_radius ;
if (ray.squaredDistance(center) > sqr_dist_limit)
return false;
// The line intersects the bounding sphere, look for intersections with
// bases of the cylinder.
size_t found = 0; // counts how many intersections were found
Eigen::Hyperplane<float, 3> base;
if (! is_approx(ray.direction().dot(normal), 0.f)) {
for (size_t i=1; i<=1; --i) {
Vec3f cylinder_center = pos+i*height*normal;
if (i == 0) {
// The hole base can be identical to mesh surface if it is flat
// let's better move the base outward a bit
cylinder_center -= EPSILON*normal;
}
base = Eigen::Hyperplane<float, 3>(normal, cylinder_center);
Vec3f intersection = ray.intersectionPoint(base);
// Only accept the point if it is inside the cylinder base.
if ((cylinder_center-intersection).squaredNorm() < sqr_radius) {
out[found].first = ray.intersectionParameter(base);
out[found].second = (i==0 ? 1. : -1.) * normal.cast<double>();
++found;
}
}
}
else
{
// In case the line was perpendicular to the cylinder axis, previous
// block was skipped, but base will later be assumed to be valid.
base = Eigen::Hyperplane<float, 3>(normal, pos-EPSILON*normal);
}
// In case there is still an intersection to be found, check the wall
if (found != 2 && ! is_approx(std::abs(ray.direction().dot(normal)), 1.f)) {
// Project the ray onto the base plane
Vec3f proj_origin = base.projection(ray.origin());
Vec3f proj_dir = base.projection(ray.origin()+ray.direction())-proj_origin;
// save how the parameter scales and normalize the projected direction
float par_scale = proj_dir.norm();
proj_dir = proj_dir/par_scale;
Eigen::ParametrizedLine<float, 3> projected_ray(proj_origin, proj_dir);
// Calculate point on the secant that's closest to the center
// and its distance to the circle along the projected line
Vec3f closest = projected_ray.projection(pos);
float dist = sqrt((sqr_radius - (closest-pos).squaredNorm()));
// Unproject both intersections on the original line and check
// they are on the cylinder and not past it:
for (int i=-1; i<=1 && found !=2; i+=2) {
Vec3f isect = closest + i*dist * projected_ray.direction();
Vec3f to_isect = isect-proj_origin;
float par = to_isect.norm() / par_scale;
if (to_isect.normalized().dot(proj_dir.normalized()) < 0.f)
par *= -1.f;
Vec3d hit_normal = (pos-isect).normalized().cast<double>();
isect = ray.pointAt(par);
// check that the intersection is between the base planes:
float vert_dist = base.signedDistance(isect);
if (vert_dist > 0.f && vert_dist < height) {
out[found].first = par;
out[found].second = hit_normal;
++found;
}
}
}
// If only one intersection was found, it is some corner case,
// no intersection will be returned:
if (found != 2)
return false;
// Sort the intersections:
if (out[0].first > out[1].first)
std::swap(out[0], out[1]);
return true;
}
void cut_drainholes(std::vector<ExPolygons> & obj_slices,
const std::vector<float> &slicegrid,
float closing_radius,
const sla::DrainHoles & holes,
std::function<void(void)> thr)
{
TriangleMesh mesh;
for (const sla::DrainHole &holept : holes)
mesh.merge(TriangleMesh{holept.to_mesh()});
if (mesh.empty()) return;
std::vector<ExPolygons> hole_slices = slice_mesh_ex(mesh.its, slicegrid, closing_radius, thr);
if (obj_slices.size() != hole_slices.size())
BOOST_LOG_TRIVIAL(warning)
<< "Sliced object and drain-holes layer count does not match!";
size_t until = std::min(obj_slices.size(), hole_slices.size());
for (size_t i = 0; i < until; ++i)
obj_slices[i] = diff_ex(obj_slices[i], hole_slices[i]);
}
void hollow_mesh(TriangleMesh &mesh, const HollowingConfig &cfg, int flags)
{
InteriorPtr interior = generate_interior(mesh, cfg, JobController{});
if (!interior) return;
hollow_mesh(mesh, *interior, flags);
}
void hollow_mesh(TriangleMesh &mesh, const Interior &interior, int flags)
{
if (mesh.empty() || interior.mesh.empty()) return;
if (flags & hfRemoveInsideTriangles && interior.gridptr)
remove_inside_triangles(mesh, interior);
mesh.merge(TriangleMesh{interior.mesh});
}
// Get the distance of p to the interior's zero iso_surface. Interior should
// have its zero isosurface positioned at offset + closing_distance inwards form
// the model surface.
static double get_distance_raw(const Vec3f &p, const Interior &interior)
{
assert(interior.gridptr);
if (!interior.accessor) interior.reset_accessor();
auto v = (p * interior.voxel_scale).cast<double>();
auto grididx = interior.gridptr->transform().worldToIndexCellCentered(
{v.x(), v.y(), v.z()});
return interior.accessor->getValue(grididx) ;
}
struct TriangleBubble { Vec3f center; double R; };
// Return the distance of bubble center to the interior boundary or NaN if the
// triangle is too big to be measured.
static double get_distance(const TriangleBubble &b, const Interior &interior)
{
double R = b.R * interior.voxel_scale;
double D = 2. * R;
double Dst = get_distance_raw(b.center, interior);
return D > interior.full_narrowb ||
((Dst - R) < 0. && 2 * R > interior.thickness) ?
std::nan("") :
Dst - interior.iso_surface;
}
double get_distance(const Vec3f &p, const Interior &interior)
{
double d = get_distance_raw(p, interior) - interior.iso_surface;
return d / interior.voxel_scale;
}
// A face that can be divided. Stores the indices into the original mesh if its
// part of that mesh and the vertices it consists of.
enum { NEW_FACE = -1};
struct DivFace {
Vec3i indx;
std::array<Vec3f, 3> verts;
long faceid = NEW_FACE;
long parent = NEW_FACE;
};
// Divide a face recursively and call visitor on all the sub-faces.
template<class Fn>
void divide_triangle(const DivFace &face, Fn &&visitor)
{
std::array<Vec3f, 3> edges = {(face.verts[0] - face.verts[1]),
(face.verts[1] - face.verts[2]),
(face.verts[2] - face.verts[0])};
std::array<size_t, 3> edgeidx = {0, 1, 2};
std::sort(edgeidx.begin(), edgeidx.end(), [&edges](size_t e1, size_t e2) {
return edges[e1].squaredNorm() > edges[e2].squaredNorm();
});
DivFace child1, child2;
child1.parent = face.faceid == NEW_FACE ? face.parent : face.faceid;
child1.indx(0) = -1;
child1.indx(1) = face.indx(edgeidx[1]);
child1.indx(2) = face.indx((edgeidx[1] + 1) % 3);
child1.verts[0] = (face.verts[edgeidx[0]] + face.verts[(edgeidx[0] + 1) % 3]) / 2.;
child1.verts[1] = face.verts[edgeidx[1]];
child1.verts[2] = face.verts[(edgeidx[1] + 1) % 3];
if (visitor(child1))
divide_triangle(child1, std::forward<Fn>(visitor));
child2.parent = face.faceid == NEW_FACE ? face.parent : face.faceid;
child2.indx(0) = -1;
child2.indx(1) = face.indx(edgeidx[2]);
child2.indx(2) = face.indx((edgeidx[2] + 1) % 3);
child2.verts[0] = child1.verts[0];
child2.verts[1] = face.verts[edgeidx[2]];
child2.verts[2] = face.verts[(edgeidx[2] + 1) % 3];
if (visitor(child2))
divide_triangle(child2, std::forward<Fn>(visitor));
}
void remove_inside_triangles(TriangleMesh &mesh, const Interior &interior,
const std::vector<bool> &exclude_mask)
{
enum TrPos { posInside, posTouch, posOutside };
auto &faces = mesh.its.indices;
auto &vertices = mesh.its.vertices;
auto bb = mesh.bounding_box();
bool use_exclude_mask = faces.size() == exclude_mask.size();
auto is_excluded = [&exclude_mask, use_exclude_mask](size_t face_id) {
return use_exclude_mask && exclude_mask[face_id];
};
// TODO: Parallel mode not working yet
constexpr auto &exec_policy = ex_seq;
// Info about the needed modifications on the input mesh.
struct MeshMods {
// Just a thread safe wrapper for a vector of triangles.
struct {
std::vector<std::array<Vec3f, 3>> data;
execution::SpinningMutex<decltype(exec_policy)> mutex;
void emplace_back(const std::array<Vec3f, 3> &pts)
{
std::lock_guard lk{mutex};
data.emplace_back(pts);
}
size_t size() const { return data.size(); }
const std::array<Vec3f, 3>& operator[](size_t idx) const
{
return data[idx];
}
} new_triangles;
// A vector of bool for all faces signaling if it needs to be removed
// or not.
std::vector<bool> to_remove;
MeshMods(const TriangleMesh &mesh):
to_remove(mesh.its.indices.size(), false) {}
// Number of triangles that need to be removed.
size_t to_remove_cnt() const
{
return std::accumulate(to_remove.begin(), to_remove.end(), size_t(0));
}
} mesh_mods{mesh};
// Must return true if further division of the face is needed.
auto divfn = [&interior, bb, &mesh_mods](const DivFace &f) {
BoundingBoxf3 facebb { f.verts.begin(), f.verts.end() };
// Face is certainly outside the cavity
if (! facebb.intersects(bb) && f.faceid != NEW_FACE) {
return false;
}
TriangleBubble bubble{facebb.center().cast<float>(), facebb.radius()};
double D = get_distance(bubble, interior);
double R = bubble.R * interior.voxel_scale;
if (std::isnan(D)) // The distance cannot be measured, triangle too big
return true;
// Distance of the bubble wall to the interior wall. Negative if the
// bubble is overlapping with the interior
double bubble_distance = D - R;
// The face is crossing the interior or inside, it must be removed and
// parts of it re-added, that are outside the interior
if (bubble_distance < 0.) {
if (f.faceid != NEW_FACE)
mesh_mods.to_remove[f.faceid] = true;
if (f.parent != NEW_FACE) // Top parent needs to be removed as well
mesh_mods.to_remove[f.parent] = true;
// If the outside part is between the interior and the exterior
// (inside the wall being invisible), no further division is needed.
if ((R + D) < interior.thickness)
return false;
return true;
} else if (f.faceid == NEW_FACE) {
// New face completely outside needs to be re-added.
mesh_mods.new_triangles.emplace_back(f.verts);
}
return false;
};
interior.reset_accessor();
execution::for_each(
exec_policy, size_t(0), faces.size(),
[&](size_t face_idx) {
const Vec3i &face = faces[face_idx];
// If the triangle is excluded, we need to keep it.
if (is_excluded(face_idx)) return;
std::array<Vec3f, 3> pts = {vertices[face(0)], vertices[face(1)],
vertices[face(2)]};
BoundingBoxf3 facebb{pts.begin(), pts.end()};
// Face is certainly outside the cavity
if (!facebb.intersects(bb)) return;
DivFace df{face, pts, long(face_idx)};
if (divfn(df)) divide_triangle(df, divfn);
},
execution::max_concurrency(exec_policy)
);
auto new_faces = reserve_vector<Vec3i>(faces.size() +
mesh_mods.new_triangles.size());
for (size_t face_idx = 0; face_idx < faces.size(); ++face_idx) {
if (!mesh_mods.to_remove[face_idx])
new_faces.emplace_back(faces[face_idx]);
}
for(size_t i = 0; i < mesh_mods.new_triangles.size(); ++i) {
size_t o = vertices.size();
vertices.emplace_back(mesh_mods.new_triangles[i][0]);
vertices.emplace_back(mesh_mods.new_triangles[i][1]);
vertices.emplace_back(mesh_mods.new_triangles[i][2]);
new_faces.emplace_back(int(o), int(o + 1), int(o + 2));
}
BOOST_LOG_TRIVIAL(info)
<< "Trimming: " << mesh_mods.to_remove_cnt() << " triangles removed";
BOOST_LOG_TRIVIAL(info)
<< "Trimming: " << mesh_mods.new_triangles.size() << " triangles added";
faces.swap(new_faces);
new_faces = {};
mesh = TriangleMesh{mesh.its};
//FIXME do we want to repair the mesh? Are there duplicate vertices or flipped triangles?
}
}} // namespace Slic3r::sla