Vojtech Bubnik a0441dac14 ArcWelder:
Reducing the chance of creating segments shorter than G-code quantization
distance.
Improving fitting by non-linear least squares.
2023-10-02 09:59:06 +02:00

229 lines
8.3 KiB
C++

///|/ Copyright (c) Prusa Research 2021 - 2022 Lukáš Matěna @lukasmatena, Filip Sykala @Jony01, Vojtěch Bubník @bubnikv
///|/
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
///|/
#include "Circle.hpp"
#include "../Polygon.hpp"
#include <numeric>
#include <random>
#include <boost/log/trivial.hpp>
namespace Slic3r { namespace Geometry {
Point circle_center_taubin_newton(const Points::const_iterator& input_begin, const Points::const_iterator& input_end, size_t cycles)
{
Vec2ds tmp;
tmp.reserve(std::distance(input_begin, input_end));
std::transform(input_begin, input_end, std::back_inserter(tmp), [] (const Point& in) { return unscale(in); } );
Vec2d center = circle_center_taubin_newton(tmp.cbegin(), tmp.end(), cycles);
return Point::new_scale(center.x(), center.y());
}
// Robust and accurate algebraic circle fit, which works well even if data points are observed only within a small arc.
// The method was proposed by G. Taubin in
// "Estimation Of Planar Curves, Surfaces And Nonplanar Space Curves Defined By Implicit Equations,
// With Applications To Edge And Range Image Segmentation", IEEE Trans. PAMI, Vol. 13, pages 1115-1138, (1991)."
// This particular implementation was adapted from
// "Circular and Linear Regression: Fitting circles and lines by least squares", pg 126"
// Returns a point corresponding to the center of a circle for which all of the points from input_begin to input_end
// lie on.
Vec2d circle_center_taubin_newton(const Vec2ds::const_iterator& input_begin, const Vec2ds::const_iterator& input_end, size_t cycles)
{
// calculate the centroid of the data set
const Vec2d sum = std::accumulate(input_begin, input_end, Vec2d(0,0));
const size_t n = std::distance(input_begin, input_end);
const double n_flt = static_cast<double>(n);
const Vec2d centroid { sum / n_flt };
// Compute the normalized moments of the data set.
double Mxx = 0, Myy = 0, Mxy = 0, Mxz = 0, Myz = 0, Mzz = 0;
for (auto it = input_begin; it < input_end; ++it) {
// center/normalize the data.
double Xi {it->x() - centroid.x()};
double Yi {it->y() - centroid.y()};
double Zi {Xi*Xi + Yi*Yi};
Mxy += (Xi*Yi);
Mxx += (Xi*Xi);
Myy += (Yi*Yi);
Mxz += (Xi*Zi);
Myz += (Yi*Zi);
Mzz += (Zi*Zi);
}
// divide by number of points to get the moments
Mxx /= n_flt;
Myy /= n_flt;
Mxy /= n_flt;
Mxz /= n_flt;
Myz /= n_flt;
Mzz /= n_flt;
// Compute the coefficients of the characteristic polynomial for the circle
// eq 5.60
const double Mz {Mxx + Myy}; // xx + yy = z
const double Cov_xy {Mxx*Myy - Mxy*Mxy}; // this shows up a couple times so cache it here.
const double C3 {4.0*Mz};
const double C2 {-3.0*(Mz*Mz) - Mzz};
const double C1 {Mz*(Mzz - (Mz*Mz)) + 4.0*Mz*Cov_xy - (Mxz*Mxz) - (Myz*Myz)};
const double C0 {(Mxz*Mxz)*Myy + (Myz*Myz)*Mxx - 2.0*Mxz*Myz*Mxy - Cov_xy*(Mzz - (Mz*Mz))};
const double C22 = {C2 + C2};
const double C33 = {C3 + C3 + C3};
// solve the characteristic polynomial with Newton's method.
double xnew = 0.0;
double ynew = 1e20;
for (size_t i = 0; i < cycles; ++i) {
const double yold {ynew};
ynew = C0 + xnew * (C1 + xnew*(C2 + xnew * C3));
if (std::abs(ynew) > std::abs(yold)) {
BOOST_LOG_TRIVIAL(error) << "Geometry: Fit is going in the wrong direction.\n";
return Vec2d(std::nan(""), std::nan(""));
}
const double Dy {C1 + xnew*(C22 + xnew*C33)};
const double xold {xnew};
xnew = xold - (ynew / Dy);
if (std::abs((xnew-xold) / xnew) < 1e-12) i = cycles; // converged, we're done here
if (xnew < 0) {
// reset, we went negative
xnew = 0.0;
}
}
// compute the determinant and the circle's parameters now that we've solved.
double DET = xnew*xnew - xnew*Mz + Cov_xy;
Vec2d center(Mxz * (Myy - xnew) - Myz * Mxy, Myz * (Mxx - xnew) - Mxz*Mxy);
center /= (DET * 2.);
return center + centroid;
}
Circled circle_taubin_newton(const Vec2ds& input, size_t cycles)
{
Circled out;
if (input.size() < 3) {
out = Circled::make_invalid();
} else {
out.center = circle_center_taubin_newton(input, cycles);
out.radius = std::accumulate(input.begin(), input.end(), 0., [&out](double acc, const Vec2d& pt) { return (pt - out.center).norm() + acc; });
out.radius /= double(input.size());
}
return out;
}
Circled circle_ransac(const Vec2ds& input, size_t iterations, double* min_error)
{
if (input.size() < 3)
return Circled::make_invalid();
std::mt19937 rng;
std::vector<Vec2d> samples;
Circled circle_best = Circled::make_invalid();
double err_min = std::numeric_limits<double>::max();
for (size_t iter = 0; iter < iterations; ++ iter) {
samples.clear();
std::sample(input.begin(), input.end(), std::back_inserter(samples), 3, rng);
Circled c;
c.center = Geometry::circle_center(samples[0], samples[1], samples[2], EPSILON);
c.radius = std::accumulate(input.begin(), input.end(), 0., [&c](double acc, const Vec2d& pt) { return (pt - c.center).norm() + acc; });
c.radius /= double(input.size());
double err = 0;
for (const Vec2d &pt : input)
err = std::max(err, std::abs((pt - c.center).norm() - c.radius));
if (err < err_min) {
err_min = err;
circle_best = c;
}
}
if (min_error)
*min_error = err_min;
return circle_best;
}
template<typename Solver>
Circled circle_linear_least_squares_by_solver(const Vec2ds &input, Solver solver)
{
Circled out;
if (input.size() < 3) {
out = Circled::make_invalid();
} else {
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic /* 3 */> A(input.size(), 3);
Eigen::VectorXd b(input.size());
for (size_t r = 0; r < input.size(); ++ r) {
const Vec2d &p = input[r];
A.row(r) = Vec3d(2. * p.x(), 2. * p.y(), - 1.);
b(r) = p.squaredNorm();
}
auto result = solver(A, b);
out.center = result.template head<2>();
double r2 = out.center.squaredNorm() - result(2);
if (r2 <= EPSILON)
out.make_invalid();
else
out.radius = sqrt(r2);
}
return out;
}
Circled circle_linear_least_squares_svd(const Vec2ds &input)
{
return circle_linear_least_squares_by_solver(input,
[](const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic /* 3 */> &A, const Eigen::VectorXd &b)
{ return A.bdcSvd(Eigen::ComputeThinU | Eigen::ComputeThinV).solve(b).eval(); });
}
Circled circle_linear_least_squares_qr(const Vec2ds &input)
{
return circle_linear_least_squares_by_solver(input,
[](const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> &A, const Eigen::VectorXd &b)
{ return A.colPivHouseholderQr().solve(b).eval(); });
}
Circled circle_linear_least_squares_normal(const Vec2ds &input)
{
Circled out;
if (input.size() < 3) {
out = Circled::make_invalid();
} else {
Eigen::Matrix<double, 3, 3> A = Eigen::Matrix<double, 3, 3>::Zero();
Eigen::Matrix<double, 3, 1> b = Eigen::Matrix<double, 3, 1>::Zero();
for (size_t i = 0; i < input.size(); ++ i) {
const Vec2d &p = input[i];
// Calculate right hand side of a normal equation.
b += p.squaredNorm() * Vec3d(2. * p.x(), 2. * p.y(), -1.);
// Calculate normal matrix (correlation matrix).
// Diagonal:
A(0, 0) += 4. * p.x() * p.x();
A(1, 1) += 4. * p.y() * p.y();
A(2, 2) += 1.;
// Off diagonal elements:
const double a = 4. * p.x() * p.y();
A(0, 1) += a;
A(1, 0) += a;
const double b = -2. * p.x();
A(0, 2) += b;
A(2, 0) += b;
const double c = -2. * p.y();
A(1, 2) += c;
A(2, 1) += c;
}
auto result = A.ldlt().solve(b).eval();
out.center = result.head<2>();
double r2 = out.center.squaredNorm() - result(2);
if (r2 <= EPSILON)
out.make_invalid();
else
out.radius = sqrt(r2);
}
return out;
}
} } // namespace Slic3r::Geometry