PrusaSlicer/src/libslic3r/MultiPoint.hpp
2023-09-04 14:44:32 +02:00

268 lines
12 KiB
C++

///|/ Copyright (c) Prusa Research 2016 - 2023 Tomáš Mészáros @tamasmeszaros, Vojtěch Bubník @bubnikv, Lukáš Hejl @hejllukas, Enrico Turri @enricoturri1966
///|/ Copyright (c) Slic3r 2013 - 2016 Alessandro Ranellucci @alranel
///|/
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
///|/
#ifndef slic3r_MultiPoint_hpp_
#define slic3r_MultiPoint_hpp_
#include "libslic3r.h"
#include <algorithm>
#include <vector>
#include "Line.hpp"
#include "Point.hpp"
namespace Slic3r {
class BoundingBox;
class BoundingBox3;
// Reduces polyline in the <begin, end) range, outputs into the output iterator.
// Output iterator may be equal to input iterator as long as the iterator value type move operator supports move at the same input / output address.
template<typename SquareLengthType, typename InputIterator, typename OutputIterator, typename PointGetter>
inline OutputIterator douglas_peucker(InputIterator begin, InputIterator end, OutputIterator out, const double tolerance, PointGetter point_getter)
{
using InputIteratorCategory = typename std::iterator_traits<InputIterator>::iterator_category;
static_assert(std::is_base_of_v<std::input_iterator_tag, InputIteratorCategory>);
using Vector = Eigen::Matrix<SquareLengthType, 2, 1, Eigen::DontAlign>;
if (begin != end) {
// Supporting in-place reduction and the data type may be generic, thus we are always making a copy of the point value before there is a chance
// to override input by moving the data to the output.
auto a = point_getter(*begin);
*out ++ = std::move(*begin);
if (auto next = std::next(begin); next == end) {
// Single point input only.
} else if (std::next(next) == end) {
// Two points input.
*out ++ = std::move(*next);
} else {
const auto tolerance_sq = SquareLengthType(sqr(tolerance));
InputIterator anchor = begin;
InputIterator floater = std::prev(end);
std::vector<InputIterator> dpStack;
if constexpr (std::is_base_of_v<std::random_access_iterator_tag, InputIteratorCategory>)
dpStack.reserve(end - begin);
dpStack.emplace_back(floater);
auto f = point_getter(*floater);
for (;;) {
assert(anchor != floater);
bool take_floater = false;
InputIterator furthest = anchor;
if (std::next(anchor) == floater) {
// Two point segment. Accept the floater.
take_floater = true;
} else {
SquareLengthType max_dist_sq = 0;
// Find point furthest from line seg created by (anchor, floater) and note it.
const Vector v = (f - a).template cast<SquareLengthType>();
if (const SquareLengthType l2 = v.squaredNorm(); l2 == 0) {
// Zero length segment, find the furthest point between anchor and floater.
for (auto it = std::next(anchor); it != floater; ++ it)
if (SquareLengthType dist_sq = (point_getter(*it) - a).template cast<SquareLengthType>().squaredNorm();
dist_sq > max_dist_sq) {
max_dist_sq = dist_sq;
furthest = it;
}
} else {
// Find Find the furthest point from the line <anchor, floater>.
const double dl2 = double(l2);
const Vec2d dv = v.template cast<double>();
for (auto it = std::next(anchor); it != floater; ++ it) {
const auto p = point_getter(*it);
const Vector va = (p - a).template cast<SquareLengthType>();
const SquareLengthType t = va.dot(v);
SquareLengthType dist_sq;
if (t <= 0) {
dist_sq = va.squaredNorm();
} else if (t >= l2) {
dist_sq = (p - f).template cast<SquareLengthType>().squaredNorm();
} else if (double dt = double(t) / dl2; dt <= 0) {
dist_sq = va.squaredNorm();
} else if (dt >= 1.) {
dist_sq = (p - f).template cast<SquareLengthType>().squaredNorm();
} else {
const Vector w = (dt * dv).cast<SquareLengthType>();
dist_sq = (w - va).squaredNorm();
}
if (dist_sq > max_dist_sq) {
max_dist_sq = dist_sq;
furthest = it;
}
}
}
// remove point if less than tolerance
take_floater = max_dist_sq <= tolerance_sq;
}
if (take_floater) {
// The points between anchor and floater are close to the <anchor, floater> line.
// Drop the points between them.
a = f;
*out ++ = std::move(*floater);
anchor = floater;
assert(dpStack.back() == floater);
dpStack.pop_back();
if (dpStack.empty())
break;
floater = dpStack.back();
f = point_getter(*floater);
} else {
// The furthest point is too far from the segment <anchor, floater>.
// Divide recursively.
floater = furthest;
f = point_getter(*floater);
dpStack.emplace_back(floater);
}
}
}
}
return out;
}
// Reduces polyline in the <begin, end) range, outputs into the output iterator.
// Output iterator may be equal to input iterator as long as the iterator value type move operator supports move at the same input / output address.
template<typename OutputIterator>
inline OutputIterator douglas_peucker(Points::const_iterator begin, Points::const_iterator end, OutputIterator out, const double tolerance)
{
return douglas_peucker<int64_t>(begin, end, out, tolerance, [](const Point &p) { return p; });
}
inline Points douglas_peucker(const Points &src, const double tolerance)
{
Points out;
out.reserve(src.size());
douglas_peucker(src.begin(), src.end(), std::back_inserter(out), tolerance);
return out;
}
class MultiPoint
{
public:
Points points;
MultiPoint() = default;
MultiPoint(const MultiPoint &other) : points(other.points) {}
MultiPoint(MultiPoint &&other) : points(std::move(other.points)) {}
MultiPoint(std::initializer_list<Point> list) : points(list) {}
explicit MultiPoint(const Points &_points) : points(_points) {}
MultiPoint& operator=(const MultiPoint &other) { points = other.points; return *this; }
MultiPoint& operator=(MultiPoint &&other) { points = std::move(other.points); return *this; }
void scale(double factor);
void scale(double factor_x, double factor_y);
void translate(double x, double y) { this->translate(Point(coord_t(x), coord_t(y))); }
void translate(const Point &vector);
void rotate(double angle) { this->rotate(cos(angle), sin(angle)); }
void rotate(double cos_angle, double sin_angle);
void rotate(double angle, const Point &center);
void reverse() { std::reverse(this->points.begin(), this->points.end()); }
const Point& front() const { return this->points.front(); }
const Point& back() const { return this->points.back(); }
const Point& first_point() const { return this->front(); }
size_t size() const { return points.size(); }
bool empty() const { return points.empty(); }
bool is_valid() const { return this->points.size() >= 2; }
// Return index of a polygon point exactly equal to point.
// Return -1 if no such point exists.
int find_point(const Point &point) const;
// Return index of the closest point to point closer than scaled_epsilon.
// Return -1 if no such point exists.
int find_point(const Point &point, const double scaled_epsilon) const;
int closest_point_index(const Point &point) const {
int idx = -1;
if (! this->points.empty()) {
idx = 0;
double dist_min = (point - this->points.front()).cast<double>().norm();
for (int i = 1; i < int(this->points.size()); ++ i) {
double d = (this->points[i] - point).cast<double>().norm();
if (d < dist_min) {
dist_min = d;
idx = i;
}
}
}
return idx;
}
const Point* closest_point(const Point &point) const { return this->points.empty() ? nullptr : &this->points[this->closest_point_index(point)]; }
BoundingBox bounding_box() const;
// Return true if there are exact duplicates.
bool has_duplicate_points() const;
// Remove exact duplicates, return true if any duplicate has been removed.
bool remove_duplicate_points();
void clear() { this->points.clear(); }
void append(const Point &point) { this->points.push_back(point); }
void append(const Points &src) { this->append(src.begin(), src.end()); }
void append(const Points::const_iterator &begin, const Points::const_iterator &end) { this->points.insert(this->points.end(), begin, end); }
void append(Points &&src)
{
if (this->points.empty()) {
this->points = std::move(src);
} else {
this->points.insert(this->points.end(), src.begin(), src.end());
src.clear();
}
}
static Points douglas_peucker(const Points &src, const double tolerance) { return Slic3r::douglas_peucker(src, tolerance); }
static Points visivalingam(const Points &src, const double tolerance);
inline auto begin() { return points.begin(); }
inline auto begin() const { return points.begin(); }
inline auto end() { return points.end(); }
inline auto end() const { return points.end(); }
inline auto cbegin() const { return points.begin(); }
inline auto cend() const { return points.end(); }
inline auto rbegin() { return points.rbegin(); }
inline auto rbegin() const { return points.rbegin(); }
inline auto rend() { return points.rend(); }
inline auto rend() const { return points.rend(); }
inline auto crbegin()const { return points.crbegin(); }
inline auto crend() const { return points.crend(); }
};
class MultiPoint3
{
public:
Points3 points;
void append(const Vec3crd& point) { this->points.push_back(point); }
void translate(double x, double y);
void translate(const Point& vector);
bool is_valid() const { return this->points.size() >= 2; }
BoundingBox3 bounding_box() const;
// Remove exact duplicates, return true if any duplicate has been removed.
bool remove_duplicate_points();
};
extern BoundingBox get_extents(const MultiPoint &mp);
extern BoundingBox get_extents_rotated(const Points &points, double angle);
extern BoundingBox get_extents_rotated(const MultiPoint &mp, double angle);
inline double length(const Points::const_iterator begin, const Points::const_iterator end) {
double total = 0;
if (begin != end) {
auto it = begin;
for (auto it_prev = it ++; it != end; ++ it, ++ it_prev)
total += (*it - *it_prev).cast<double>().norm();
}
return total;
}
inline double length(const Points &pts) {
return length(pts.begin(), pts.end());
}
inline double area(const Points &polygon) {
double area = 0.;
for (size_t i = 0, j = polygon.size() - 1; i < polygon.size(); j = i ++)
area += double(polygon[i](0) + polygon[j](0)) * double(polygon[i](1) - polygon[j](1));
return area;
}
} // namespace Slic3r
#endif