mirror of
https://git.mirrors.martin98.com/https://github.com/prusa3d/PrusaSlicer.git
synced 2025-05-24 05:28:04 +08:00
2446 lines
121 KiB
C++
2446 lines
121 KiB
C++
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <random>
|
|
|
|
#include <boost/container/small_vector.hpp>
|
|
#include <boost/static_assert.hpp>
|
|
|
|
#include "../ClipperUtils.hpp"
|
|
#include "../ExPolygon.hpp"
|
|
#include "../Geometry.hpp"
|
|
#include "../Surface.hpp"
|
|
|
|
#include "FillRectilinear2.hpp"
|
|
|
|
// #define SLIC3R_DEBUG
|
|
|
|
// Make assert active if SLIC3R_DEBUG
|
|
#ifdef SLIC3R_DEBUG
|
|
#undef NDEBUG
|
|
#include "SVG.hpp"
|
|
#endif
|
|
|
|
#include <cassert>
|
|
|
|
// We want our version of assert.
|
|
#include "../libslic3r.h"
|
|
|
|
namespace Slic3r {
|
|
|
|
// Having a segment of a closed polygon, calculate its Euclidian length.
|
|
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
|
|
// therefore the point p1 lies on poly.points[seg1-1], poly.points[seg1] etc.
|
|
static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Point &p1, size_t seg2, const Point &p2)
|
|
{
|
|
#ifdef SLIC3R_DEBUG
|
|
// Verify that p1 lies on seg1. This is difficult to verify precisely,
|
|
// but at least verify, that p1 lies in the bounding box of seg1.
|
|
for (size_t i = 0; i < 2; ++ i) {
|
|
size_t seg = (i == 0) ? seg1 : seg2;
|
|
Point px = (i == 0) ? p1 : p2;
|
|
Point pa = poly.points[((seg == 0) ? poly.points.size() : seg) - 1];
|
|
Point pb = poly.points[seg];
|
|
if (pa(0) > pb(0))
|
|
std::swap(pa(0), pb(0));
|
|
if (pa(1) > pb(1))
|
|
std::swap(pa(1), pb(1));
|
|
assert(px(0) >= pa(0) && px(0) <= pb(0));
|
|
assert(px(1) >= pa(1) && px(1) <= pb(1));
|
|
}
|
|
#endif /* SLIC3R_DEBUG */
|
|
const Point *pPrev = &p1;
|
|
const Point *pThis = NULL;
|
|
coordf_t len = 0;
|
|
if (seg1 <= seg2) {
|
|
for (size_t i = seg1; i < seg2; ++ i, pPrev = pThis)
|
|
len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
|
|
} else {
|
|
for (size_t i = seg1; i < poly.points.size(); ++ i, pPrev = pThis)
|
|
len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
|
|
for (size_t i = 0; i < seg2; ++ i, pPrev = pThis)
|
|
len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
|
|
}
|
|
len += (*pPrev - p2).cast<double>().norm();
|
|
return len;
|
|
}
|
|
|
|
// Append a segment of a closed polygon to a polyline.
|
|
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop.
|
|
// Only insert intermediate points between seg1 and seg2.
|
|
static inline void polygon_segment_append(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
|
|
{
|
|
if (seg1 == seg2) {
|
|
// Nothing to append from this segment.
|
|
} else if (seg1 < seg2) {
|
|
// Do not append a point pointed to by seg2.
|
|
out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.begin() + seg2);
|
|
} else {
|
|
out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
|
|
out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.end());
|
|
// Do not append a point pointed to by seg2.
|
|
out.insert(out.end(), polygon.points.begin(), polygon.points.begin() + seg2);
|
|
}
|
|
}
|
|
|
|
// Append a segment of a closed polygon to a polyline.
|
|
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
|
|
// but this time the segment is traversed backward.
|
|
// Only insert intermediate points between seg1 and seg2.
|
|
static inline void polygon_segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
|
|
{
|
|
if (seg1 >= seg2) {
|
|
out.reserve(seg1 - seg2);
|
|
for (size_t i = seg1; i > seg2; -- i)
|
|
out.push_back(polygon.points[i - 1]);
|
|
} else {
|
|
// it could be, that seg1 == seg2. In that case, append the complete loop.
|
|
out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
|
|
for (size_t i = seg1; i > 0; -- i)
|
|
out.push_back(polygon.points[i - 1]);
|
|
for (size_t i = polygon.points.size(); i > seg2; -- i)
|
|
out.push_back(polygon.points[i - 1]);
|
|
}
|
|
}
|
|
|
|
// Intersection point of a vertical line with a polygon segment.
|
|
struct SegmentIntersection
|
|
{
|
|
// Index of a contour in ExPolygonWithOffset, with which this vertical line intersects.
|
|
size_t iContour { 0 };
|
|
// Index of a segment in iContour, with which this vertical line intersects.
|
|
size_t iSegment { 0 };
|
|
// y position of the intersection, rational number.
|
|
int64_t pos_p { 0 };
|
|
uint32_t pos_q { 1 };
|
|
|
|
coord_t pos() const {
|
|
// Division rounds both positive and negative down to zero.
|
|
// Add half of q for an arithmetic rounding effect.
|
|
int64_t p = pos_p;
|
|
if (p < 0)
|
|
p -= int64_t(pos_q>>1);
|
|
else
|
|
p += int64_t(pos_q>>1);
|
|
return coord_t(p / int64_t(pos_q));
|
|
}
|
|
|
|
// Kind of intersection. With the original contour, or with the inner offestted contour?
|
|
// A vertical segment will be at least intersected by OUTER_LOW, OUTER_HIGH,
|
|
// but it could be intersected with OUTER_LOW, INNER_LOW, INNER_HIGH, OUTER_HIGH,
|
|
// and there may be more than one pair of INNER_LOW, INNER_HIGH between OUTER_LOW, OUTER_HIGH.
|
|
enum SegmentIntersectionType : char {
|
|
OUTER_LOW = 0,
|
|
OUTER_HIGH = 1,
|
|
INNER_LOW = 2,
|
|
INNER_HIGH = 3,
|
|
UNKNOWN = -1
|
|
};
|
|
SegmentIntersectionType type { UNKNOWN };
|
|
|
|
// Left vertical line / contour intersection point.
|
|
// null if next_on_contour_vertical.
|
|
int32_t prev_on_contour { 0 };
|
|
// Right vertical line / contour intersection point.
|
|
// If next_on_contour_vertical, then then next_on_contour contains next contour point on the same vertical line.
|
|
int32_t next_on_contour { 0 };
|
|
|
|
enum class LinkType : uint8_t {
|
|
// Horizontal link (left or right).
|
|
Horizontal,
|
|
// Vertical link, up.
|
|
Up,
|
|
// Vertical link, down.
|
|
Down
|
|
};
|
|
|
|
enum class LinkQuality : uint8_t {
|
|
Invalid,
|
|
Valid,
|
|
// Valid link, to be followed when extruding.
|
|
// Link inside a monotonous region.
|
|
ValidMonotonous,
|
|
// Valid link, to be possibly followed when extruding.
|
|
// Link between two monotonous regions.
|
|
ValidNonMonotonous,
|
|
// Link from T to end of another contour.
|
|
FromT,
|
|
// Link from end of one contour to T.
|
|
ToT,
|
|
// Link from one T to another T, making a letter H.
|
|
H,
|
|
// Vertical segment
|
|
TooLong,
|
|
};
|
|
|
|
// Kept grouped with other booleans for smaller memory footprint.
|
|
LinkType prev_on_contour_type { LinkType::Horizontal };
|
|
LinkType next_on_contour_type { LinkType::Horizontal };
|
|
LinkQuality prev_on_contour_quality { LinkQuality::Valid };
|
|
LinkQuality next_on_contour_quality { LinkQuality::Valid };
|
|
// Was this segment along the y axis consumed?
|
|
// Up means up along the vertical segment.
|
|
bool consumed_vertical_up { false };
|
|
// Was a segment of the inner perimeter contour consumed?
|
|
// Right means right from the vertical segment.
|
|
bool consumed_perimeter_right { false };
|
|
|
|
// For the INNER_LOW type, this point may be connected to another INNER_LOW point following a perimeter contour.
|
|
// For the INNER_HIGH type, this point may be connected to another INNER_HIGH point following a perimeter contour.
|
|
// If INNER_LOW is connected to INNER_HIGH or vice versa,
|
|
// one has to make sure the vertical infill line does not overlap with the connecting perimeter line.
|
|
bool is_inner() const { return type == INNER_LOW || type == INNER_HIGH; }
|
|
bool is_outer() const { return type == OUTER_LOW || type == OUTER_HIGH; }
|
|
bool is_low () const { return type == INNER_LOW || type == OUTER_LOW; }
|
|
bool is_high () const { return type == INNER_HIGH || type == OUTER_HIGH; }
|
|
|
|
enum class Side {
|
|
Left,
|
|
Right
|
|
};
|
|
enum class Direction {
|
|
Up,
|
|
Down
|
|
};
|
|
|
|
bool has_left_horizontal() const { return this->prev_on_contour_type == LinkType::Horizontal; }
|
|
bool has_right_horizontal() const { return this->next_on_contour_type == LinkType::Horizontal; }
|
|
bool has_horizontal(Side side) const { return side == Side::Left ? this->has_left_horizontal() : this->has_right_horizontal(); }
|
|
|
|
bool has_left_vertical_up() const { return this->prev_on_contour_type == LinkType::Up; }
|
|
bool has_left_vertical_down() const { return this->prev_on_contour_type == LinkType::Down; }
|
|
bool has_left_vertical(Direction dir) const { return dir == Direction::Up ? this->has_left_vertical_up() : this->has_left_vertical_down(); }
|
|
bool has_left_vertical() const { return this->has_left_vertical_up() || this->has_left_vertical_down(); }
|
|
bool has_left_vertical_outside() const { return this->is_low() ? this->has_left_vertical_down() : this->has_left_vertical_up(); }
|
|
|
|
bool has_right_vertical_up() const { return this->next_on_contour_type == LinkType::Up; }
|
|
bool has_right_vertical_down() const { return this->next_on_contour_type == LinkType::Down; }
|
|
bool has_right_vertical(Direction dir) const { return dir == Direction::Up ? this->has_right_vertical_up() : this->has_right_vertical_down(); }
|
|
bool has_right_vertical() const { return this->has_right_vertical_up() || this->has_right_vertical_down(); }
|
|
bool has_right_vertical_outside() const { return this->is_low() ? this->has_right_vertical_down() : this->has_right_vertical_up(); }
|
|
|
|
bool has_vertical() const { return this->has_left_vertical() || this->has_right_vertical(); }
|
|
bool has_vertical(Side side) const { return side == Side::Left ? this->has_left_vertical() : this->has_right_vertical(); }
|
|
bool has_vertical_up() const { return this->has_left_vertical_up() || this->has_right_vertical_up(); }
|
|
bool has_vertical_down() const { return this->has_left_vertical_down() || this->has_right_vertical_down(); }
|
|
bool has_vertical(Direction dir) const { return dir == Direction::Up ? this->has_vertical_up() : this->has_vertical_down(); }
|
|
|
|
int left_horizontal() const { return this->has_left_horizontal() ? this->prev_on_contour : -1; }
|
|
int right_horizontal() const { return this->has_right_horizontal() ? this->next_on_contour : -1; }
|
|
int horizontal(Side side) const { return side == Side::Left ? this->left_horizontal() : this->right_horizontal(); }
|
|
|
|
int left_vertical_up() const { return this->has_left_vertical_up() ? this->prev_on_contour : -1; }
|
|
int left_vertical_down() const { return this->has_left_vertical_down() ? this->prev_on_contour : -1; }
|
|
int left_vertical(Direction dir) const { return (dir == Direction::Up ? this->has_left_vertical_up() : this->has_left_vertical_down()) ? this->prev_on_contour : -1; }
|
|
int left_vertical() const { return this->has_left_vertical() ? this->prev_on_contour : -1; }
|
|
int left_vertical_outside() const { return this->is_low() ? this->left_vertical_down() : this->left_vertical_up(); }
|
|
int right_vertical_up() const { return this->has_right_vertical_up() ? this->next_on_contour : -1; }
|
|
int right_vertical_down() const { return this->has_right_vertical_down() ? this->next_on_contour : -1; }
|
|
int right_vertical(Direction dir) const { return (dir == Direction::Up ? this->has_right_vertical_up() : this->has_right_vertical_down()) ? this->next_on_contour : -1; }
|
|
int right_vertical() const { return this->has_right_vertical() ? this->next_on_contour : -1; }
|
|
int right_vertical_outside() const { return this->is_low() ? this->right_vertical_down() : this->right_vertical_up(); }
|
|
|
|
int vertical_up(Side side) const { return side == Side::Left ? this->left_vertical_up() : this->right_vertical_up(); }
|
|
int vertical_down(Side side) const { return side == Side::Left ? this->left_vertical_down() : this->right_vertical_down(); }
|
|
int vertical_outside(Side side) const { return side == Side::Left ? this->left_vertical_outside() : this->right_vertical_outside(); }
|
|
// Returns -1 if there is no link up.
|
|
int vertical_up() const {
|
|
return this->has_left_vertical_up() ? this->left_vertical_up() : this->right_vertical_up();
|
|
}
|
|
LinkQuality vertical_up_quality() const {
|
|
assert(this->has_left_vertical_up() != this->has_right_vertical_up());
|
|
return this->has_left_vertical_up() ? this->prev_on_contour_quality : this->next_on_contour_quality;
|
|
}
|
|
// Returns -1 if there is no link down.
|
|
int vertical_down() const {
|
|
// assert(! this->has_left_vertical_down() || ! this->has_right_vertical_down());
|
|
return this->has_left_vertical_down() ? this->left_vertical_down() : this->right_vertical_down();
|
|
}
|
|
LinkQuality vertical_down_quality() const {
|
|
assert(this->has_left_vertical_down() != this->has_right_vertical_down());
|
|
return this->has_left_vertical_down() ? this->prev_on_contour_quality : this->next_on_contour_quality;
|
|
}
|
|
int vertical_outside() const { return this->is_low() ? this->vertical_down() : this->vertical_up(); }
|
|
|
|
// Compare two y intersection points given by rational numbers.
|
|
// Note that the rational number is given as pos_p/pos_q, where pos_p is int64 and pos_q is uint32.
|
|
// This function calculates pos_p * other.pos_q < other.pos_p * pos_q as a 48bit number.
|
|
// We don't use 128bit intrinsic data types as these are usually not supported by 32bit compilers and
|
|
// we don't need the full 128bit precision anyway.
|
|
bool operator<(const SegmentIntersection &other) const
|
|
{
|
|
assert(pos_q > 0);
|
|
assert(other.pos_q > 0);
|
|
if (pos_p == 0 || other.pos_p == 0) {
|
|
// Because the denominators are positive and one of the nominators is zero,
|
|
// following simple statement holds.
|
|
return pos_p < other.pos_p;
|
|
} else {
|
|
// None of the nominators is zero.
|
|
int sign1 = (pos_p > 0) ? 1 : -1;
|
|
int sign2 = (other.pos_p > 0) ? 1 : -1;
|
|
int signs = sign1 * sign2;
|
|
assert(signs == 1 || signs == -1);
|
|
if (signs < 0) {
|
|
// The nominators have different signs.
|
|
return sign1 < 0;
|
|
} else {
|
|
// The nominators have the same sign.
|
|
// Absolute values
|
|
uint64_t p1, p2;
|
|
if (sign1 > 0) {
|
|
p1 = uint64_t(pos_p);
|
|
p2 = uint64_t(other.pos_p);
|
|
} else {
|
|
p1 = uint64_t(- pos_p);
|
|
p2 = uint64_t(- other.pos_p);
|
|
};
|
|
// Multiply low and high 32bit words of p1 by other_pos.q
|
|
// 32bit x 32bit => 64bit
|
|
// l_hi and l_lo overlap by 32 bits.
|
|
uint64_t l_hi = (p1 >> 32) * uint64_t(other.pos_q);
|
|
uint64_t l_lo = (p1 & 0xffffffffll) * uint64_t(other.pos_q);
|
|
l_hi += (l_lo >> 32);
|
|
uint64_t r_hi = (p2 >> 32) * uint64_t(pos_q);
|
|
uint64_t r_lo = (p2 & 0xffffffffll) * uint64_t(pos_q);
|
|
r_hi += (r_lo >> 32);
|
|
// Compare the high 64 bits.
|
|
if (l_hi == r_hi) {
|
|
// Compare the low 32 bits.
|
|
l_lo &= 0xffffffffll;
|
|
r_lo &= 0xffffffffll;
|
|
return (sign1 < 0) ? (l_lo > r_lo) : (l_lo < r_lo);
|
|
}
|
|
return (sign1 < 0) ? (l_hi > r_hi) : (l_hi < r_hi);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool operator==(const SegmentIntersection &other) const
|
|
{
|
|
assert(pos_q > 0);
|
|
assert(other.pos_q > 0);
|
|
if (pos_p == 0 || other.pos_p == 0) {
|
|
// Because the denominators are positive and one of the nominators is zero,
|
|
// following simple statement holds.
|
|
return pos_p == other.pos_p;
|
|
}
|
|
|
|
// None of the nominators is zero, none of the denominators is zero.
|
|
bool positive = pos_p > 0;
|
|
if (positive != (other.pos_p > 0))
|
|
return false;
|
|
// The nominators have the same sign.
|
|
// Absolute values
|
|
uint64_t p1 = positive ? uint64_t(pos_p) : uint64_t(- pos_p);
|
|
uint64_t p2 = positive ? uint64_t(other.pos_p) : uint64_t(- other.pos_p);
|
|
// Multiply low and high 32bit words of p1 by other_pos.q
|
|
// 32bit x 32bit => 64bit
|
|
// l_hi and l_lo overlap by 32 bits.
|
|
uint64_t l_lo = (p1 & 0xffffffffll) * uint64_t(other.pos_q);
|
|
uint64_t r_lo = (p2 & 0xffffffffll) * uint64_t(pos_q);
|
|
if (l_lo != r_lo)
|
|
return false;
|
|
uint64_t l_hi = (p1 >> 32) * uint64_t(other.pos_q);
|
|
uint64_t r_hi = (p2 >> 32) * uint64_t(pos_q);
|
|
return l_hi + (l_lo >> 32) == r_hi + (r_lo >> 32);
|
|
}
|
|
};
|
|
static_assert(sizeof(SegmentIntersection::pos_q) == 4, "SegmentIntersection::pos_q has to be 32bit long!");
|
|
|
|
// A vertical line with intersection points with polygons.
|
|
struct SegmentedIntersectionLine
|
|
{
|
|
// Index of this vertical intersection line.
|
|
size_t idx;
|
|
// x position of this vertical intersection line.
|
|
coord_t pos;
|
|
// List of intersection points with polygons, sorted increasingly by the y axis.
|
|
std::vector<SegmentIntersection> intersections;
|
|
};
|
|
|
|
// A container maintaining an expolygon with its inner offsetted polygon.
|
|
// The purpose of the inner offsetted polygon is to provide segments to connect the infill lines.
|
|
struct ExPolygonWithOffset
|
|
{
|
|
public:
|
|
ExPolygonWithOffset(
|
|
const ExPolygon &expolygon,
|
|
float angle,
|
|
coord_t aoffset1,
|
|
coord_t aoffset2)
|
|
{
|
|
// Copy and rotate the source polygons.
|
|
polygons_src = expolygon;
|
|
polygons_src.contour.rotate(angle);
|
|
for (Polygons::iterator it = polygons_src.holes.begin(); it != polygons_src.holes.end(); ++ it)
|
|
it->rotate(angle);
|
|
|
|
double mitterLimit = 3.;
|
|
// for the infill pattern, don't cut the corners.
|
|
// default miterLimt = 3
|
|
//double mitterLimit = 10.;
|
|
assert(aoffset1 < 0);
|
|
assert(aoffset2 < 0);
|
|
assert(aoffset2 < aoffset1);
|
|
// bool sticks_removed =
|
|
remove_sticks(polygons_src);
|
|
// if (sticks_removed) printf("Sticks removed!\n");
|
|
polygons_outer = offset(polygons_src, float(aoffset1),
|
|
ClipperLib::jtMiter,
|
|
mitterLimit);
|
|
polygons_inner = offset(polygons_outer, float(aoffset2 - aoffset1),
|
|
ClipperLib::jtMiter,
|
|
mitterLimit);
|
|
// Filter out contours with zero area or small area, contours with 2 points only.
|
|
const double min_area_threshold = 0.01 * aoffset2 * aoffset2;
|
|
remove_small(polygons_outer, min_area_threshold);
|
|
remove_small(polygons_inner, min_area_threshold);
|
|
remove_sticks(polygons_outer);
|
|
remove_sticks(polygons_inner);
|
|
n_contours_outer = polygons_outer.size();
|
|
n_contours_inner = polygons_inner.size();
|
|
n_contours = n_contours_outer + n_contours_inner;
|
|
polygons_ccw.assign(n_contours, false);
|
|
for (size_t i = 0; i < n_contours; ++ i) {
|
|
contour(i).remove_duplicate_points();
|
|
assert(! contour(i).has_duplicate_points());
|
|
polygons_ccw[i] = Slic3r::Geometry::is_ccw(contour(i));
|
|
}
|
|
}
|
|
|
|
// Any contour with offset1
|
|
bool is_contour_outer(size_t idx) const { return idx < n_contours_outer; }
|
|
// Any contour with offset2
|
|
bool is_contour_inner(size_t idx) const { return idx >= n_contours_outer; }
|
|
|
|
const Polygon& contour(size_t idx) const
|
|
{ return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
|
|
|
|
Polygon& contour(size_t idx)
|
|
{ return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
|
|
|
|
bool is_contour_ccw(size_t idx) const { return polygons_ccw[idx]; }
|
|
|
|
BoundingBox bounding_box_src() const
|
|
{ return get_extents(polygons_src); }
|
|
BoundingBox bounding_box_outer() const
|
|
{ return get_extents(polygons_outer); }
|
|
BoundingBox bounding_box_inner() const
|
|
{ return get_extents(polygons_inner); }
|
|
|
|
#ifdef SLIC3R_DEBUG
|
|
void export_to_svg(Slic3r::SVG &svg) {
|
|
svg.draw_outline(polygons_src, "black");
|
|
svg.draw_outline(polygons_outer, "green");
|
|
svg.draw_outline(polygons_inner, "brown");
|
|
}
|
|
#endif /* SLIC3R_DEBUG */
|
|
|
|
ExPolygon polygons_src;
|
|
Polygons polygons_outer;
|
|
Polygons polygons_inner;
|
|
|
|
size_t n_contours_outer;
|
|
size_t n_contours_inner;
|
|
size_t n_contours;
|
|
|
|
protected:
|
|
// For each polygon of polygons_inner, remember its orientation.
|
|
std::vector<unsigned char> polygons_ccw;
|
|
};
|
|
|
|
static inline int distance_of_segmens(const Polygon &poly, size_t seg1, size_t seg2, bool forward)
|
|
{
|
|
int d = int(seg2) - int(seg1);
|
|
if (! forward)
|
|
d = - d;
|
|
if (d < 0)
|
|
d += int(poly.points.size());
|
|
return d;
|
|
}
|
|
|
|
enum IntersectionTypeOtherVLine {
|
|
// There is no connection point on the other vertical line.
|
|
INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED = -1,
|
|
// Connection point on the other vertical segment was found
|
|
// and it could be followed.
|
|
INTERSECTION_TYPE_OTHER_VLINE_OK = 0,
|
|
// The connection segment connects to a middle of a vertical segment.
|
|
// Cannot follow.
|
|
INTERSECTION_TYPE_OTHER_VLINE_INNER,
|
|
// Cannot extend the contor to this intersection point as either the connection segment
|
|
// or the succeeding vertical segment were already consumed.
|
|
INTERSECTION_TYPE_OTHER_VLINE_CONSUMED,
|
|
// Not the first intersection along the contor. This intersection point
|
|
// has been preceded by an intersection point along the vertical line.
|
|
INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST,
|
|
};
|
|
|
|
// Find an intersection on a previous line, but return -1, if the connecting segment of a perimeter was already extruded.
|
|
static inline IntersectionTypeOtherVLine intersection_type_on_prev_next_vertical_line(
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iIntersection,
|
|
SegmentIntersection::Side side)
|
|
{
|
|
const SegmentedIntersectionLine &vline_this = segs[iVerticalLine];
|
|
const SegmentIntersection &it_this = vline_this.intersections[iIntersection];
|
|
if (it_this.has_vertical(side))
|
|
// Not the first intersection along the contor. This intersection point
|
|
// has been preceded by an intersection point along the vertical line.
|
|
return INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
|
|
int iIntersectionOther = it_this.horizontal(side);
|
|
if (iIntersectionOther == -1)
|
|
return INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED;
|
|
assert(side == SegmentIntersection::Side::Right ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0));
|
|
const SegmentedIntersectionLine &vline_other = segs[side == SegmentIntersection::Side::Right ? (iVerticalLine + 1) : (iVerticalLine - 1)];
|
|
const SegmentIntersection &it_other = vline_other.intersections[iIntersectionOther];
|
|
assert(it_other.is_inner());
|
|
assert(iIntersectionOther > 0);
|
|
assert(iIntersectionOther + 1 < vline_other.intersections.size());
|
|
// Is iIntersectionOther at the boundary of a vertical segment?
|
|
const SegmentIntersection &it_other2 = vline_other.intersections[it_other.is_low() ? iIntersectionOther - 1 : iIntersectionOther + 1];
|
|
if (it_other2.is_inner())
|
|
// Cannot follow a perimeter segment into the middle of another vertical segment.
|
|
// Only perimeter segments connecting to the end of a vertical segment are followed.
|
|
return INTERSECTION_TYPE_OTHER_VLINE_INNER;
|
|
assert(it_other.is_low() == it_other2.is_low());
|
|
if (side == SegmentIntersection::Side::Right ? it_this.consumed_perimeter_right : it_other.consumed_perimeter_right)
|
|
// This perimeter segment was already consumed.
|
|
return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
|
|
if (it_other.is_low() ? it_other.consumed_vertical_up : vline_other.intersections[iIntersectionOther - 1].consumed_vertical_up)
|
|
// This vertical segment was already consumed.
|
|
return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
|
|
return INTERSECTION_TYPE_OTHER_VLINE_OK;
|
|
}
|
|
|
|
static inline IntersectionTypeOtherVLine intersection_type_on_prev_vertical_line(
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iIntersection)
|
|
{
|
|
return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, SegmentIntersection::Side::Left);
|
|
}
|
|
|
|
static inline IntersectionTypeOtherVLine intersection_type_on_next_vertical_line(
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iIntersection)
|
|
{
|
|
return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, SegmentIntersection::Side::Right);
|
|
}
|
|
|
|
// Measure an Euclidian length of a perimeter segment when going from iIntersection to iIntersection2.
|
|
static inline coordf_t measure_perimeter_prev_next_segment_length(
|
|
const ExPolygonWithOffset &poly_with_offset,
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iIntersection,
|
|
size_t iIntersection2,
|
|
bool dir_is_next)
|
|
{
|
|
size_t iVerticalLineOther = iVerticalLine;
|
|
if (dir_is_next) {
|
|
if (++ iVerticalLineOther == segs.size())
|
|
// No successive vertical line.
|
|
return coordf_t(-1);
|
|
} else if (iVerticalLineOther -- == 0) {
|
|
// No preceding vertical line.
|
|
return coordf_t(-1);
|
|
}
|
|
|
|
const SegmentedIntersectionLine &vline = segs[iVerticalLine];
|
|
const SegmentIntersection &it = vline.intersections[iIntersection];
|
|
const SegmentedIntersectionLine &vline2 = segs[iVerticalLineOther];
|
|
const SegmentIntersection &it2 = vline2.intersections[iIntersection2];
|
|
assert(it.iContour == it2.iContour);
|
|
const Polygon &poly = poly_with_offset.contour(it.iContour);
|
|
// const bool ccw = poly_with_offset.is_contour_ccw(vline.iContour);
|
|
assert(it.type == it2.type);
|
|
assert(it.iContour == it2.iContour);
|
|
assert(it.is_inner());
|
|
const bool forward = it.is_low() == dir_is_next;
|
|
|
|
Point p1(vline.pos, it.pos());
|
|
Point p2(vline2.pos, it2.pos());
|
|
return forward ?
|
|
segment_length(poly, it .iSegment, p1, it2.iSegment, p2) :
|
|
segment_length(poly, it2.iSegment, p2, it .iSegment, p1);
|
|
}
|
|
|
|
static inline coordf_t measure_perimeter_prev_segment_length(
|
|
const ExPolygonWithOffset &poly_with_offset,
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iIntersection,
|
|
size_t iIntersection2)
|
|
{
|
|
return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iIntersection, iIntersection2, false);
|
|
}
|
|
|
|
static inline coordf_t measure_perimeter_next_segment_length(
|
|
const ExPolygonWithOffset &poly_with_offset,
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iIntersection,
|
|
size_t iIntersection2)
|
|
{
|
|
return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iIntersection, iIntersection2, true);
|
|
}
|
|
|
|
// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
|
|
// The first point (the point of iIntersection) will not be inserted,
|
|
// the last point will be inserted.
|
|
static inline void emit_perimeter_prev_next_segment(
|
|
const ExPolygonWithOffset &poly_with_offset,
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iInnerContour,
|
|
size_t iIntersection,
|
|
size_t iIntersection2,
|
|
Polyline &out,
|
|
bool dir_is_next)
|
|
{
|
|
size_t iVerticalLineOther = iVerticalLine;
|
|
if (dir_is_next) {
|
|
++ iVerticalLineOther;
|
|
assert(iVerticalLineOther < segs.size());
|
|
} else {
|
|
assert(iVerticalLineOther > 0);
|
|
-- iVerticalLineOther;
|
|
}
|
|
|
|
const SegmentedIntersectionLine &il = segs[iVerticalLine];
|
|
const SegmentIntersection &itsct = il.intersections[iIntersection];
|
|
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
|
|
const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
|
|
const Polygon &poly = poly_with_offset.contour(iInnerContour);
|
|
// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
|
|
assert(itsct.type == itsct2.type);
|
|
assert(itsct.iContour == itsct2.iContour);
|
|
assert(itsct.is_inner());
|
|
const bool forward = itsct.is_low() == dir_is_next;
|
|
// Do not append the first point.
|
|
// out.points.push_back(Point(il.pos, itsct.pos));
|
|
if (forward)
|
|
polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
|
|
else
|
|
polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
|
|
// Append the last point.
|
|
out.points.push_back(Point(il2.pos, itsct2.pos()));
|
|
}
|
|
|
|
static inline coordf_t measure_perimeter_segment_on_vertical_line_length(
|
|
const ExPolygonWithOffset &poly_with_offset,
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iIntersection,
|
|
size_t iIntersection2,
|
|
bool forward)
|
|
{
|
|
const SegmentedIntersectionLine &il = segs[iVerticalLine];
|
|
const SegmentIntersection &itsct = il.intersections[iIntersection];
|
|
const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
|
|
const Polygon &poly = poly_with_offset.contour(itsct.iContour);
|
|
assert(itsct.is_inner());
|
|
assert(itsct2.is_inner());
|
|
assert(itsct.type != itsct2.type);
|
|
assert(itsct.iContour == itsct2.iContour);
|
|
Point p1(il.pos, itsct.pos());
|
|
Point p2(il.pos, itsct2.pos());
|
|
return forward ?
|
|
segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) :
|
|
segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
|
|
}
|
|
|
|
// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
|
|
// The first point (the point of iIntersection) will not be inserted,
|
|
// the last point will be inserted.
|
|
static inline void emit_perimeter_segment_on_vertical_line(
|
|
const ExPolygonWithOffset &poly_with_offset,
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iInnerContour,
|
|
size_t iIntersection,
|
|
size_t iIntersection2,
|
|
Polyline &out,
|
|
bool forward)
|
|
{
|
|
const SegmentedIntersectionLine &il = segs[iVerticalLine];
|
|
const SegmentIntersection &itsct = il.intersections[iIntersection];
|
|
const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
|
|
const Polygon &poly = poly_with_offset.contour(iInnerContour);
|
|
assert(itsct.is_inner());
|
|
assert(itsct2.is_inner());
|
|
assert(itsct.type != itsct2.type);
|
|
assert(itsct.iContour == iInnerContour);
|
|
assert(itsct.iContour == itsct2.iContour);
|
|
// Do not append the first point.
|
|
// out.points.push_back(Point(il.pos, itsct.pos));
|
|
if (forward)
|
|
polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
|
|
else
|
|
polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
|
|
// Append the last point.
|
|
out.points.push_back(Point(il.pos, itsct2.pos()));
|
|
}
|
|
|
|
//TBD: For precise infill, measure the area of a slab spanned by an infill line.
|
|
/*
|
|
static inline float measure_outer_contour_slab(
|
|
const ExPolygonWithOffset &poly_with_offset,
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t i_vline,
|
|
size_t iIntersection)
|
|
{
|
|
const SegmentedIntersectionLine &il = segs[i_vline];
|
|
const SegmentIntersection &itsct = il.intersections[i_vline];
|
|
const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
|
|
const Polygon &poly = poly_with_offset.contour((itsct.iContour);
|
|
assert(itsct.is_outer());
|
|
assert(itsct2.is_outer());
|
|
assert(itsct.type != itsct2.type);
|
|
assert(itsct.iContour == itsct2.iContour);
|
|
if (! itsct.is_outer() || ! itsct2.is_outer() || itsct.type == itsct2.type || itsct.iContour != itsct2.iContour)
|
|
// Error, return zero area.
|
|
return 0.f;
|
|
|
|
// Find possible connection points on the previous / next vertical line.
|
|
int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
|
|
int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
|
|
// Find possible connection points on the same vertical line.
|
|
int iAbove = iBelow = -1;
|
|
// Does the perimeter intersect the current vertical line above intrsctn?
|
|
for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
|
|
if (seg.intersections[i].iContour == itsct.iContour)
|
|
{ iAbove = i; break; }
|
|
// Does the perimeter intersect the current vertical line below intrsctn?
|
|
for (int i = int(i_intersection) - 1; i > 0; -- i)
|
|
if (seg.intersections[i].iContour == itsct.iContour)
|
|
{ iBelow = i; break; }
|
|
|
|
if (iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::OUTER_HIGH) {
|
|
// Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
|
|
// The perimeter contour orientation.
|
|
const Polygon &poly = poly_with_offset.contour(itsct.iContour);
|
|
{
|
|
int d_horiz = (iPrev == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, itsct.iSegment, true);
|
|
int d_down = (iBelow == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, iSegBelow, itsct.iSegment, true);
|
|
int d_up = (iAbove == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, iSegAbove, itsct.iSegment, true);
|
|
if (intrsection_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
|
|
// The vertical crossing comes eralier than the prev crossing.
|
|
// Disable the perimeter going back.
|
|
intrsection_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
|
|
if (d_up > std::min(d_horiz, d_down))
|
|
// The horizontal crossing comes earlier than the vertical crossing.
|
|
vert_seg_dir_valid_mask &= ~DIR_BACKWARD;
|
|
}
|
|
{
|
|
int d_horiz = (iNext == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, itsct.iSegment, segs[i_vline+1].intersections[iNext].iSegment, true);
|
|
int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, itsct.iSegment, iSegBelow, true);
|
|
int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, itsct.iSegment, iSegAbove, true);
|
|
if (d_up > std::min(d_horiz, d_down))
|
|
// The horizontal crossing comes earlier than the vertical crossing.
|
|
vert_seg_dir_valid_mask &= ~DIR_FORWARD;
|
|
}
|
|
}
|
|
}
|
|
*/
|
|
|
|
enum DirectionMask
|
|
{
|
|
DIR_FORWARD = 1,
|
|
DIR_BACKWARD = 2
|
|
};
|
|
|
|
static std::vector<SegmentedIntersectionLine> slice_region_by_vertical_lines(const ExPolygonWithOffset &poly_with_offset, size_t n_vlines, coord_t x0, coord_t line_spacing)
|
|
{
|
|
// Allocate storage for the segments.
|
|
std::vector<SegmentedIntersectionLine> segs(n_vlines, SegmentedIntersectionLine());
|
|
for (coord_t i = 0; i < coord_t(n_vlines); ++ i) {
|
|
segs[i].idx = i;
|
|
segs[i].pos = x0 + i * line_spacing;
|
|
}
|
|
// For each contour
|
|
for (size_t iContour = 0; iContour < poly_with_offset.n_contours; ++ iContour) {
|
|
const Points &contour = poly_with_offset.contour(iContour).points;
|
|
if (contour.size() < 2)
|
|
continue;
|
|
// For each segment
|
|
for (size_t iSegment = 0; iSegment < contour.size(); ++ iSegment) {
|
|
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
|
|
const Point &p1 = contour[iPrev];
|
|
const Point &p2 = contour[iSegment];
|
|
// Which of the equally spaced vertical lines is intersected by this segment?
|
|
coord_t l = p1(0);
|
|
coord_t r = p2(0);
|
|
if (l > r)
|
|
std::swap(l, r);
|
|
// il, ir are the left / right indices of vertical lines intersecting a segment
|
|
int il = (l - x0) / line_spacing;
|
|
while (il * line_spacing + x0 < l)
|
|
++ il;
|
|
il = std::max(int(0), il);
|
|
int ir = (r - x0 + line_spacing) / line_spacing;
|
|
while (ir * line_spacing + x0 > r)
|
|
-- ir;
|
|
ir = std::min(int(segs.size()) - 1, ir);
|
|
if (il > ir)
|
|
// No vertical line intersects this segment.
|
|
continue;
|
|
assert(il >= 0 && size_t(il) < segs.size());
|
|
assert(ir >= 0 && size_t(ir) < segs.size());
|
|
for (int i = il; i <= ir; ++ i) {
|
|
coord_t this_x = segs[i].pos;
|
|
assert(this_x == i * line_spacing + x0);
|
|
SegmentIntersection is;
|
|
is.iContour = iContour;
|
|
is.iSegment = iSegment;
|
|
assert(l <= this_x);
|
|
assert(r >= this_x);
|
|
// Calculate the intersection position in y axis. x is known.
|
|
if (p1(0) == this_x) {
|
|
if (p2(0) == this_x) {
|
|
// Ignore strictly vertical segments.
|
|
continue;
|
|
}
|
|
is.pos_p = p1(1);
|
|
is.pos_q = 1;
|
|
} else if (p2(0) == this_x) {
|
|
is.pos_p = p2(1);
|
|
is.pos_q = 1;
|
|
} else {
|
|
// First calculate the intersection parameter 't' as a rational number with non negative denominator.
|
|
if (p2(0) > p1(0)) {
|
|
is.pos_p = this_x - p1(0);
|
|
is.pos_q = p2(0) - p1(0);
|
|
} else {
|
|
is.pos_p = p1(0) - this_x;
|
|
is.pos_q = p1(0) - p2(0);
|
|
}
|
|
assert(is.pos_p >= 0 && is.pos_p <= is.pos_q);
|
|
// Make an intersection point from the 't'.
|
|
is.pos_p *= int64_t(p2(1) - p1(1));
|
|
is.pos_p += p1(1) * int64_t(is.pos_q);
|
|
}
|
|
// +-1 to take rounding into account.
|
|
assert(is.pos() + 1 >= std::min(p1(1), p2(1)));
|
|
assert(is.pos() <= std::max(p1(1), p2(1)) + 1);
|
|
segs[i].intersections.push_back(is);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sort the intersections along their segments, specify the intersection types.
|
|
for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
|
|
SegmentedIntersectionLine &sil = segs[i_seg];
|
|
// Sort the intersection points using exact rational arithmetic.
|
|
std::sort(sil.intersections.begin(), sil.intersections.end());
|
|
// Assign the intersection types, remove duplicate or overlapping intersection points.
|
|
// When a loop vertex touches a vertical line, intersection point is generated for both segments.
|
|
// If such two segments are oriented equally, then one of them is removed.
|
|
// Otherwise the vertex is tangential to the vertical line and both segments are removed.
|
|
// The same rule applies, if the loop is pinched into a single point and this point touches the vertical line:
|
|
// The loop has a zero vertical size at the vertical line, therefore the intersection point is removed.
|
|
size_t j = 0;
|
|
for (size_t i = 0; i < sil.intersections.size(); ++ i) {
|
|
// What is the orientation of the segment at the intersection point?
|
|
size_t iContour = sil.intersections[i].iContour;
|
|
const Points &contour = poly_with_offset.contour(iContour).points;
|
|
size_t iSegment = sil.intersections[i].iSegment;
|
|
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
|
|
coord_t dir = contour[iSegment](0) - contour[iPrev](0);
|
|
bool low = dir > 0;
|
|
sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ?
|
|
(low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) :
|
|
(low ? SegmentIntersection::INNER_LOW : SegmentIntersection::INNER_HIGH);
|
|
if (j > 0 && sil.intersections[i].iContour == sil.intersections[j-1].iContour) {
|
|
// Two successive intersection points on a vertical line with the same contour. This may be a special case.
|
|
if (sil.intersections[i].pos() == sil.intersections[j-1].pos()) {
|
|
// Two successive segments meet exactly at the vertical line.
|
|
#ifdef SLIC3R_DEBUG
|
|
// Verify that the segments of sil.intersections[i] and sil.intersections[j-1] are adjoint.
|
|
size_t iSegment2 = sil.intersections[j-1].iSegment;
|
|
size_t iPrev2 = ((iSegment2 == 0) ? contour.size() : iSegment2) - 1;
|
|
assert(iSegment == iPrev2 || iSegment2 == iPrev);
|
|
#endif /* SLIC3R_DEBUG */
|
|
if (sil.intersections[i].type == sil.intersections[j-1].type) {
|
|
// Two successive segments of the same direction (both to the right or both to the left)
|
|
// meet exactly at the vertical line.
|
|
// Remove the second intersection point.
|
|
} else {
|
|
// This is a loop returning to the same point.
|
|
// It may as well be a vertex of a loop touching this vertical line.
|
|
// Remove both the lines.
|
|
-- j;
|
|
}
|
|
} else if (sil.intersections[i].type == sil.intersections[j-1].type) {
|
|
// Two non successive segments of the same direction (both to the right or both to the left)
|
|
// meet exactly at the vertical line. That means there is a Z shaped path, where the center segment
|
|
// of the Z shaped path is aligned with this vertical line.
|
|
// Remove one of the intersection points while maximizing the vertical segment length.
|
|
if (low) {
|
|
// Remove the second intersection point, keep the first intersection point.
|
|
} else {
|
|
// Remove the first intersection point, keep the second intersection point.
|
|
sil.intersections[j-1] = sil.intersections[i];
|
|
}
|
|
} else {
|
|
// Vertical line intersects a contour segment at a general position (not at one of its end points).
|
|
// or the contour just touches this vertical line with a vertical segment or a sequence of vertical segments.
|
|
// Keep both intersection points.
|
|
if (j < i)
|
|
sil.intersections[j] = sil.intersections[i];
|
|
++ j;
|
|
}
|
|
} else {
|
|
// Vertical line intersects a contour segment at a general position (not at one of its end points).
|
|
if (j < i)
|
|
sil.intersections[j] = sil.intersections[i];
|
|
++ j;
|
|
}
|
|
}
|
|
// Shrink the list of intersections, if any of the intersection was removed during the classification.
|
|
if (j < sil.intersections.size())
|
|
sil.intersections.erase(sil.intersections.begin() + j, sil.intersections.end());
|
|
}
|
|
|
|
// Verify the segments. If something is wrong, give up.
|
|
#define ASSERT_THROW(CONDITION) do { assert(CONDITION); if (! (CONDITION)) throw InfillFailedException(); } while (0)
|
|
for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
|
|
SegmentedIntersectionLine &sil = segs[i_seg];
|
|
// The intersection points have to be even.
|
|
ASSERT_THROW((sil.intersections.size() & 1) == 0);
|
|
for (size_t i = 0; i < sil.intersections.size();) {
|
|
// An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times.
|
|
ASSERT_THROW(sil.intersections[i].type == SegmentIntersection::OUTER_LOW);
|
|
size_t j = i + 1;
|
|
ASSERT_THROW(j < sil.intersections.size());
|
|
ASSERT_THROW(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
|
|
for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
|
|
ASSERT_THROW(j < sil.intersections.size());
|
|
ASSERT_THROW((j & 1) == 1);
|
|
ASSERT_THROW(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
|
|
ASSERT_THROW(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH);
|
|
i = j + 1;
|
|
}
|
|
}
|
|
#undef ASSERT_THROW
|
|
|
|
return segs;
|
|
}
|
|
|
|
// Connect each contour / vertical line intersection point with another two contour / vertical line intersection points.
|
|
// (fill in SegmentIntersection::{prev_on_contour, prev_on_contour_vertical, next_on_contour, next_on_contour_vertical}.
|
|
// These contour points are either on the same vertical line, or on the vertical line left / right to the current one.
|
|
static void connect_segment_intersections_by_contours(const ExPolygonWithOffset &poly_with_offset, std::vector<SegmentedIntersectionLine> &segs)
|
|
{
|
|
for (size_t i_vline = 0; i_vline < segs.size(); ++ i_vline) {
|
|
SegmentedIntersectionLine &il = segs[i_vline];
|
|
const SegmentedIntersectionLine *il_prev = i_vline > 0 ? &segs[i_vline - 1] : nullptr;
|
|
const SegmentedIntersectionLine *il_next = i_vline + 1 < segs.size() ? &segs[i_vline + 1] : nullptr;
|
|
|
|
for (int i_intersection = 0; i_intersection < il.intersections.size(); ++ i_intersection) {
|
|
SegmentIntersection &itsct = il.intersections[i_intersection];
|
|
const Polygon &poly = poly_with_offset.contour(itsct.iContour);
|
|
|
|
// 1) Find possible connection points on the previous / next vertical line.
|
|
// Find an intersection point on il_prev, intersecting i_intersection
|
|
// at the same orientation as i_intersection, and being closest to i_intersection
|
|
// in the number of contour segments, when following the direction of the contour.
|
|
//FIXME this has O(n) time complexity. Likely an O(log(n)) scheme is possible.
|
|
int iprev = -1;
|
|
if (il_prev) {
|
|
int dmin = std::numeric_limits<int>::max();
|
|
for (int i = 0; i < il_prev->intersections.size(); ++ i) {
|
|
const SegmentIntersection &itsct2 = il_prev->intersections[i];
|
|
if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
|
|
// The intersection points lie on the same contour and have the same orientation.
|
|
// Find the intersection point with a shortest path in the direction of the contour.
|
|
int d = distance_of_segmens(poly, itsct.iSegment, itsct2.iSegment, false);
|
|
if (d < dmin) {
|
|
iprev = i;
|
|
dmin = d;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// The same for il_next.
|
|
int inext = -1;
|
|
if (il_next) {
|
|
int dmin = std::numeric_limits<int>::max();
|
|
for (int i = 0; i < il_next->intersections.size(); ++ i) {
|
|
const SegmentIntersection &itsct2 = il_next->intersections[i];
|
|
if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
|
|
// The intersection points lie on the same contour and have the same orientation.
|
|
// Find the intersection point with a shortest path in the direction of the contour.
|
|
int d = distance_of_segmens(poly, itsct.iSegment, itsct2.iSegment, true);
|
|
if (d < dmin) {
|
|
inext = i;
|
|
dmin = d;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// 2) Find possible connection points on the same vertical line.
|
|
int iabove = -1;
|
|
// Does the perimeter intersect the current vertical line above intrsctn?
|
|
for (int i = i_intersection + 1; i < il.intersections.size(); ++ i)
|
|
if (il.intersections[i].iContour == itsct.iContour) {
|
|
iabove = i;
|
|
break;
|
|
}
|
|
// Does the perimeter intersect the current vertical line below intrsctn?
|
|
int ibelow = -1;
|
|
for (int i = i_intersection - 1; i >= 0; -- i)
|
|
if (il.intersections[i].iContour == itsct.iContour) {
|
|
ibelow = i;
|
|
break;
|
|
}
|
|
|
|
// 3) Sort the intersection points, clear iprev / inext / iSegBelow / iSegAbove,
|
|
// if it is preceded by any other intersection point along the contour.
|
|
// The perimeter contour orientation.
|
|
const bool forward = itsct.is_low(); // == poly_with_offset.is_contour_ccw(intrsctn->iContour);
|
|
{
|
|
int d_horiz = (iprev == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, il_prev->intersections[iprev].iSegment, itsct.iSegment, forward);
|
|
int d_down = (ibelow == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, il.intersections[ibelow].iSegment, itsct.iSegment, forward);
|
|
int d_up = (iabove == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, il.intersections[iabove].iSegment, itsct.iSegment, forward);
|
|
if (d_horiz < std::min(d_down, d_up)) {
|
|
itsct.prev_on_contour = iprev;
|
|
itsct.prev_on_contour_type = SegmentIntersection::LinkType::Horizontal;
|
|
} else if (d_down < d_up) {
|
|
itsct.prev_on_contour = ibelow;
|
|
itsct.prev_on_contour_type = SegmentIntersection::LinkType::Down;
|
|
} else {
|
|
itsct.prev_on_contour = iabove;
|
|
itsct.prev_on_contour_type = SegmentIntersection::LinkType::Up;
|
|
}
|
|
// There should always be a link to the next intersection point on the same contour.
|
|
assert(itsct.prev_on_contour != -1);
|
|
}
|
|
{
|
|
int d_horiz = (inext == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, itsct.iSegment, il_next->intersections[inext].iSegment, forward);
|
|
int d_down = (ibelow == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, itsct.iSegment, il.intersections[ibelow].iSegment, forward);
|
|
int d_up = (iabove == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, itsct.iSegment, il.intersections[iabove].iSegment, forward);
|
|
if (d_horiz < std::min(d_down, d_up)) {
|
|
itsct.next_on_contour = inext;
|
|
itsct.next_on_contour_type = SegmentIntersection::LinkType::Horizontal;
|
|
} else if (d_down < d_up) {
|
|
itsct.next_on_contour = ibelow;
|
|
itsct.next_on_contour_type = SegmentIntersection::LinkType::Down;
|
|
} else {
|
|
itsct.next_on_contour = iabove;
|
|
itsct.next_on_contour_type = SegmentIntersection::LinkType::Up;
|
|
}
|
|
// There should always be a link to the next intersection point on the same contour.
|
|
assert(itsct.next_on_contour != -1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find the last INNER_HIGH intersection starting with INNER_LOW, that is followed by OUTER_HIGH intersection.
|
|
// Such intersection shall always exist.
|
|
static const SegmentIntersection& end_of_vertical_run_raw(const SegmentIntersection &start)
|
|
{
|
|
assert(start.type == SegmentIntersection::INNER_LOW);
|
|
// Step back to the beginning of the vertical segment to mark it as consumed.
|
|
auto *it = &start;
|
|
do {
|
|
++ it;
|
|
} while (it->type != SegmentIntersection::OUTER_HIGH);
|
|
if ((it - 1)->is_inner()) {
|
|
// Step back.
|
|
-- it;
|
|
assert(it->type == SegmentIntersection::INNER_HIGH);
|
|
}
|
|
return *it;
|
|
}
|
|
static SegmentIntersection& end_of_vertical_run_raw(SegmentIntersection &start)
|
|
{
|
|
return const_cast<SegmentIntersection&>(end_of_vertical_run_raw(std::as_const(start)));
|
|
}
|
|
|
|
// Find the last INNER_HIGH intersection starting with INNER_LOW, that is followed by OUTER_HIGH intersection, traversing vertical up contours if enabled.
|
|
// Such intersection shall always exist.
|
|
static const SegmentIntersection& end_of_vertical_run(const SegmentedIntersectionLine &il, const SegmentIntersection &start)
|
|
{
|
|
assert(start.type == SegmentIntersection::INNER_LOW);
|
|
const SegmentIntersection *end = &end_of_vertical_run_raw(start);
|
|
assert(end->type == SegmentIntersection::INNER_HIGH);
|
|
for (;;) {
|
|
int up = end->vertical_up();
|
|
if (up == -1 || (end->has_left_vertical_up() ? end->prev_on_contour_quality : end->next_on_contour_quality) != SegmentIntersection::LinkQuality::Valid)
|
|
break;
|
|
const SegmentIntersection &new_start = il.intersections[up];
|
|
assert(end->iContour == new_start.iContour);
|
|
assert(new_start.type == SegmentIntersection::INNER_LOW);
|
|
end = &end_of_vertical_run_raw(new_start);
|
|
}
|
|
assert(end->type == SegmentIntersection::INNER_HIGH);
|
|
return *end;
|
|
}
|
|
static SegmentIntersection& end_of_vertical_run(SegmentedIntersectionLine &il, SegmentIntersection &start)
|
|
{
|
|
return const_cast<SegmentIntersection&>(end_of_vertical_run(std::as_const(il), std::as_const(start)));
|
|
}
|
|
|
|
static void classify_vertical_runs(
|
|
const ExPolygonWithOffset &poly_with_offset, const FillParams ¶ms, const coord_t link_max_length,
|
|
std::vector<SegmentedIntersectionLine> &segs, size_t i_vline)
|
|
{
|
|
SegmentedIntersectionLine &vline = segs[i_vline];
|
|
for (size_t i_intersection = 0; i_intersection + 1 < vline.intersections.size(); ++ i_intersection) {
|
|
if (vline.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW) {
|
|
if (vline.intersections[++ i_intersection].type == SegmentIntersection::INNER_LOW) {
|
|
for (;;) {
|
|
SegmentIntersection &start = vline.intersections[i_intersection];
|
|
SegmentIntersection &end = end_of_vertical_run_raw(start);
|
|
SegmentIntersection::LinkQuality link_quality = SegmentIntersection::LinkQuality::Valid;
|
|
// End of a contour starting at end and ending above end at the same vertical line.
|
|
int inext = end.vertical_outside();
|
|
if (inext == -1) {
|
|
i_intersection = &end - vline.intersections.data() + 1;
|
|
break;
|
|
}
|
|
SegmentIntersection &start2 = vline.intersections[inext];
|
|
if (params.dont_connect)
|
|
link_quality = SegmentIntersection::LinkQuality::TooLong;
|
|
else {
|
|
for (SegmentIntersection *it = &end + 1; it != &start2; ++ it)
|
|
if (it->is_inner()) {
|
|
link_quality = SegmentIntersection::LinkQuality::Invalid;
|
|
break;
|
|
}
|
|
if (link_quality == SegmentIntersection::LinkQuality::Valid && link_max_length > 0) {
|
|
// Measure length of the link.
|
|
coordf_t link_length = measure_perimeter_segment_on_vertical_line_length(
|
|
poly_with_offset, segs, i_vline, i_intersection, inext, end.has_right_vertical_outside());
|
|
if (link_length > link_max_length)
|
|
link_quality = SegmentIntersection::LinkQuality::TooLong;
|
|
}
|
|
}
|
|
(end.has_left_vertical_up() ? end.prev_on_contour_quality : end.next_on_contour_quality) = link_quality;
|
|
(start2.has_left_vertical_down() ? start2.prev_on_contour_quality : start2.next_on_contour_quality) = link_quality;
|
|
if (link_quality != SegmentIntersection::LinkQuality::Valid) {
|
|
i_intersection = &end - vline.intersections.data() + 1;
|
|
break;
|
|
}
|
|
i_intersection = &start2 - vline.intersections.data();
|
|
}
|
|
} else
|
|
++ i_intersection;
|
|
} else
|
|
++ i_intersection;
|
|
}
|
|
}
|
|
|
|
static void classify_horizontal_links(
|
|
const ExPolygonWithOffset &poly_with_offset, const FillParams ¶ms, const coord_t link_max_length,
|
|
std::vector<SegmentedIntersectionLine> &segs, size_t i_vline)
|
|
{
|
|
SegmentedIntersectionLine &vline_left = segs[i_vline];
|
|
SegmentedIntersectionLine &vline_right = segs[i_vline + 1];
|
|
|
|
// Traverse both left and right together.
|
|
size_t i_intersection_left = 0;
|
|
size_t i_intersection_right = 0;
|
|
while (i_intersection_left + 1 < vline_left.intersections.size() && i_intersection_right + 1 < vline_right.intersections.size()) {
|
|
if (i_intersection_left < vline_left.intersections.size() && vline_left.intersections[i_intersection_left].type != SegmentIntersection::INNER_LOW) {
|
|
++ i_intersection_left;
|
|
continue;
|
|
}
|
|
if (i_intersection_right < vline_right.intersections.size() && vline_right.intersections[i_intersection_right].type != SegmentIntersection::INNER_LOW) {
|
|
++ i_intersection_right;
|
|
continue;
|
|
}
|
|
|
|
if (i_intersection_left + 1 >= vline_left.intersections.size()) {
|
|
// Trace right only.
|
|
} else if (i_intersection_right + 1 >= vline_right.intersections.size()) {
|
|
// Trace left only.
|
|
} else {
|
|
// Trace both.
|
|
SegmentIntersection &start_left = vline_left.intersections[i_intersection_left];
|
|
SegmentIntersection &end_left = end_of_vertical_run(vline_left, start_left);
|
|
SegmentIntersection &start_right = vline_right.intersections[i_intersection_right];
|
|
SegmentIntersection &end_right = end_of_vertical_run(vline_right, start_right);
|
|
// Do these runs overlap?
|
|
int end_right_horizontal = end_left.right_horizontal();
|
|
int end_left_horizontal = end_right.left_horizontal();
|
|
if (end_right_horizontal != -1) {
|
|
if (end_right_horizontal < &start_right - vline_right.intersections.data()) {
|
|
// Left precedes the right segment.
|
|
}
|
|
} else if (end_left_horizontal != -1) {
|
|
if (end_left_horizontal < &start_left - vline_left.intersections.data()) {
|
|
// Right precedes the left segment.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
for (size_t i_intersection = 0; i_intersection + 1 < seg.intersections.size(); ++ i_intersection) {
|
|
if (segs.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW) {
|
|
if (segs.intersections[++ i_intersection].type == SegmentIntersection::INNER_LOW) {
|
|
for (;;) {
|
|
SegmentIntersection &start = segs.intersections[i_intersection];
|
|
SegmentIntersection &end = end_of_vertical_run_raw(start);
|
|
SegmentIntersection::LinkQuality link_quality = SegmentIntersection::LinkQuality::Valid;
|
|
// End of a contour starting at end and ending above end at the same vertical line.
|
|
int inext = end.vertical_outside();
|
|
if (inext == -1) {
|
|
i_intersection = &end - segs.intersections.data() + 1;
|
|
break;
|
|
}
|
|
SegmentIntersection &start2 = segs.intersections[inext];
|
|
if (params.dont_connect)
|
|
link_quality = SegmentIntersection::LinkQuality::TooLong;
|
|
else {
|
|
for (SegmentIntersection *it = &end + 1; it != &start2; ++ it)
|
|
if (it->is_inner()) {
|
|
link_quality = SegmentIntersection::LinkQuality::Invalid;
|
|
break;
|
|
}
|
|
if (link_quality == SegmentIntersection::LinkQuality::Valid && link_max_length > 0) {
|
|
// Measure length of the link.
|
|
coordf_t link_length = measure_perimeter_segment_on_vertical_line_length(
|
|
poly_with_offset, segs, i_vline, i_intersection, inext, intrsctn->has_right_vertical_outside());
|
|
if (link_length > link_max_length)
|
|
link_quality = SegmentIntersection::LinkQuality::TooLong;
|
|
}
|
|
}
|
|
(end.has_left_vertical_up() ? end.prev_on_contour_quality : end.next_on_contour_quality) = link_quality;
|
|
(start2.has_left_vertical_down() ? start2.prev_on_contour_quality : start2.next_on_contour_quality) = link_quality;
|
|
if (link_quality != SegmentIntersection::LinkQuality::Valid) {
|
|
i_intersection = &end - segs.intersections.data() + 1;
|
|
break;
|
|
}
|
|
i_intersection = &start2 - segs.intersections.data();
|
|
}
|
|
} else
|
|
++ i_intersection;
|
|
} else
|
|
++ i_intersection;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void disconnect_invalid_contour_links(
|
|
const ExPolygonWithOffset& poly_with_offset, const FillParams& params, const coord_t link_max_length, std::vector<SegmentedIntersectionLine>& segs)
|
|
{
|
|
// Make the links symmetric!
|
|
|
|
// Validate vertical runs including vertical contour links.
|
|
for (size_t i_vline = 0; i_vline < segs.size(); ++ i_vline) {
|
|
classify_vertical_runs(poly_with_offset, params, link_max_length, segs, i_vline);
|
|
if (i_vline > 0)
|
|
classify_horizontal_links(poly_with_offset, params, link_max_length, segs, i_vline - 1);
|
|
}
|
|
}
|
|
|
|
static void traverse_graph_generate_polylines(
|
|
const ExPolygonWithOffset& poly_with_offset, const FillParams& params, const coord_t link_max_length, std::vector<SegmentedIntersectionLine>& segs, Polylines& polylines_out)
|
|
{
|
|
// For each outer only chords, measure their maximum distance to the bow of the outer contour.
|
|
// Mark an outer only chord as consumed, if the distance is low.
|
|
for (int i_vline = 0; i_vline < segs.size(); ++ i_vline) {
|
|
SegmentedIntersectionLine &vline = segs[i_vline];
|
|
for (int i_intersection = 0; i_intersection + 1 < vline.intersections.size(); ++ i_intersection) {
|
|
if (vline.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW &&
|
|
vline.intersections[i_intersection + 1].type == SegmentIntersection::OUTER_HIGH) {
|
|
bool consumed = false;
|
|
// if (params.full_infill()) {
|
|
// measure_outer_contour_slab(poly_with_offset, segs, i_vline, i_ntersection);
|
|
// } else
|
|
consumed = true;
|
|
vline.intersections[i_intersection].consumed_vertical_up = consumed;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now construct a graph.
|
|
// Find the first point.
|
|
// Naively one would expect to achieve best results by chaining the paths by the shortest distance,
|
|
// but that procedure does not create the longest continuous paths.
|
|
// A simple "sweep left to right" procedure achieves better results.
|
|
int i_vline = 0;
|
|
int i_intersection = -1;
|
|
// Follow the line, connect the lines into a graph.
|
|
// Until no new line could be added to the output path:
|
|
Point pointLast;
|
|
Polyline* polyline_current = nullptr;
|
|
if (! polylines_out.empty())
|
|
pointLast = polylines_out.back().points.back();
|
|
for (;;) {
|
|
if (i_intersection == -1) {
|
|
// The path has been interrupted. Find a next starting point, closest to the previous extruder position.
|
|
coordf_t dist2min = std::numeric_limits<coordf_t>().max();
|
|
for (int i_vline2 = 0; i_vline2 < segs.size(); ++ i_vline2) {
|
|
const SegmentedIntersectionLine &vline = segs[i_vline2];
|
|
if (! vline.intersections.empty()) {
|
|
assert(vline.intersections.size() > 1);
|
|
// Even number of intersections with the loops.
|
|
assert((vline.intersections.size() & 1) == 0);
|
|
assert(vline.intersections.front().type == SegmentIntersection::OUTER_LOW);
|
|
for (int i = 0; i < vline.intersections.size(); ++ i) {
|
|
const SegmentIntersection& intrsctn = vline.intersections[i];
|
|
if (intrsctn.is_outer()) {
|
|
assert(intrsctn.is_low() || i > 0);
|
|
bool consumed = intrsctn.is_low() ?
|
|
intrsctn.consumed_vertical_up :
|
|
vline.intersections[i - 1].consumed_vertical_up;
|
|
if (! consumed) {
|
|
coordf_t dist2 = sqr(coordf_t(pointLast(0) - vline.pos)) + sqr(coordf_t(pointLast(1) - intrsctn.pos()));
|
|
if (dist2 < dist2min) {
|
|
dist2min = dist2;
|
|
i_vline = i_vline2;
|
|
i_intersection = i;
|
|
//FIXME We are taking the first left point always. Verify, that the caller chains the paths
|
|
// by a shortest distance, while reversing the paths if needed.
|
|
//if (polylines_out.empty())
|
|
// Initial state, take the first line, which is the first from the left.
|
|
goto found;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (i_intersection == -1)
|
|
// We are finished.
|
|
break;
|
|
found:
|
|
// Start a new path.
|
|
polylines_out.push_back(Polyline());
|
|
polyline_current = &polylines_out.back();
|
|
// Emit the first point of a path.
|
|
pointLast = Point(segs[i_vline].pos, segs[i_vline].intersections[i_intersection].pos());
|
|
polyline_current->points.push_back(pointLast);
|
|
}
|
|
|
|
// From the initial point (i_vline, i_intersection), follow a path.
|
|
SegmentedIntersectionLine &vline = segs[i_vline];
|
|
SegmentIntersection *it = &vline.intersections[i_intersection];
|
|
bool going_up = it->is_low();
|
|
bool try_connect = false;
|
|
if (going_up) {
|
|
assert(! it->consumed_vertical_up);
|
|
assert(i_intersection + 1 < vline.intersections.size());
|
|
// Step back to the beginning of the vertical segment to mark it as consumed.
|
|
if (it->is_inner()) {
|
|
assert(i_intersection > 0);
|
|
-- it;
|
|
-- i_intersection;
|
|
}
|
|
// Consume the complete vertical segment up to the outer contour.
|
|
do {
|
|
it->consumed_vertical_up = true;
|
|
++ it;
|
|
++ i_intersection;
|
|
assert(i_intersection < vline.intersections.size());
|
|
} while (it->type != SegmentIntersection::OUTER_HIGH);
|
|
if ((it - 1)->is_inner()) {
|
|
// Step back.
|
|
-- it;
|
|
-- i_intersection;
|
|
assert(it->type == SegmentIntersection::INNER_HIGH);
|
|
try_connect = true;
|
|
}
|
|
} else {
|
|
// Going down.
|
|
assert(it->is_high());
|
|
assert(i_intersection > 0);
|
|
assert(!(it - 1)->consumed_vertical_up);
|
|
// Consume the complete vertical segment up to the outer contour.
|
|
if (it->is_inner())
|
|
it->consumed_vertical_up = true;
|
|
do {
|
|
assert(i_intersection > 0);
|
|
-- it;
|
|
-- i_intersection;
|
|
it->consumed_vertical_up = true;
|
|
} while (it->type != SegmentIntersection::OUTER_LOW);
|
|
if ((it + 1)->is_inner()) {
|
|
// Step back.
|
|
++ it;
|
|
++ i_intersection;
|
|
assert(it->type == SegmentIntersection::INNER_LOW);
|
|
try_connect = true;
|
|
}
|
|
}
|
|
if (try_connect) {
|
|
// Decide, whether to finish the segment, or whether to follow the perimeter.
|
|
// 1) Find possible connection points on the previous / next vertical line.
|
|
IntersectionTypeOtherVLine intrsection_type_prev = intersection_type_on_prev_vertical_line(segs, i_vline, i_intersection);
|
|
IntersectionTypeOtherVLine intrsctn_type_next = intersection_type_on_next_vertical_line(segs, i_vline, i_intersection);
|
|
// Try to connect to a previous or next vertical line, making a zig-zag pattern.
|
|
if (intrsection_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK || intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) {
|
|
// A horizontal connection along the perimeter line exists.
|
|
int i_prev = it->left_horizontal();
|
|
int i_next = it->right_horizontal();
|
|
coordf_t dist_prev = (intrsection_type_prev != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
|
|
measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, i_intersection, i_prev);
|
|
coordf_t dist_next = (intrsctn_type_next != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
|
|
measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, i_intersection, i_next);
|
|
// Take the shorter path.
|
|
//FIXME this may not be always the best strategy to take the shortest connection line now.
|
|
bool take_next = (intrsection_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) ?
|
|
(dist_next < dist_prev) :
|
|
intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK;
|
|
assert(it->is_inner());
|
|
bool skip = params.dont_connect || (link_max_length > 0 && (take_next ? dist_next : dist_prev) > link_max_length);
|
|
if (skip) {
|
|
#if 1
|
|
// Just skip the connecting contour and start a new path.
|
|
goto dont_connect;
|
|
#else
|
|
polyline_current->points.emplace_back(vline.pos, it->pos());
|
|
polylines_out.emplace_back();
|
|
polyline_current = &polylines_out.back();
|
|
const SegmentedIntersectionLine& il2 = segs[take_next ? (i_vline + 1) : (i_vline - 1)];
|
|
polyline_current->points.emplace_back(il2.pos, il2.intersections[take_next ? i_next : i_prev].pos());
|
|
#endif
|
|
} else {
|
|
polyline_current->points.emplace_back(vline.pos, it->pos());
|
|
emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, it->iContour, i_intersection, take_next ? i_next : i_prev, *polyline_current, take_next);
|
|
}
|
|
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
|
|
if (i_prev != -1)
|
|
segs[i_vline - 1].intersections[i_prev].consumed_perimeter_right = true;
|
|
if (i_next != -1)
|
|
it->consumed_perimeter_right = true;
|
|
//FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed.
|
|
// Advance to the neighbor line.
|
|
if (take_next) {
|
|
++ i_vline;
|
|
i_intersection = i_next;
|
|
}
|
|
else {
|
|
-- i_vline;
|
|
i_intersection = i_prev;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// 5) Try to connect to a previous or next point on the same vertical line.
|
|
if (int inext = it->vertical_outside(); inext != -1) {
|
|
bool valid = true;
|
|
// Verify, that there is no intersection with the inner contour up to the end of the contour segment.
|
|
// Verify, that the successive segment has not been consumed yet.
|
|
if (going_up) {
|
|
if (vline.intersections[inext].consumed_vertical_up)
|
|
valid = false;
|
|
else {
|
|
for (int i = i_intersection + 1; i < inext && valid; ++ i)
|
|
if (vline.intersections[i].is_inner())
|
|
valid = false;
|
|
}
|
|
} else {
|
|
if (vline.intersections[inext - 1].consumed_vertical_up)
|
|
valid = false;
|
|
else {
|
|
for (int i = inext + 1; i < i_intersection && valid; ++ i)
|
|
if (vline.intersections[i].is_inner())
|
|
valid = false;
|
|
}
|
|
}
|
|
if (valid) {
|
|
const Polygon &poly = poly_with_offset.contour(it->iContour);
|
|
assert(it->iContour == vline.intersections[inext].iContour);
|
|
// Skip this perimeter line?
|
|
bool skip = params.dont_connect;
|
|
bool dir_forward = it->has_right_vertical_outside();
|
|
if (! skip && link_max_length > 0) {
|
|
coordf_t link_length = measure_perimeter_segment_on_vertical_line_length(
|
|
poly_with_offset, segs, i_vline, i_intersection, inext, dir_forward);
|
|
skip = link_length > link_max_length;
|
|
}
|
|
polyline_current->points.emplace_back(vline.pos, it->pos());
|
|
if (skip) {
|
|
// Just skip the connecting contour and start a new path.
|
|
polylines_out.emplace_back();
|
|
polyline_current = &polylines_out.back();
|
|
polyline_current->points.emplace_back(vline.pos, vline.intersections[inext].pos());
|
|
} else {
|
|
// Consume the connecting contour and the next segment.
|
|
emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, it->iContour, i_intersection, inext, *polyline_current, dir_forward);
|
|
}
|
|
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
|
|
// If there are any outer intersection points skipped (bypassed) by the contour,
|
|
// mark them as processed.
|
|
if (going_up)
|
|
for (int i = i_intersection; i < inext; ++ i)
|
|
vline.intersections[i].consumed_vertical_up = true;
|
|
else
|
|
for (int i = inext; i < i_intersection; ++ i)
|
|
vline.intersections[i].consumed_vertical_up = true;
|
|
// seg.intersections[going_up ? i_intersection : i_intersection - 1].consumed_vertical_up = true;
|
|
it->consumed_perimeter_right = true;
|
|
(going_up ? ++ it : -- it)->consumed_perimeter_right = true;
|
|
i_intersection = inext;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
dont_connect:
|
|
// No way to continue the current polyline. Take the rest of the line up to the outer contour.
|
|
// This will finish the polyline, starting another polyline at a new point.
|
|
going_up ? ++ it : -- it;
|
|
}
|
|
|
|
// Finish the current vertical line,
|
|
// reset the current vertical line to pick a new starting point in the next round.
|
|
assert(it->is_outer());
|
|
assert(it->is_high() == going_up);
|
|
pointLast = Point(vline.pos, it->pos());
|
|
polyline_current->points.emplace_back(pointLast);
|
|
// Handle duplicate points and zero length segments.
|
|
polyline_current->remove_duplicate_points();
|
|
assert(! polyline_current->has_duplicate_points());
|
|
// Handle nearly zero length edges.
|
|
if (polyline_current->points.size() <= 1 ||
|
|
(polyline_current->points.size() == 2 &&
|
|
std::abs(polyline_current->points.front()(0) - polyline_current->points.back()(0)) < SCALED_EPSILON &&
|
|
std::abs(polyline_current->points.front()(1) - polyline_current->points.back()(1)) < SCALED_EPSILON))
|
|
polylines_out.pop_back();
|
|
it = nullptr;
|
|
i_intersection = -1;
|
|
polyline_current = nullptr;
|
|
}
|
|
}
|
|
|
|
struct MonotonousRegion
|
|
{
|
|
struct Boundary {
|
|
int vline;
|
|
int low;
|
|
int high;
|
|
};
|
|
|
|
Boundary left;
|
|
Boundary right;
|
|
|
|
// Length when starting at left.low
|
|
float len1 { 0.f };
|
|
// Length when starting at left.high
|
|
float len2 { 0.f };
|
|
// If true, then when starting at left.low, then ending at right.high and vice versa.
|
|
// If false, then ending at the same side as starting.
|
|
bool flips { false };
|
|
|
|
bool length(bool region_flipped) const { return region_flipped ? len2 : len1; }
|
|
int left_intersection_point(bool region_flipped) const { return region_flipped ? left.high : left.low; }
|
|
int right_intersection_point(bool region_flipped) const { return (region_flipped == flips) ? right.low : right.high; }
|
|
|
|
// Left regions are used to track whether all regions left to this one have already been printed.
|
|
boost::container::small_vector<MonotonousRegion*, 4> left_neighbors;
|
|
// Right regions are held to pick a next region to be extruded using the "Ant colony" heuristics.
|
|
boost::container::small_vector<MonotonousRegion*, 4> right_neighbors;
|
|
};
|
|
|
|
struct AntPath
|
|
{
|
|
float length { -1. }; // Length of the link to the next region.
|
|
float visibility { -1. }; // 1 / length. Which length, just to the next region, or including the path accross the region?
|
|
float pheromone { 0 }; // <0, 1>
|
|
};
|
|
|
|
struct MonotonousRegionLink
|
|
{
|
|
MonotonousRegion *region;
|
|
bool flipped;
|
|
// Distance of right side of this region to left side of the next region, if the "flipped" flag of this region and the next region
|
|
// is applied as defined.
|
|
AntPath *next;
|
|
// Distance of right side of this region to left side of the next region, if the "flipped" flag of this region and the next region
|
|
// is applied in reverse order as if the zig-zags were flipped.
|
|
AntPath *next_flipped;
|
|
};
|
|
|
|
class AntPathMatrix
|
|
{
|
|
public:
|
|
AntPathMatrix(const std::vector<MonotonousRegion> ®ions, const ExPolygonWithOffset &poly_with_offset, const std::vector<SegmentedIntersectionLine> &segs) :
|
|
m_regions(regions),
|
|
m_poly_with_offset(poly_with_offset),
|
|
m_segs(segs),
|
|
// From end of one region to the start of another region, both flipped or not flipped.
|
|
m_matrix(regions.size() * regions.size() * 4) {}
|
|
|
|
AntPath& operator()(const MonotonousRegion ®ion_from, bool flipped_from, const MonotonousRegion ®ion_to, bool flipped_to)
|
|
{
|
|
int row = 2 * int(®ion_from - m_regions.data()) + flipped_from;
|
|
int col = 2 * int(®ion_to - m_regions.data()) + flipped_to;
|
|
AntPath &path = m_matrix[row * m_regions.size() * 2 + col];
|
|
if (path.length == -1.) {
|
|
// This path is accessed for the first time. Update the length and cost.
|
|
int i_from = region_from.right_intersection_point(flipped_from);
|
|
int i_to = region_to.left_intersection_point(flipped_to);
|
|
const SegmentedIntersectionLine &vline_from = m_segs[region_from.right.vline];
|
|
const SegmentedIntersectionLine &vline_to = m_segs[region_to.left.vline];
|
|
if (region_from.right.vline + 1 == region_from.left.vline) {
|
|
int i_right = vline_from.intersections[i_from].right_horizontal();
|
|
if (i_right == i_to && vline_from.intersections[i_from].next_on_contour_quality == SegmentIntersection::LinkQuality::Valid) {
|
|
// Measure length along the contour.
|
|
path.length = measure_perimeter_next_segment_length(m_poly_with_offset, m_segs, region_from.right.vline, i_from, i_to);
|
|
}
|
|
}
|
|
if (path.length == -1.) {
|
|
// Just apply the Eucledian distance of the end points.
|
|
path.length = Vec2f(vline_to.pos - vline_from.pos, vline_to.intersections[i_to].pos() - vline_from.intersections[i_from].pos()).norm();
|
|
}
|
|
path.visibility = 1. / (path.length + EPSILON);
|
|
}
|
|
return path;
|
|
}
|
|
|
|
AntPath& operator()(const MonotonousRegionLink ®ion_from, const MonotonousRegion ®ion_to, bool flipped_to)
|
|
{ return (*this)(*region_from.region, region_from.flipped, region_to, flipped_to); }
|
|
AntPath& operator()(const MonotonousRegion ®ion_from, bool flipped_from, const MonotonousRegionLink ®ion_to)
|
|
{ return (*this)(region_from, flipped_from, *region_to.region, region_to.flipped); }
|
|
AntPath& operator()(const MonotonousRegionLink ®ion_from, const MonotonousRegionLink ®ion_to)
|
|
{ return (*this)(*region_from.region, region_from.flipped, *region_to.region, region_to.flipped); }
|
|
|
|
private:
|
|
// Source regions, used for addressing and updating m_matrix.
|
|
const std::vector<MonotonousRegion> &m_regions;
|
|
// To calculate the intersection points and contour lengths.
|
|
const ExPolygonWithOffset &m_poly_with_offset;
|
|
const std::vector<SegmentedIntersectionLine> &m_segs;
|
|
// From end of one region to the start of another region, both flipped or not flipped.
|
|
//FIXME one may possibly use sparse representation of the matrix.
|
|
std::vector<AntPath> m_matrix;
|
|
};
|
|
|
|
static const SegmentIntersection& vertical_run_bottom(const SegmentedIntersectionLine &vline, const SegmentIntersection &start)
|
|
{
|
|
assert(start.is_inner());
|
|
const SegmentIntersection *it = &start;
|
|
// Find the lowest SegmentIntersection::INNER_LOW starting with right.
|
|
for (;;) {
|
|
while (it->type != SegmentIntersection::INNER_LOW)
|
|
-- it;
|
|
if ((it - 1)->type == SegmentIntersection::INNER_HIGH)
|
|
-- it;
|
|
else {
|
|
int down = it->vertical_down();
|
|
if (down == -1 || it->vertical_down_quality() != SegmentIntersection::LinkQuality::Valid)
|
|
break;
|
|
it = &vline.intersections[down];
|
|
assert(it->type == SegmentIntersection::INNER_HIGH);
|
|
}
|
|
}
|
|
return *it;
|
|
}
|
|
static SegmentIntersection& vertical_run_bottom(SegmentedIntersectionLine& vline, SegmentIntersection& start)
|
|
{
|
|
return const_cast<SegmentIntersection&>(vertical_run_bottom(std::as_const(vline), std::as_const(start)));
|
|
}
|
|
|
|
static const SegmentIntersection& vertical_run_top(const SegmentedIntersectionLine &vline, const SegmentIntersection &start)
|
|
{
|
|
assert(start.is_inner());
|
|
const SegmentIntersection *it = &start;
|
|
// Find the lowest SegmentIntersection::INNER_LOW starting with right.
|
|
for (;;) {
|
|
while (it->type != SegmentIntersection::INNER_HIGH)
|
|
++ it;
|
|
if ((it + 1)->type == SegmentIntersection::INNER_LOW)
|
|
++ it;
|
|
else {
|
|
int up = it->vertical_up();
|
|
if (up == -1 || it->vertical_up_quality() != SegmentIntersection::LinkQuality::Valid)
|
|
break;
|
|
it = &vline.intersections[up];
|
|
assert(it->type == SegmentIntersection::INNER_LOW);
|
|
}
|
|
}
|
|
return *it;
|
|
}
|
|
static SegmentIntersection& vertical_run_top(SegmentedIntersectionLine& vline, SegmentIntersection& start)
|
|
{
|
|
return const_cast<SegmentIntersection&>(vertical_run_top(std::as_const(vline), std::as_const(start)));
|
|
}
|
|
|
|
static SegmentIntersection* left_overlap_bottom(SegmentIntersection &start, SegmentIntersection &end, SegmentedIntersectionLine &vline_left)
|
|
{
|
|
SegmentIntersection *left = nullptr;
|
|
for (SegmentIntersection *it = &start; it <= &end; ++ it) {
|
|
int i = it->left_horizontal();
|
|
if (i != -1) {
|
|
left = &vline_left.intersections[i];
|
|
break;
|
|
}
|
|
}
|
|
return left == nullptr ? nullptr : &vertical_run_bottom(vline_left, *left);
|
|
}
|
|
|
|
static SegmentIntersection* left_overlap_top(SegmentIntersection &start, SegmentIntersection &end, SegmentedIntersectionLine &vline_left)
|
|
{
|
|
SegmentIntersection *left = nullptr;
|
|
for (SegmentIntersection *it = &end; it >= &start; -- it) {
|
|
int i = it->left_horizontal();
|
|
if (i != -1) {
|
|
left = &vline_left.intersections[i];
|
|
break;
|
|
}
|
|
}
|
|
return left == nullptr ? nullptr : &vertical_run_top(vline_left, *left);
|
|
}
|
|
|
|
static std::pair<SegmentIntersection*, SegmentIntersection*> left_overlap(SegmentIntersection &start, SegmentIntersection &end, SegmentedIntersectionLine &vline_left)
|
|
{
|
|
std::pair<SegmentIntersection*, SegmentIntersection*> out(nullptr, nullptr);
|
|
out.first = left_overlap_bottom(start, end, vline_left);
|
|
if (out.first != nullptr)
|
|
out.second = left_overlap_top(start, end, vline_left);
|
|
return out;
|
|
}
|
|
|
|
static std::pair<SegmentIntersection*, SegmentIntersection*> left_overlap(std::pair<SegmentIntersection*, SegmentIntersection*> &start_end, SegmentedIntersectionLine &vline_left)
|
|
{
|
|
assert((start_end.first == nullptr) == (start_end.second == nullptr));
|
|
return start_end.first == nullptr ? start_end : left_overlap(*start_end.first, *start_end.second, vline_left);
|
|
}
|
|
|
|
static SegmentIntersection* right_overlap_bottom(SegmentIntersection &start, SegmentIntersection &end, SegmentedIntersectionLine &vline_right)
|
|
{
|
|
SegmentIntersection *right = nullptr;
|
|
for (SegmentIntersection *it = &start; it <= &end; ++ it) {
|
|
int i = it->right_horizontal();
|
|
if (i != -1) {
|
|
right = &vline_right.intersections[i];
|
|
break;
|
|
}
|
|
}
|
|
return right == nullptr ? nullptr : &vertical_run_bottom(vline_right, *right);
|
|
}
|
|
|
|
static SegmentIntersection* right_overlap_top(SegmentIntersection &start, SegmentIntersection &end, SegmentedIntersectionLine &vline_right)
|
|
{
|
|
SegmentIntersection *right = nullptr;
|
|
for (SegmentIntersection *it = &end; it >= &start; -- it) {
|
|
int i = it->right_horizontal();
|
|
if (i != -1) {
|
|
right = &vline_right.intersections[i];
|
|
break;
|
|
}
|
|
}
|
|
return right == nullptr ? nullptr : &vertical_run_top(vline_right, *right);
|
|
}
|
|
|
|
static std::pair<SegmentIntersection*, SegmentIntersection*> right_overlap(SegmentIntersection &start, SegmentIntersection &end, SegmentedIntersectionLine &vline_right)
|
|
{
|
|
std::pair<SegmentIntersection*, SegmentIntersection*> out(nullptr, nullptr);
|
|
out.first = right_overlap_bottom(start, end, vline_right);
|
|
if (out.first != nullptr)
|
|
out.second = right_overlap_top(start, end, vline_right);
|
|
return out;
|
|
}
|
|
|
|
static std::pair<SegmentIntersection*, SegmentIntersection*> right_overlap(std::pair<SegmentIntersection*, SegmentIntersection*> &start_end, SegmentedIntersectionLine &vline_right)
|
|
{
|
|
assert((start_end.first == nullptr) == (start_end.second == nullptr));
|
|
return start_end.first == nullptr ? start_end : right_overlap(*start_end.first, *start_end.second, vline_right);
|
|
}
|
|
|
|
static std::vector<MonotonousRegion> generate_montonous_regions(std::vector<SegmentedIntersectionLine> &segs)
|
|
{
|
|
std::vector<MonotonousRegion> monotonous_regions;
|
|
|
|
for (int i_vline_seed = 0; i_vline_seed < segs.size(); ++ i_vline_seed) {
|
|
SegmentedIntersectionLine &vline_seed = segs[i_vline_seed];
|
|
for (int i_intersection_seed = 1; i_intersection_seed + 1 < vline_seed.intersections.size(); ) {
|
|
while (i_intersection_seed + 1 < vline_seed.intersections.size() &&
|
|
vline_seed.intersections[i_intersection_seed].type != SegmentIntersection::INNER_LOW)
|
|
++ i_intersection_seed;
|
|
SegmentIntersection *start = &vline_seed.intersections[i_intersection_seed];
|
|
SegmentIntersection *end = &end_of_vertical_run(vline_seed, *start);
|
|
if (! start->consumed_vertical_up) {
|
|
// Draw a new monotonous region starting with this segment.
|
|
// while there is only a single right neighbor
|
|
int i_vline = i_vline_seed;
|
|
std::pair<SegmentIntersection*, SegmentIntersection*> left(start, end);
|
|
MonotonousRegion region;
|
|
region.left.vline = i_vline;
|
|
region.left.low = int(left.first - vline_seed.intersections.data());
|
|
region.left.high = int(left.second - vline_seed.intersections.data());
|
|
region.right = region.left;
|
|
start->consumed_vertical_up = true;
|
|
int num_lines = 1;
|
|
while (++ i_vline < segs.size()) {
|
|
SegmentedIntersectionLine &vline_left = segs[i_vline - 1];
|
|
SegmentedIntersectionLine &vline_right = segs[i_vline];
|
|
std::pair<SegmentIntersection*, SegmentIntersection*> right = right_overlap(left, vline_right);
|
|
if (right.first == nullptr)
|
|
// No neighbor at the right side of the current segment.
|
|
break;
|
|
SegmentIntersection* right_top_first = &vertical_run_top(vline_right, *right.first);
|
|
if (right_top_first != right.second)
|
|
// This segment overlaps with multiple segments at its right side.
|
|
break;
|
|
std::pair<SegmentIntersection*, SegmentIntersection*> right_left = left_overlap(right, vline_left);
|
|
if (left != right_left)
|
|
// Left & right draws don't overlap exclusively, right neighbor segment overlaps with multiple segments at its left.
|
|
break;
|
|
region.right.vline = i_vline;
|
|
region.right.low = int(right.first - vline_right.intersections.data());
|
|
region.right.high = int(right.second - vline_right.intersections.data());
|
|
right.first->consumed_vertical_up = true;
|
|
++ num_lines;
|
|
left = right;
|
|
}
|
|
// Even number of lines makes the infill zig-zag to exit on the other side of the region than where it starts.
|
|
region.flips = (num_lines & 1) != 0;
|
|
monotonous_regions.emplace_back(region);
|
|
}
|
|
i_intersection_seed = int(end - vline_seed.intersections.data()) + 1;
|
|
}
|
|
}
|
|
|
|
return monotonous_regions;
|
|
}
|
|
|
|
static void connect_monotonous_regions(std::vector<MonotonousRegion> ®ions, std::vector<SegmentedIntersectionLine> &segs)
|
|
{
|
|
// Map from low intersection to left / right side of a monotonous region.
|
|
using MapType = std::pair<SegmentIntersection*, MonotonousRegion*>;
|
|
std::vector<MapType> map_intersection_to_region_start;
|
|
std::vector<MapType> map_intersection_to_region_end;
|
|
map_intersection_to_region_start.reserve(regions.size());
|
|
map_intersection_to_region_end.reserve(regions.size());
|
|
for (MonotonousRegion ®ion : regions) {
|
|
map_intersection_to_region_start.emplace_back(&segs[region.left.vline].intersections[region.left.low], ®ion);
|
|
map_intersection_to_region_end.emplace_back(&segs[region.right.vline].intersections[region.right.low], ®ion);
|
|
}
|
|
auto intersections_lower = [](const MapType &l, const MapType &r){ return l.first < r.first ; };
|
|
auto intersections_equal = [](const MapType &l, const MapType &r){ return l.first == r.first ; };
|
|
std::sort(map_intersection_to_region_start.begin(), map_intersection_to_region_start.end(), intersections_lower);
|
|
std::sort(map_intersection_to_region_end.begin(), map_intersection_to_region_end.end(), intersections_lower);
|
|
|
|
// Scatter links to neighboring regions.
|
|
for (MonotonousRegion ®ion : regions) {
|
|
if (region.left.vline > 0) {
|
|
auto &vline = segs[region.left.vline];
|
|
auto &vline_left = segs[region.left.vline - 1];
|
|
auto[lbegin, lend] = left_overlap(vline.intersections[region.left.low], vline.intersections[region.left.high], vline_left);
|
|
if (lbegin != nullptr) {
|
|
for (;;) {
|
|
MapType key(lbegin, nullptr);
|
|
auto it = std::lower_bound(map_intersection_to_region_end.begin(), map_intersection_to_region_end.end(), key);
|
|
assert(it != map_intersection_to_region_end.end() && it->first == key.first);
|
|
it->second->right_neighbors.emplace_back(®ion);
|
|
SegmentIntersection *lnext = &vertical_run_top(vline_left, *lbegin);
|
|
if (lnext == lend)
|
|
break;
|
|
while (lnext->type != SegmentIntersection::INNER_LOW)
|
|
++ lnext;
|
|
lbegin = lnext;
|
|
}
|
|
}
|
|
}
|
|
if (region.right.vline + 1 < segs.size()) {
|
|
auto &vline = segs[region.right.vline];
|
|
auto &vline_right = segs[region.right.vline + 1];
|
|
auto [rbegin, rend] = right_overlap(vline.intersections[region.right.low], vline.intersections[region.right.high], vline_right);
|
|
if (rbegin != nullptr) {
|
|
for (;;) {
|
|
MapType key(rbegin, nullptr);
|
|
auto it = std::lower_bound(map_intersection_to_region_start.begin(), map_intersection_to_region_start.end(), key);
|
|
assert(it != map_intersection_to_region_start.end() && it->first == key.first);
|
|
it->second->left_neighbors.emplace_back(®ion);
|
|
SegmentIntersection *rnext = &vertical_run_top(vline_right, *rbegin);
|
|
if (rnext == rend)
|
|
break;
|
|
while (rnext->type != SegmentIntersection::INNER_LOW)
|
|
++ rnext;
|
|
rbegin = rnext;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Raad Salman: Algorithms for the Precedence Constrained Generalized Travelling Salesperson Problem
|
|
// https://www.chalmers.se/en/departments/math/research/research-groups/optimization/OptimizationMasterTheses/MScThesis-RaadSalman-final.pdf
|
|
// Algorithm 6.1 Lexicographic Path Preserving 3-opt
|
|
// Optimize path while maintaining the ordering constraints.
|
|
void monotonous_3_opt(std::vector<MonotonousRegionLink> &path, const std::vector<SegmentedIntersectionLine> &segs)
|
|
{
|
|
// When doing the 3-opt path preserving flips, one has to fulfill two constraints:
|
|
//
|
|
// 1) The new path should be shorter than the old path.
|
|
// 2) The precedence constraints shall be satisified on the new path.
|
|
//
|
|
// Branch & bound with KD-tree may be used with the shorter path constraint, but the precedence constraint will have to be recalculated for each
|
|
// shorter path candidate found, which has a quadratic cost for a dense precedence graph. For a sparse precedence graph the precedence
|
|
// constraint verification will be cheaper.
|
|
//
|
|
// On the other side, if the full search space is traversed as in the diploma thesis by Raad Salman (page 24, Algorithm 6.1 Lexicographic Path Preserving 3-opt),
|
|
// then the precedence constraint verification is amortized inside the O(n^3) loop. Now which is better for our task?
|
|
//
|
|
// It is beneficial to also try flipping of the infill zig-zags, for which a prefix sum of both flipped and non-flipped paths over
|
|
// MonotonousRegionLinks may be utilized, however updating the prefix sum has a linear complexity, the same complexity as doing the 3-opt
|
|
// exchange by copying the pieces.
|
|
}
|
|
|
|
// Find a run through monotonous infill blocks using an 'Ant colony" optimization method.
|
|
static std::vector<MonotonousRegionLink> chain_monotonous_regions(
|
|
std::vector<MonotonousRegion> ®ions, const ExPolygonWithOffset &poly_with_offset, const std::vector<SegmentedIntersectionLine> &segs, std::mt19937_64 &rng)
|
|
{
|
|
// Start point of a region (left) given the direction of the initial infill line.
|
|
auto region_start_point = [&segs](const MonotonousRegion ®ion, bool dir) {
|
|
const SegmentedIntersectionLine &vline = segs[region.left.vline];
|
|
const SegmentIntersection &ipt = vline.intersections[dir ? region.left.high : region.left.low];
|
|
return Vec2f(float(vline.pos), float(ipt.pos()));
|
|
};
|
|
// End point of a region (right) given the direction of the initial infill line and whether the monotonous run contains
|
|
// even or odd number of vertical lines.
|
|
auto region_end_point = [&segs](const MonotonousRegion ®ion, bool dir) {
|
|
const SegmentedIntersectionLine &vline = segs[region.right.vline];
|
|
const SegmentIntersection &ipt = vline.intersections[(dir == region.flips) ? region.right.low : region.right.high];
|
|
return Vec2f(float(vline.pos), float(ipt.pos()));
|
|
};
|
|
|
|
// Number of left neighbors (regions that this region depends on, this region cannot be printed before the regions left of it are printed).
|
|
std::vector<int32_t> left_neighbors_unprocessed(regions.size(), 0);
|
|
// Queue of regions, which have their left neighbors already printed.
|
|
std::vector<MonotonousRegion*> queue;
|
|
queue.reserve(regions.size());
|
|
for (MonotonousRegion ®ion : regions)
|
|
if (region.left_neighbors.empty())
|
|
queue.emplace_back(®ion);
|
|
else
|
|
left_neighbors_unprocessed[®ion - regions.data()] = int(region.left_neighbors.size());
|
|
// Make copy of structures that need to be initialized at each ant iteration.
|
|
auto left_neighbors_unprocessed_initial = left_neighbors_unprocessed;
|
|
auto queue_initial = queue;
|
|
|
|
std::vector<MonotonousRegionLink> path, best_path;
|
|
path.reserve(regions.size());
|
|
best_path.reserve(regions.size());
|
|
float best_path_length = std::numeric_limits<float>::max();
|
|
|
|
struct NextCandidate {
|
|
MonotonousRegion *region;
|
|
AntPath *link;
|
|
AntPath *link_flipped;
|
|
float cost;
|
|
bool dir;
|
|
};
|
|
std::vector<NextCandidate> next_candidates;
|
|
|
|
AntPathMatrix path_matrix(regions, poly_with_offset, segs);
|
|
|
|
// How many times to repeat the ant simulation.
|
|
constexpr int num_runs = 10;
|
|
// With how many ants each of the run will be performed?
|
|
constexpr int num_ants = 10;
|
|
// Base (initial) pheromone level.
|
|
constexpr float pheromone_initial_deposit = 0.5f;
|
|
// Evaporation rate of pheromones.
|
|
constexpr float pheromone_evaporation = 0.1f;
|
|
// Probability at which to take the next best path. Otherwise take the the path based on the cost distribution.
|
|
constexpr float probability_take_best = 0.9f;
|
|
// Exponents of the cost function.
|
|
constexpr float pheromone_alpha = 1.f; // pheromone exponent
|
|
constexpr float pheromone_beta = 2.f; // attractiveness weighted towards edge length
|
|
// Cost of traversing a link between two monotonous regions.
|
|
auto path_cost = [pheromone_alpha, pheromone_beta](AntPath &path) {
|
|
return pow(path.pheromone, pheromone_alpha) * pow(path.visibility, pheromone_beta);
|
|
};
|
|
for (int run = 0; run < num_runs; ++ run)
|
|
{
|
|
for (int ant = 0; ant < num_ants; ++ ant)
|
|
{
|
|
// Find a new path following the pheromones deposited by the previous ants.
|
|
path.clear();
|
|
queue = queue_initial;
|
|
left_neighbors_unprocessed = left_neighbors_unprocessed_initial;
|
|
// Pick randomly the first from the queue at random orientation.
|
|
int first_idx = std::uniform_int_distribution<>(0, int(queue.size()) - 1)(rng);
|
|
path.emplace_back(MonotonousRegionLink{ queue[first_idx], rng() > rng.max() / 2 });
|
|
*(queue.begin() + first_idx) = std::move(queue.back());
|
|
queue.pop_back();
|
|
assert(left_neighbors_unprocessed[path.back().region - regions.data()] == 0);
|
|
|
|
while (! queue.empty() || ! path.back().region->right_neighbors.empty()) {
|
|
// Chain.
|
|
MonotonousRegion ®ion = *path.back().region;
|
|
bool dir = path.back().flipped;
|
|
Vec2f end_pt = region_end_point(region, dir);
|
|
// Sort by distance to pt.
|
|
next_candidates.clear();
|
|
next_candidates.reserve(region.right_neighbors.size() * 2);
|
|
for (MonotonousRegion *next : region.right_neighbors) {
|
|
int &unprocessed = left_neighbors_unprocessed[next - regions.data()];
|
|
assert(unprocessed > 0);
|
|
if (-- unprocessed == 0) {
|
|
// Dependencies of the successive blocks are satisfied.
|
|
AntPath &path1 = path_matrix(region, dir, *next, false);
|
|
AntPath &path1_flipped = path_matrix(region, ! dir, *next, true);
|
|
AntPath &path2 = path_matrix(region, dir, *next, true);
|
|
AntPath &path2_flipped = path_matrix(region, ! dir, *next, false);
|
|
next_candidates.emplace_back(NextCandidate{ next, &path1, &path1_flipped, path_cost(path1), false });
|
|
next_candidates.emplace_back(NextCandidate{ next, &path2, &path2_flipped, path_cost(path2), true });
|
|
}
|
|
}
|
|
size_t num_direct_neighbors = next_candidates.size();
|
|
//FIXME add the queue items to the candidates? These are valid moves as well.
|
|
if (num_direct_neighbors == 0) {
|
|
// Add the queue candidates.
|
|
for (MonotonousRegion *next : queue) {
|
|
AntPath &path1 = path_matrix(region, dir, *next, false);
|
|
AntPath &path1_flipped = path_matrix(region, ! dir, *next, true);
|
|
AntPath &path2 = path_matrix(region, dir, *next, true);
|
|
AntPath &path2_flipped = path_matrix(region, ! dir, *next, false);
|
|
next_candidates.emplace_back(NextCandidate{ next, &path1, &path1_flipped, path_cost(path1), false });
|
|
next_candidates.emplace_back(NextCandidate{ next, &path2, &path2_flipped, path_cost(path2), true });
|
|
}
|
|
}
|
|
float dice = float(rng()) / float(rng.max());
|
|
std::vector<NextCandidate>::iterator take_path;
|
|
if (dice < probability_take_best) {
|
|
// Take the lowest cost path.
|
|
take_path = std::min_element(next_candidates.begin(), next_candidates.end(), [](auto &l, auto &r){ return l.cost < r.cost; });
|
|
} else {
|
|
// Take the path based on the cost.
|
|
// Calculate the total cost.
|
|
float total_cost = std::accumulate(next_candidates.begin(), next_candidates.end(), 0.f, [](const float l, const NextCandidate& r) { return l + r.cost; });
|
|
// Take a random path based on the cost.
|
|
float cost_threshold = floor(float(rng()) * total_cost / float(rng.max()));
|
|
take_path = next_candidates.end();
|
|
-- take_path;
|
|
for (auto it = next_candidates.begin(); it < next_candidates.end(); ++ it)
|
|
if (cost_threshold -= it->cost <= 0.) {
|
|
take_path = it;
|
|
break;
|
|
}
|
|
}
|
|
// Move the other right neighbors with satisified constraints to the queue.
|
|
bool direct_neighbor_taken = take_path - next_candidates.begin() < num_direct_neighbors;
|
|
for (std::vector<NextCandidate>::iterator it_next_candidate = next_candidates.begin(); it_next_candidate != next_candidates.begin() + num_direct_neighbors; ++ it_next_candidate)
|
|
if ((queue.empty() || it_next_candidate->region != queue.back()) && it_next_candidate->region != take_path->region)
|
|
queue.emplace_back(it_next_candidate->region);
|
|
if (take_path - next_candidates.begin() >= num_direct_neighbors) {
|
|
// Remove the selected path from the queue.
|
|
auto it = std::find(queue.begin(), queue.end(), take_path->region);
|
|
*it = queue.back();
|
|
queue.pop_back();
|
|
}
|
|
// Extend the path.
|
|
MonotonousRegion *next_region = take_path->region;
|
|
bool next_dir = take_path->dir;
|
|
path.back().next = take_path->link;
|
|
path.back().next_flipped = take_path->link_flipped;
|
|
path.emplace_back(MonotonousRegionLink{ next_region, next_dir });
|
|
// Update pheromones along this link.
|
|
take_path->link->pheromone = (1.f - pheromone_evaporation) * take_path->link->pheromone + pheromone_evaporation * pheromone_initial_deposit;
|
|
}
|
|
|
|
// Perform 3-opt local optimization of the path.
|
|
monotonous_3_opt(path, segs);
|
|
|
|
// Measure path length.
|
|
assert(! path.empty());
|
|
float path_length = std::accumulate(path.begin(), path.end() - 1,
|
|
path.back().region->length(path.back().flipped),
|
|
[&path_matrix](const float l, const MonotonousRegionLink &r) {
|
|
const MonotonousRegionLink &next = *(&r + 1);
|
|
return l + r.region->length(r.flipped) + path_matrix(*r.region, r.flipped, *next.region, next.flipped).length;
|
|
});
|
|
// Save the shortest path.
|
|
if (path_length < best_path_length) {
|
|
best_path_length = path_length;
|
|
std::swap(best_path, path);
|
|
}
|
|
}
|
|
|
|
// Reinforce the path feromones with the best path.
|
|
float total_cost = best_path_length + EPSILON;
|
|
for (size_t i = 0; i + 1 < path.size(); ++ i) {
|
|
MonotonousRegionLink &link = path[i];
|
|
link.next->pheromone = (1.f - pheromone_evaporation) * link.next->pheromone + pheromone_evaporation / total_cost;
|
|
}
|
|
}
|
|
|
|
return best_path;
|
|
}
|
|
|
|
// Traverse path, produce polylines.
|
|
static void polylines_from_paths(const std::vector<MonotonousRegionLink> &path, const ExPolygonWithOffset &poly_with_offset, const std::vector<SegmentedIntersectionLine> &segs, Polylines &polylines_out)
|
|
{
|
|
Polyline *polyline = nullptr;
|
|
auto finish_polyline = [&polyline, &polylines_out]() {
|
|
polyline->remove_duplicate_points();
|
|
// Handle duplicate points and zero length segments.
|
|
assert(!polyline->has_duplicate_points());
|
|
// Handle nearly zero length edges.
|
|
if (polyline->points.size() <= 1 ||
|
|
(polyline->points.size() == 2 &&
|
|
std::abs(polyline->points.front()(0) - polyline->points.back()(0)) < SCALED_EPSILON &&
|
|
std::abs(polyline->points.front()(1) - polyline->points.back()(1)) < SCALED_EPSILON))
|
|
polylines_out.pop_back();
|
|
polyline = nullptr;
|
|
};
|
|
|
|
for (const MonotonousRegionLink &path_segment : path) {
|
|
MonotonousRegion ®ion = *path_segment.region;
|
|
bool dir = path_segment.flipped;
|
|
|
|
// From the initial point (i_vline, i_intersection), follow a path.
|
|
int i_intersection = region.left_intersection_point(dir);
|
|
int i_vline = region.left.vline;
|
|
|
|
if (polyline != nullptr && &path_segment != path.data()) {
|
|
// Connect previous path segment with the new one.
|
|
const MonotonousRegionLink &path_segment_prev = *(&path_segment - 1);
|
|
const MonotonousRegion ®ion_prev = *path_segment_prev.region;
|
|
bool dir_prev = path_segment_prev.flipped;
|
|
int i_vline_prev = region_prev.right.vline;
|
|
const SegmentedIntersectionLine &vline_prev = segs[i_vline_prev];
|
|
int i_intersection_prev = region_prev.right_intersection_point(dir_prev);
|
|
const SegmentIntersection *ip_prev = &vline_prev.intersections[i_intersection_prev];
|
|
bool extended = false;
|
|
if (i_vline_prev + 1 == i_vline) {
|
|
if (ip_prev->right_horizontal() == i_intersection && ip_prev->next_on_contour_quality == SegmentIntersection::LinkQuality::Valid) {
|
|
// Emit a horizontal connection contour.
|
|
emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline_prev, ip_prev->iContour, i_intersection_prev, i_intersection, *polyline, true);
|
|
extended = true;
|
|
}
|
|
}
|
|
if (! extended) {
|
|
// Finish the current vertical line,
|
|
assert(ip_prev->is_inner());
|
|
ip_prev->is_low() ? -- ip_prev : ++ ip_prev;
|
|
assert(ip_prev->is_outer());
|
|
polyline->points.back() = Point(vline_prev.pos, ip_prev->pos());
|
|
finish_polyline();
|
|
}
|
|
}
|
|
|
|
for (;;) {
|
|
const SegmentedIntersectionLine &vline = segs[i_vline];
|
|
const SegmentIntersection *it = &vline.intersections[i_intersection];
|
|
const bool going_up = it->is_low();
|
|
if (polyline == nullptr) {
|
|
polylines_out.emplace_back();
|
|
polyline = &polylines_out.back();
|
|
// Extend the infill line up to the outer contour.
|
|
polyline->points.emplace_back(vline.pos, (it + (going_up ? - 1 : 1))->pos());
|
|
} else
|
|
polyline->points.emplace_back(vline.pos, it->pos());
|
|
|
|
int iright = it->right_horizontal();
|
|
if (going_up) {
|
|
// Consume the complete vertical segment up to the inner contour.
|
|
for (;;) {
|
|
do {
|
|
++ it;
|
|
iright = std::max(iright, it->right_horizontal());
|
|
} while (it->type != SegmentIntersection::INNER_HIGH);
|
|
polyline->points.emplace_back(vline.pos, it->pos());
|
|
int inext = it->vertical_up();
|
|
if (inext == -1)
|
|
break;
|
|
const Polygon &poly = poly_with_offset.contour(it->iContour);
|
|
assert(it->iContour == vline.intersections[inext].iContour);
|
|
emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, it->iContour, it - vline.intersections.data(), inext, *polyline, it->has_left_vertical_up());
|
|
it = vline.intersections.data() + inext;
|
|
}
|
|
} else {
|
|
// Going down.
|
|
assert(it->is_high());
|
|
assert(i_intersection > 0);
|
|
for (;;) {
|
|
do {
|
|
-- it;
|
|
if (int iright_new = it->right_horizontal(); iright_new != -1)
|
|
iright = iright_new;
|
|
} while (it->type != SegmentIntersection::INNER_LOW);
|
|
polyline->points.emplace_back(vline.pos, it->pos());
|
|
int inext = it->vertical_down();
|
|
if (inext == -1)
|
|
break;
|
|
const Polygon &poly = poly_with_offset.contour(it->iContour);
|
|
assert(it->iContour == vline.intersections[inext].iContour);
|
|
emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, it->iContour, it - vline.intersections.data(), inext, *polyline, it->has_right_vertical_down());
|
|
it = vline.intersections.data() + inext;
|
|
}
|
|
}
|
|
|
|
if (i_vline == region.right.vline)
|
|
break;
|
|
|
|
int inext = it->right_horizontal();
|
|
if (inext != -1 && it->next_on_contour_quality == SegmentIntersection::LinkQuality::Valid) {
|
|
// Emit a horizontal connection contour.
|
|
emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, it->iContour, it - vline.intersections.data(), inext, *polyline, true);
|
|
i_intersection = inext;
|
|
} else {
|
|
// Finish the current vertical line,
|
|
going_up ? ++ it : -- it;
|
|
assert(it->is_outer());
|
|
assert(it->is_high() == going_up);
|
|
polyline->points.back() = Point(vline.pos, it->pos());
|
|
finish_polyline();
|
|
if (inext == -1) {
|
|
// Find the end of the next overlapping vertical segment.
|
|
const SegmentedIntersectionLine &vline_right = segs[i_vline + 1];
|
|
const SegmentIntersection *right = going_up ?
|
|
&vertical_run_top(vline_right, vline_right.intersections[iright]) : &vertical_run_bottom(vline_right, vline_right.intersections[iright]);
|
|
i_intersection = int(right - vline_right.intersections.data());
|
|
} else
|
|
i_intersection = inext;
|
|
}
|
|
|
|
++ i_vline;
|
|
}
|
|
}
|
|
|
|
if (polyline != nullptr) {
|
|
// Finish the current vertical line,
|
|
const MonotonousRegion ®ion = *path.back().region;
|
|
const SegmentedIntersectionLine &vline = segs[region.right.vline];
|
|
const SegmentIntersection *ip = &vline.intersections[region.right_intersection_point(path.back().flipped)];
|
|
assert(ip->is_inner());
|
|
ip->is_low() ? -- ip : ++ ip;
|
|
assert(ip->is_outer());
|
|
polyline->points.back() = Point(vline.pos, ip->pos());
|
|
finish_polyline();
|
|
}
|
|
}
|
|
|
|
bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillParams ¶ms, float angleBase, float pattern_shift, Polylines &polylines_out)
|
|
{
|
|
// At the end, only the new polylines will be rotated back.
|
|
size_t n_polylines_out_initial = polylines_out.size();
|
|
|
|
// Shrink the input polygon a bit first to not push the infill lines out of the perimeters.
|
|
// const float INFILL_OVERLAP_OVER_SPACING = 0.3f;
|
|
const float INFILL_OVERLAP_OVER_SPACING = 0.45f;
|
|
assert(INFILL_OVERLAP_OVER_SPACING > 0 && INFILL_OVERLAP_OVER_SPACING < 0.5f);
|
|
|
|
// Rotate polygons so that we can work with vertical lines here
|
|
std::pair<float, Point> rotate_vector = this->_infill_direction(surface);
|
|
rotate_vector.first += angleBase;
|
|
|
|
assert(params.density > 0.0001f && params.density <= 1.f);
|
|
coord_t line_spacing = coord_t(scale_(this->spacing) / params.density);
|
|
|
|
// On the polygons of poly_with_offset, the infill lines will be connected.
|
|
ExPolygonWithOffset poly_with_offset(
|
|
surface->expolygon,
|
|
- rotate_vector.first,
|
|
scale_(this->overlap - (0.5 - INFILL_OVERLAP_OVER_SPACING) * this->spacing),
|
|
scale_(this->overlap - 0.5 * this->spacing));
|
|
if (poly_with_offset.n_contours_inner == 0) {
|
|
// Not a single infill line fits.
|
|
//FIXME maybe one shall trigger the gap fill here?
|
|
return true;
|
|
}
|
|
|
|
BoundingBox bounding_box = poly_with_offset.bounding_box_src();
|
|
|
|
// define flow spacing according to requested density
|
|
if (params.full_infill() && !params.dont_adjust) {
|
|
line_spacing = this->_adjust_solid_spacing(bounding_box.size()(0), line_spacing);
|
|
this->spacing = unscale<double>(line_spacing);
|
|
} else {
|
|
// extend bounding box so that our pattern will be aligned with other layers
|
|
// Transform the reference point to the rotated coordinate system.
|
|
Point refpt = rotate_vector.second.rotated(- rotate_vector.first);
|
|
// _align_to_grid will not work correctly with positive pattern_shift.
|
|
coord_t pattern_shift_scaled = coord_t(scale_(pattern_shift)) % line_spacing;
|
|
refpt(0) -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
|
|
bounding_box.merge(_align_to_grid(
|
|
bounding_box.min,
|
|
Point(line_spacing, line_spacing),
|
|
refpt));
|
|
}
|
|
|
|
// Intersect a set of euqally spaced vertical lines wiht expolygon.
|
|
// n_vlines = ceil(bbox_width / line_spacing)
|
|
size_t n_vlines = (bounding_box.max(0) - bounding_box.min(0) + line_spacing - 1) / line_spacing;
|
|
coord_t x0 = bounding_box.min(0);
|
|
if (params.full_infill())
|
|
x0 += (line_spacing + SCALED_EPSILON) / 2;
|
|
|
|
#ifdef SLIC3R_DEBUG
|
|
static int iRun = 0;
|
|
BoundingBox bbox_svg = poly_with_offset.bounding_box_outer();
|
|
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-%d.svg", iRun), bbox_svg); // , scale_(1.));
|
|
poly_with_offset.export_to_svg(svg);
|
|
{
|
|
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-initial-%d.svg", iRun), bbox_svg); // , scale_(1.));
|
|
poly_with_offset.export_to_svg(svg);
|
|
}
|
|
iRun ++;
|
|
#endif /* SLIC3R_DEBUG */
|
|
|
|
std::vector<SegmentedIntersectionLine> segs = slice_region_by_vertical_lines(poly_with_offset, n_vlines, x0, line_spacing);
|
|
connect_segment_intersections_by_contours(poly_with_offset, segs);
|
|
|
|
#ifdef SLIC3R_DEBUG
|
|
// Paint the segments and finalize the SVG file.
|
|
for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
|
|
SegmentedIntersectionLine &sil = segs[i_seg];
|
|
for (size_t i = 0; i < sil.intersections.size();) {
|
|
size_t j = i + 1;
|
|
for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
|
|
if (i + 1 == j) {
|
|
svg.draw(Line(Point(sil.pos, sil.intersections[i].pos()), Point(sil.pos, sil.intersections[j].pos())), "blue");
|
|
} else {
|
|
svg.draw(Line(Point(sil.pos, sil.intersections[i].pos()), Point(sil.pos, sil.intersections[i+1].pos())), "green");
|
|
svg.draw(Line(Point(sil.pos, sil.intersections[i+1].pos()), Point(sil.pos, sil.intersections[j-1].pos())), (j - i + 1 > 4) ? "yellow" : "magenta");
|
|
svg.draw(Line(Point(sil.pos, sil.intersections[j-1].pos()), Point(sil.pos, sil.intersections[j].pos())), "green");
|
|
}
|
|
i = j + 1;
|
|
}
|
|
}
|
|
svg.Close();
|
|
#endif /* SLIC3R_DEBUG */
|
|
|
|
//FIXME this is a hack to get the monotonous infill rolling. We likely want a smarter switch, likely based on user decison.
|
|
bool monotonous_infill = params.density > 0.99;
|
|
if (monotonous_infill) {
|
|
std::vector<MonotonousRegion> regions = generate_montonous_regions(segs);
|
|
connect_monotonous_regions(regions, segs);
|
|
if (! regions.empty()) {
|
|
std::mt19937_64 rng;
|
|
std::vector<MonotonousRegionLink> path = chain_monotonous_regions(regions, poly_with_offset, segs, rng);
|
|
polylines_from_paths(path, poly_with_offset, segs, polylines_out);
|
|
}
|
|
} else
|
|
traverse_graph_generate_polylines(poly_with_offset, params, this->link_max_length, segs, polylines_out);
|
|
|
|
#ifdef SLIC3R_DEBUG
|
|
{
|
|
{
|
|
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d.svg", iRun), bbox_svg); // , scale_(1.));
|
|
poly_with_offset.export_to_svg(svg);
|
|
for (size_t i = n_polylines_out_initial; i < polylines_out.size(); ++ i)
|
|
svg.draw(polylines_out[i].lines(), "black");
|
|
}
|
|
// Paint a picture per polyline. This makes it easier to discover the order of the polylines and their overlap.
|
|
for (size_t i_polyline = n_polylines_out_initial; i_polyline < polylines_out.size(); ++ i_polyline) {
|
|
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d-%03d.svg", iRun, i_polyline), bbox_svg); // , scale_(1.));
|
|
svg.draw(polylines_out[i_polyline].lines(), "black");
|
|
}
|
|
}
|
|
#endif /* SLIC3R_DEBUG */
|
|
|
|
// paths must be rotated back
|
|
for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_initial; it != polylines_out.end(); ++ it) {
|
|
// No need to translate, the absolute position is irrelevant.
|
|
// it->translate(- rotate_vector.second(0), - rotate_vector.second(1));
|
|
assert(! it->has_duplicate_points());
|
|
it->rotate(rotate_vector.first);
|
|
//FIXME rather simplify the paths to avoid very short edges?
|
|
//assert(! it->has_duplicate_points());
|
|
it->remove_duplicate_points();
|
|
}
|
|
|
|
#ifdef SLIC3R_DEBUG
|
|
// Verify, that there are no duplicate points in the sequence.
|
|
for (Polyline &polyline : polylines_out)
|
|
assert(! polyline.has_duplicate_points());
|
|
#endif /* SLIC3R_DEBUG */
|
|
|
|
return true;
|
|
}
|
|
|
|
Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParams ¶ms)
|
|
{
|
|
Polylines polylines_out;
|
|
if (! fill_surface_by_lines(surface, params, 0.f, 0.f, polylines_out)) {
|
|
printf("FillRectilinear2::fill_surface() failed to fill a region.\n");
|
|
}
|
|
return polylines_out;
|
|
}
|
|
|
|
Polylines FillGrid2::fill_surface(const Surface *surface, const FillParams ¶ms)
|
|
{
|
|
// Each linear fill covers half of the target coverage.
|
|
FillParams params2 = params;
|
|
params2.density *= 0.5f;
|
|
Polylines polylines_out;
|
|
if (! fill_surface_by_lines(surface, params2, 0.f, 0.f, polylines_out) ||
|
|
! fill_surface_by_lines(surface, params2, float(M_PI / 2.), 0.f, polylines_out)) {
|
|
printf("FillGrid2::fill_surface() failed to fill a region.\n");
|
|
}
|
|
return polylines_out;
|
|
}
|
|
|
|
Polylines FillTriangles::fill_surface(const Surface *surface, const FillParams ¶ms)
|
|
{
|
|
// Each linear fill covers 1/3 of the target coverage.
|
|
FillParams params2 = params;
|
|
params2.density *= 0.333333333f;
|
|
FillParams params3 = params2;
|
|
params3.dont_connect = true;
|
|
Polylines polylines_out;
|
|
if (! fill_surface_by_lines(surface, params2, 0.f, 0., polylines_out) ||
|
|
! fill_surface_by_lines(surface, params2, float(M_PI / 3.), 0., polylines_out) ||
|
|
! fill_surface_by_lines(surface, params3, float(2. * M_PI / 3.), 0., polylines_out)) {
|
|
printf("FillTriangles::fill_surface() failed to fill a region.\n");
|
|
}
|
|
return polylines_out;
|
|
}
|
|
|
|
Polylines FillStars::fill_surface(const Surface *surface, const FillParams ¶ms)
|
|
{
|
|
// Each linear fill covers 1/3 of the target coverage.
|
|
FillParams params2 = params;
|
|
params2.density *= 0.333333333f;
|
|
FillParams params3 = params2;
|
|
params3.dont_connect = true;
|
|
Polylines polylines_out;
|
|
if (! fill_surface_by_lines(surface, params2, 0.f, 0., polylines_out) ||
|
|
! fill_surface_by_lines(surface, params2, float(M_PI / 3.), 0., polylines_out) ||
|
|
! fill_surface_by_lines(surface, params3, float(2. * M_PI / 3.), 0.5 * this->spacing / params2.density, polylines_out)) {
|
|
printf("FillStars::fill_surface() failed to fill a region.\n");
|
|
}
|
|
return polylines_out;
|
|
}
|
|
|
|
Polylines FillCubic::fill_surface(const Surface *surface, const FillParams ¶ms)
|
|
{
|
|
// Each linear fill covers 1/3 of the target coverage.
|
|
FillParams params2 = params;
|
|
params2.density *= 0.333333333f;
|
|
FillParams params3 = params2;
|
|
params3.dont_connect = true;
|
|
Polylines polylines_out;
|
|
coordf_t dx = sqrt(0.5) * z;
|
|
if (! fill_surface_by_lines(surface, params2, 0.f, dx, polylines_out) ||
|
|
! fill_surface_by_lines(surface, params2, float(M_PI / 3.), - dx, polylines_out) ||
|
|
// Rotated by PI*2/3 + PI to achieve reverse sloping wall.
|
|
! fill_surface_by_lines(surface, params3, float(M_PI * 2. / 3.), dx, polylines_out)) {
|
|
printf("FillCubic::fill_surface() failed to fill a region.\n");
|
|
}
|
|
return polylines_out;
|
|
}
|
|
|
|
} // namespace Slic3r
|