PrusaSlicer/src/libslic3r/Geometry.cpp
2023-09-01 14:49:07 +02:00

764 lines
26 KiB
C++

///|/ Copyright (c) Prusa Research 2016 - 2023 Vojtěch Bubník @bubnikv, Enrico Turri @enricoturri1966, Lukáš Matěna @lukasmatena, Filip Sykala @Jony01, Tomáš Mészáros @tamasmeszaros
///|/ Copyright (c) Slic3r 2013 - 2016 Alessandro Ranellucci @alranel
///|/
///|/ ported from lib/Slic3r/Geometry.pm:
///|/ Copyright (c) Prusa Research 2017 - 2022 Vojtěch Bubník @bubnikv
///|/ Copyright (c) Slic3r 2011 - 2015 Alessandro Ranellucci @alranel
///|/ Copyright (c) 2013 Jose Luis Perez Diez
///|/ Copyright (c) 2013 Anders Sundman
///|/ Copyright (c) 2013 Jesse Vincent
///|/ Copyright (c) 2012 Mike Sheldrake @mesheldrake
///|/ Copyright (c) 2012 Mark Hindess
///|/
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
///|/
#include "libslic3r.h"
#include "Exception.hpp"
#include "Geometry.hpp"
#include "ClipperUtils.hpp"
#include "ExPolygon.hpp"
#include "Line.hpp"
#include "clipper.hpp"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <list>
#include <map>
#include <numeric>
#include <set>
#include <utility>
#include <stack>
#include <vector>
#include <boost/algorithm/string/classification.hpp>
#include <boost/algorithm/string/split.hpp>
#include <boost/log/trivial.hpp>
#if defined(_MSC_VER) && defined(__clang__)
#define BOOST_NO_CXX17_HDR_STRING_VIEW
#endif
namespace Slic3r { namespace Geometry {
bool directions_parallel(double angle1, double angle2, double max_diff)
{
double diff = fabs(angle1 - angle2);
max_diff += EPSILON;
return diff < max_diff || fabs(diff - PI) < max_diff;
}
bool directions_perpendicular(double angle1, double angle2, double max_diff)
{
double diff = fabs(angle1 - angle2);
max_diff += EPSILON;
return fabs(diff - 0.5 * PI) < max_diff || fabs(diff - 1.5 * PI) < max_diff;
}
template<class T>
bool contains(const std::vector<T> &vector, const Point &point)
{
for (typename std::vector<T>::const_iterator it = vector.begin(); it != vector.end(); ++it) {
if (it->contains(point)) return true;
}
return false;
}
template bool contains(const ExPolygons &vector, const Point &point);
void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval)
{
Polygons simplified_raw;
for (const Polygon &source_polygon : polygons) {
Points simplified = MultiPoint::douglas_peucker(to_polyline(source_polygon).points, tolerance);
if (simplified.size() > 3) {
simplified.pop_back();
simplified_raw.push_back(Polygon{ std::move(simplified) });
}
}
*retval = Slic3r::simplify_polygons(simplified_raw);
}
double linint(double value, double oldmin, double oldmax, double newmin, double newmax)
{
return (value - oldmin) * (newmax - newmin) / (oldmax - oldmin) + newmin;
}
#if 0
// Point with a weight, by which the points are sorted.
// If the points have the same weight, sort them lexicographically by their positions.
struct ArrangeItem {
ArrangeItem() {}
Vec2d pos;
coordf_t weight;
bool operator<(const ArrangeItem &other) const {
return weight < other.weight ||
((weight == other.weight) && (pos(1) < other.pos(1) || (pos(1) == other.pos(1) && pos(0) < other.pos(0))));
}
};
Pointfs arrange(size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box)
{
// Use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm.
const Vec2d cell_size(part_size(0) + gap, part_size(1) + gap);
const BoundingBoxf bed_bbox = (bed_bounding_box != NULL && bed_bounding_box->defined) ?
*bed_bounding_box :
// Bogus bed size, large enough not to trigger the unsufficient bed size error.
BoundingBoxf(
Vec2d(0, 0),
Vec2d(cell_size(0) * num_parts, cell_size(1) * num_parts));
// This is how many cells we have available into which to put parts.
size_t cellw = size_t(floor((bed_bbox.size()(0) + gap) / cell_size(0)));
size_t cellh = size_t(floor((bed_bbox.size()(1) + gap) / cell_size(1)));
if (num_parts > cellw * cellh)
throw Slic3r::InvalidArgument("%zu parts won't fit in your print area!\n", num_parts);
// Get a bounding box of cellw x cellh cells, centered at the center of the bed.
Vec2d cells_size(cellw * cell_size(0) - gap, cellh * cell_size(1) - gap);
Vec2d cells_offset(bed_bbox.center() - 0.5 * cells_size);
BoundingBoxf cells_bb(cells_offset, cells_size + cells_offset);
// List of cells, sorted by distance from center.
std::vector<ArrangeItem> cellsorder(cellw * cellh, ArrangeItem());
for (size_t j = 0; j < cellh; ++ j) {
// Center of the jth row on the bed.
coordf_t cy = linint(j + 0.5, 0., double(cellh), cells_bb.min(1), cells_bb.max(1));
// Offset from the bed center.
coordf_t yd = cells_bb.center()(1) - cy;
for (size_t i = 0; i < cellw; ++ i) {
// Center of the ith column on the bed.
coordf_t cx = linint(i + 0.5, 0., double(cellw), cells_bb.min(0), cells_bb.max(0));
// Offset from the bed center.
coordf_t xd = cells_bb.center()(0) - cx;
// Cell with a distance from the bed center.
ArrangeItem &ci = cellsorder[j * cellw + i];
// Cell center
ci.pos(0) = cx;
ci.pos(1) = cy;
// Square distance of the cell center to the bed center.
ci.weight = xd * xd + yd * yd;
}
}
// Sort the cells lexicographically by their distances to the bed center and left to right / bttom to top.
std::sort(cellsorder.begin(), cellsorder.end());
cellsorder.erase(cellsorder.begin() + num_parts, cellsorder.end());
// Return the (left,top) corners of the cells.
Pointfs positions;
positions.reserve(num_parts);
for (std::vector<ArrangeItem>::const_iterator it = cellsorder.begin(); it != cellsorder.end(); ++ it)
positions.push_back(Vec2d(it->pos(0) - 0.5 * part_size(0), it->pos(1) - 0.5 * part_size(1)));
return positions;
}
#else
class ArrangeItem {
public:
Vec2d pos = Vec2d::Zero();
size_t index_x, index_y;
coordf_t dist;
};
class ArrangeItemIndex {
public:
coordf_t index;
ArrangeItem item;
ArrangeItemIndex(coordf_t _index, ArrangeItem _item) : index(_index), item(_item) {};
};
bool
arrange(size_t total_parts, const Vec2d &part_size, coordf_t dist, const BoundingBoxf* bb, Pointfs &positions)
{
positions.clear();
Vec2d part = part_size;
// use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm
part(0) += dist;
part(1) += dist;
Vec2d area(Vec2d::Zero());
if (bb != NULL && bb->defined) {
area = bb->size();
} else {
// bogus area size, large enough not to trigger the error below
area(0) = part(0) * total_parts;
area(1) = part(1) * total_parts;
}
// this is how many cells we have available into which to put parts
size_t cellw = floor((area(0) + dist) / part(0));
size_t cellh = floor((area(1) + dist) / part(1));
if (total_parts > (cellw * cellh))
return false;
// total space used by cells
Vec2d cells(cellw * part(0), cellh * part(1));
// bounding box of total space used by cells
BoundingBoxf cells_bb;
cells_bb.merge(Vec2d(0,0)); // min
cells_bb.merge(cells); // max
// center bounding box to area
cells_bb.translate(
(area(0) - cells(0)) / 2,
(area(1) - cells(1)) / 2
);
// list of cells, sorted by distance from center
std::vector<ArrangeItemIndex> cellsorder;
// work out distance for all cells, sort into list
for (size_t i = 0; i <= cellw-1; ++i) {
for (size_t j = 0; j <= cellh-1; ++j) {
coordf_t cx = linint(i + 0.5, 0, cellw, cells_bb.min(0), cells_bb.max(0));
coordf_t cy = linint(j + 0.5, 0, cellh, cells_bb.min(1), cells_bb.max(1));
coordf_t xd = fabs((area(0) / 2) - cx);
coordf_t yd = fabs((area(1) / 2) - cy);
ArrangeItem c;
c.pos(0) = cx;
c.pos(1) = cy;
c.index_x = i;
c.index_y = j;
c.dist = xd * xd + yd * yd - fabs((cellw / 2) - (i + 0.5));
// binary insertion sort
{
coordf_t index = c.dist;
size_t low = 0;
size_t high = cellsorder.size();
while (low < high) {
size_t mid = (low + ((high - low) / 2)) | 0;
coordf_t midval = cellsorder[mid].index;
if (midval < index) {
low = mid + 1;
} else if (midval > index) {
high = mid;
} else {
cellsorder.insert(cellsorder.begin() + mid, ArrangeItemIndex(index, c));
goto ENDSORT;
}
}
cellsorder.insert(cellsorder.begin() + low, ArrangeItemIndex(index, c));
}
ENDSORT: ;
}
}
// the extents of cells actually used by objects
coordf_t lx = 0;
coordf_t ty = 0;
coordf_t rx = 0;
coordf_t by = 0;
// now find cells actually used by objects, map out the extents so we can position correctly
for (size_t i = 1; i <= total_parts; ++i) {
ArrangeItemIndex c = cellsorder[i - 1];
coordf_t cx = c.item.index_x;
coordf_t cy = c.item.index_y;
if (i == 1) {
lx = rx = cx;
ty = by = cy;
} else {
if (cx > rx) rx = cx;
if (cx < lx) lx = cx;
if (cy > by) by = cy;
if (cy < ty) ty = cy;
}
}
// now we actually place objects into cells, positioned such that the left and bottom borders are at 0
for (size_t i = 1; i <= total_parts; ++i) {
ArrangeItemIndex c = cellsorder.front();
cellsorder.erase(cellsorder.begin());
coordf_t cx = c.item.index_x - lx;
coordf_t cy = c.item.index_y - ty;
positions.push_back(Vec2d(cx * part(0), cy * part(1)));
}
if (bb != NULL && bb->defined) {
for (Pointfs::iterator p = positions.begin(); p != positions.end(); ++p) {
p->x() += bb->min(0);
p->y() += bb->min(1);
}
}
return true;
}
#endif
// Euclidian distance of two boost::polygon points.
template<typename T>
T dist(const boost::polygon::point_data<T> &p1,const boost::polygon::point_data<T> &p2)
{
T dx = p2(0) - p1(0);
T dy = p2(1) - p1(1);
return sqrt(dx*dx+dy*dy);
}
// Find a foot point of "px" on a segment "seg".
template<typename segment_type, typename point_type>
inline point_type project_point_to_segment(segment_type &seg, point_type &px)
{
typedef typename point_type::coordinate_type T;
const point_type &p0 = low(seg);
const point_type &p1 = high(seg);
const point_type dir(p1(0)-p0(0), p1(1)-p0(1));
const point_type dproj(px(0)-p0(0), px(1)-p0(1));
const T t = (dir(0)*dproj(0) + dir(1)*dproj(1)) / (dir(0)*dir(0) + dir(1)*dir(1));
assert(t >= T(-1e-6) && t <= T(1. + 1e-6));
return point_type(p0(0) + t*dir(0), p0(1) + t*dir(1));
}
void assemble_transform(Transform3d& transform, const Vec3d& translation, const Vec3d& rotation, const Vec3d& scale, const Vec3d& mirror)
{
transform = Transform3d::Identity();
transform.translate(translation);
transform.rotate(Eigen::AngleAxisd(rotation(2), Vec3d::UnitZ()) * Eigen::AngleAxisd(rotation(1), Vec3d::UnitY()) * Eigen::AngleAxisd(rotation(0), Vec3d::UnitX()));
transform.scale(scale.cwiseProduct(mirror));
}
Transform3d assemble_transform(const Vec3d& translation, const Vec3d& rotation, const Vec3d& scale, const Vec3d& mirror)
{
Transform3d transform;
assemble_transform(transform, translation, rotation, scale, mirror);
return transform;
}
void assemble_transform(Transform3d& transform, const Transform3d& translation, const Transform3d& rotation, const Transform3d& scale, const Transform3d& mirror)
{
transform = translation * rotation * scale * mirror;
}
Transform3d assemble_transform(const Transform3d& translation, const Transform3d& rotation, const Transform3d& scale, const Transform3d& mirror)
{
Transform3d transform;
assemble_transform(transform, translation, rotation, scale, mirror);
return transform;
}
void translation_transform(Transform3d& transform, const Vec3d& translation)
{
transform = Transform3d::Identity();
transform.translate(translation);
}
Transform3d translation_transform(const Vec3d& translation)
{
Transform3d transform;
translation_transform(transform, translation);
return transform;
}
void rotation_transform(Transform3d& transform, const Vec3d& rotation)
{
transform = Transform3d::Identity();
transform.rotate(Eigen::AngleAxisd(rotation.z(), Vec3d::UnitZ()) * Eigen::AngleAxisd(rotation.y(), Vec3d::UnitY()) * Eigen::AngleAxisd(rotation.x(), Vec3d::UnitX()));
}
Transform3d rotation_transform(const Vec3d& rotation)
{
Transform3d transform;
rotation_transform(transform, rotation);
return transform;
}
void scale_transform(Transform3d& transform, double scale)
{
return scale_transform(transform, scale * Vec3d::Ones());
}
void scale_transform(Transform3d& transform, const Vec3d& scale)
{
transform = Transform3d::Identity();
transform.scale(scale);
}
Transform3d scale_transform(double scale)
{
return scale_transform(scale * Vec3d::Ones());
}
Transform3d scale_transform(const Vec3d& scale)
{
Transform3d transform;
scale_transform(transform, scale);
return transform;
}
Vec3d extract_rotation(const Eigen::Matrix<double, 3, 3, Eigen::DontAlign>& rotation_matrix)
{
// The extracted "rotation" is a triplet of numbers such that Geometry::rotation_transform
// returns the original transform. Because of the chosen order of rotations, the triplet
// is not equivalent to Euler angles in the usual sense.
Vec3d angles = rotation_matrix.eulerAngles(2,1,0);
std::swap(angles(0), angles(2));
return angles;
}
Vec3d extract_rotation(const Transform3d& transform)
{
// use only the non-translational part of the transform
Eigen::Matrix<double, 3, 3, Eigen::DontAlign> m = transform.matrix().block(0, 0, 3, 3);
// remove scale
m.col(0).normalize();
m.col(1).normalize();
m.col(2).normalize();
return extract_rotation(m);
}
Transform3d Transformation::get_offset_matrix() const
{
return translation_transform(get_offset());
}
static Transform3d extract_rotation_matrix(const Transform3d& trafo)
{
Matrix3d rotation;
Matrix3d scale;
trafo.computeRotationScaling(&rotation, &scale);
return Transform3d(rotation);
}
static Transform3d extract_scale(const Transform3d& trafo)
{
Matrix3d rotation;
Matrix3d scale;
trafo.computeRotationScaling(&rotation, &scale);
return Transform3d(scale);
}
static std::pair<Transform3d, Transform3d> extract_rotation_scale(const Transform3d& trafo)
{
Matrix3d rotation;
Matrix3d scale;
trafo.computeRotationScaling(&rotation, &scale);
return { Transform3d(rotation), Transform3d(scale) };
}
static bool contains_skew(const Transform3d& trafo)
{
Matrix3d rotation;
Matrix3d scale;
trafo.computeRotationScaling(&rotation, &scale);
if (scale.isDiagonal())
return false;
if (scale.determinant() >= 0.0)
return true;
// the matrix contains mirror
const Matrix3d ratio = scale.cwiseQuotient(trafo.matrix().block<3,3>(0,0));
auto check_skew = [&ratio](int i, int j, bool& skew) {
if (!std::isnan(ratio(i, j)) && !std::isnan(ratio(j, i)))
skew |= std::abs(ratio(i, j) * ratio(j, i) - 1.0) > EPSILON;
};
bool has_skew = false;
check_skew(0, 1, has_skew);
check_skew(0, 2, has_skew);
check_skew(1, 2, has_skew);
return has_skew;
}
Vec3d Transformation::get_rotation() const
{
return extract_rotation(extract_rotation_matrix(m_matrix));
}
Transform3d Transformation::get_rotation_matrix() const
{
return extract_rotation_matrix(m_matrix);
}
void Transformation::set_rotation(const Vec3d& rotation)
{
const Vec3d offset = get_offset();
m_matrix = rotation_transform(rotation) * extract_scale(m_matrix);
m_matrix.translation() = offset;
}
void Transformation::set_rotation(Axis axis, double rotation)
{
rotation = angle_to_0_2PI(rotation);
if (is_approx(std::abs(rotation), 2.0 * double(PI)))
rotation = 0.0;
auto [curr_rotation, scale] = extract_rotation_scale(m_matrix);
Vec3d angles = extract_rotation(curr_rotation);
angles[axis] = rotation;
const Vec3d offset = get_offset();
m_matrix = rotation_transform(angles) * scale;
m_matrix.translation() = offset;
}
Vec3d Transformation::get_scaling_factor() const
{
const Transform3d scale = extract_scale(m_matrix);
return { std::abs(scale(0, 0)), std::abs(scale(1, 1)), std::abs(scale(2, 2)) };
}
Transform3d Transformation::get_scaling_factor_matrix() const
{
Transform3d scale = extract_scale(m_matrix);
scale(0, 0) = std::abs(scale(0, 0));
scale(1, 1) = std::abs(scale(1, 1));
scale(2, 2) = std::abs(scale(2, 2));
return scale;
}
void Transformation::set_scaling_factor(const Vec3d& scaling_factor)
{
assert(scaling_factor.x() > 0.0 && scaling_factor.y() > 0.0 && scaling_factor.z() > 0.0);
const Vec3d offset = get_offset();
m_matrix = extract_rotation_matrix(m_matrix) * scale_transform(scaling_factor);
m_matrix.translation() = offset;
}
void Transformation::set_scaling_factor(Axis axis, double scaling_factor)
{
assert(scaling_factor > 0.0);
auto [rotation, scale] = extract_rotation_scale(m_matrix);
scale(axis, axis) = scaling_factor;
const Vec3d offset = get_offset();
m_matrix = rotation * scale;
m_matrix.translation() = offset;
}
Vec3d Transformation::get_mirror() const
{
const Transform3d scale = extract_scale(m_matrix);
return { scale(0, 0) / std::abs(scale(0, 0)), scale(1, 1) / std::abs(scale(1, 1)), scale(2, 2) / std::abs(scale(2, 2)) };
}
Transform3d Transformation::get_mirror_matrix() const
{
Transform3d scale = extract_scale(m_matrix);
scale(0, 0) = scale(0, 0) / std::abs(scale(0, 0));
scale(1, 1) = scale(1, 1) / std::abs(scale(1, 1));
scale(2, 2) = scale(2, 2) / std::abs(scale(2, 2));
return scale;
}
void Transformation::set_mirror(const Vec3d& mirror)
{
Vec3d copy(mirror);
const Vec3d abs_mirror = copy.cwiseAbs();
for (int i = 0; i < 3; ++i) {
if (abs_mirror(i) == 0.0)
copy(i) = 1.0;
else if (abs_mirror(i) != 1.0)
copy(i) /= abs_mirror(i);
}
auto [rotation, scale] = extract_rotation_scale(m_matrix);
const Vec3d curr_scales = { scale(0, 0), scale(1, 1), scale(2, 2) };
const Vec3d signs = curr_scales.cwiseProduct(copy);
if (signs[0] < 0.0) scale(0, 0) = -scale(0, 0);
if (signs[1] < 0.0) scale(1, 1) = -scale(1, 1);
if (signs[2] < 0.0) scale(2, 2) = -scale(2, 2);
const Vec3d offset = get_offset();
m_matrix = rotation * scale;
m_matrix.translation() = offset;
}
void Transformation::set_mirror(Axis axis, double mirror)
{
double abs_mirror = std::abs(mirror);
if (abs_mirror == 0.0)
mirror = 1.0;
else if (abs_mirror != 1.0)
mirror /= abs_mirror;
auto [rotation, scale] = extract_rotation_scale(m_matrix);
const double curr_scale = scale(axis, axis);
const double sign = curr_scale * mirror;
if (sign < 0.0) scale(axis, axis) = -scale(axis, axis);
const Vec3d offset = get_offset();
m_matrix = rotation * scale;
m_matrix.translation() = offset;
}
bool Transformation::has_skew() const
{
return contains_skew(m_matrix);
}
void Transformation::reset()
{
m_matrix = Transform3d::Identity();
}
void Transformation::reset_rotation()
{
const Geometry::TransformationSVD svd(*this);
m_matrix = get_offset_matrix() * Transform3d(svd.v * svd.s * svd.v.transpose()) * svd.mirror_matrix();
}
void Transformation::reset_scaling_factor()
{
const Geometry::TransformationSVD svd(*this);
m_matrix = get_offset_matrix() * Transform3d(svd.u) * Transform3d(svd.v.transpose()) * svd.mirror_matrix();
}
void Transformation::reset_skew()
{
auto new_scale_factor = [](const Matrix3d& s) {
return pow(s(0, 0) * s(1, 1) * s(2, 2), 1. / 3.); // scale average
};
const Geometry::TransformationSVD svd(*this);
m_matrix = get_offset_matrix() * Transform3d(svd.u) * scale_transform(new_scale_factor(svd.s)) * Transform3d(svd.v.transpose()) * svd.mirror_matrix();
}
Transform3d Transformation::get_matrix_no_offset() const
{
Transformation copy(*this);
copy.reset_offset();
return copy.get_matrix();
}
Transform3d Transformation::get_matrix_no_scaling_factor() const
{
Transformation copy(*this);
copy.reset_scaling_factor();
return copy.get_matrix();
}
Transformation Transformation::operator * (const Transformation& other) const
{
return Transformation(get_matrix() * other.get_matrix());
}
TransformationSVD::TransformationSVD(const Transform3d& trafo)
{
const auto &m0 = trafo.matrix().block<3, 3>(0, 0);
mirror = m0.determinant() < 0.0;
Matrix3d m;
if (mirror)
m = m0 * Eigen::DiagonalMatrix<double, 3, 3>(-1.0, 1.0, 1.0);
else
m = m0;
const Eigen::JacobiSVD<Matrix3d> svd(m, Eigen::ComputeFullU | Eigen::ComputeFullV);
u = svd.matrixU();
v = svd.matrixV();
s = svd.singularValues().asDiagonal();
scale = !s.isApprox(Matrix3d::Identity());
anisotropic_scale = ! is_approx(s(0, 0), s(1, 1)) || ! is_approx(s(1, 1), s(2, 2));
rotation = !v.isApprox(u);
if (anisotropic_scale) {
rotation_90_degrees = true;
for (int i = 0; i < 3; ++i) {
const Vec3d row = v.row(i).cwiseAbs();
const size_t num_zeros = is_approx(row[0], 0.) + is_approx(row[1], 0.) + is_approx(row[2], 0.);
const size_t num_ones = is_approx(row[0], 1.) + is_approx(row[1], 1.) + is_approx(row[2], 1.);
if (num_zeros != 2 || num_ones != 1) {
rotation_90_degrees = false;
break;
}
}
// Detect skew by brute force: check if the axes are still orthogonal after transformation
const Matrix3d trafo_linear = trafo.linear();
const std::array<Vec3d, 3> axes = { Vec3d::UnitX(), Vec3d::UnitY(), Vec3d::UnitZ() };
std::array<Vec3d, 3> transformed_axes;
for (int i = 0; i < 3; ++i) {
transformed_axes[i] = trafo_linear * axes[i];
}
skew = std::abs(transformed_axes[0].dot(transformed_axes[1])) > EPSILON ||
std::abs(transformed_axes[1].dot(transformed_axes[2])) > EPSILON ||
std::abs(transformed_axes[2].dot(transformed_axes[0])) > EPSILON;
// This following old code does not work under all conditions. The v matrix can become non diagonal (see SPE-1492)
// skew = ! rotation_90_degrees;
} else
skew = false;
}
// For parsing a transformation matrix from 3MF / AMF.
Transform3d transform3d_from_string(const std::string& transform_str)
{
assert(is_decimal_separator_point()); // for atof
Transform3d transform = Transform3d::Identity();
if (!transform_str.empty()) {
std::vector<std::string> mat_elements_str;
boost::split(mat_elements_str, transform_str, boost::is_any_of(" "), boost::token_compress_on);
const unsigned int size = (unsigned int)mat_elements_str.size();
if (size == 16) {
unsigned int i = 0;
for (unsigned int r = 0; r < 4; ++r) {
for (unsigned int c = 0; c < 4; ++c) {
transform(r, c) = ::atof(mat_elements_str[i++].c_str());
}
}
}
}
return transform;
}
Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
{
return
// From the current coordinate system to world.
Eigen::AngleAxisd(rot_xyz_to.z(), Vec3d::UnitZ()) * Eigen::AngleAxisd(rot_xyz_to.y(), Vec3d::UnitY()) * Eigen::AngleAxisd(rot_xyz_to.x(), Vec3d::UnitX()) *
// From world to the initial coordinate system.
Eigen::AngleAxisd(-rot_xyz_from.x(), Vec3d::UnitX()) * Eigen::AngleAxisd(-rot_xyz_from.y(), Vec3d::UnitY()) * Eigen::AngleAxisd(-rot_xyz_from.z(), Vec3d::UnitZ());
}
// This should only be called if it is known, that the two rotations only differ in rotation around the Z axis.
double rotation_diff_z(const Transform3d &trafo_from, const Transform3d &trafo_to)
{
auto m = trafo_to.linear() * trafo_from.linear().inverse();
assert(std::abs(m.determinant() - 1) < EPSILON);
Vec3d vx = m * Vec3d(1., 0., 0);
// Verify that the linear part of rotation from trafo_from to trafo_to rotates around Z and is unity.
assert(std::abs(std::hypot(vx.x(), vx.y()) - 1.) < 1e-5);
assert(std::abs(vx.z()) < 1e-5);
return atan2(vx.y(), vx.x());
}
bool trafos_differ_in_rotation_by_z_and_mirroring_by_xy_only(const Transform3d &t1, const Transform3d &t2)
{
if (std::abs(t1.translation().z() - t2.translation().z()) > EPSILON)
// One of the object is higher than the other above the build plate (or below the build plate).
return false;
Matrix3d m1 = t1.matrix().block<3, 3>(0, 0);
Matrix3d m2 = t2.matrix().block<3, 3>(0, 0);
Matrix3d m = m2.inverse() * m1;
Vec3d z = m.block<3, 1>(0, 2);
if (std::abs(z.x()) > EPSILON || std::abs(z.y()) > EPSILON || std::abs(z.z() - 1.) > EPSILON)
// Z direction or length changed.
return false;
// Z still points in the same direction and it has the same length.
Vec3d x = m.block<3, 1>(0, 0);
Vec3d y = m.block<3, 1>(0, 1);
if (std::abs(x.z()) > EPSILON || std::abs(y.z()) > EPSILON)
return false;
double lx2 = x.squaredNorm();
double ly2 = y.squaredNorm();
if (lx2 - 1. > EPSILON * EPSILON || ly2 - 1. > EPSILON * EPSILON)
return false;
// Verify whether the vectors x, y are still perpendicular.
double d = x.dot(y);
return std::abs(d * d) < EPSILON * lx2 * ly2;
}
}} // namespace Slic3r::Geometry