mirror of
https://git.mirrors.martin98.com/https://github.com/prusa3d/PrusaSlicer.git
synced 2025-07-28 22:32:00 +08:00
764 lines
26 KiB
C++
764 lines
26 KiB
C++
///|/ Copyright (c) Prusa Research 2016 - 2023 Vojtěch Bubník @bubnikv, Enrico Turri @enricoturri1966, Lukáš Matěna @lukasmatena, Filip Sykala @Jony01, Tomáš Mészáros @tamasmeszaros
|
|
///|/ Copyright (c) Slic3r 2013 - 2016 Alessandro Ranellucci @alranel
|
|
///|/
|
|
///|/ ported from lib/Slic3r/Geometry.pm:
|
|
///|/ Copyright (c) Prusa Research 2017 - 2022 Vojtěch Bubník @bubnikv
|
|
///|/ Copyright (c) Slic3r 2011 - 2015 Alessandro Ranellucci @alranel
|
|
///|/ Copyright (c) 2013 Jose Luis Perez Diez
|
|
///|/ Copyright (c) 2013 Anders Sundman
|
|
///|/ Copyright (c) 2013 Jesse Vincent
|
|
///|/ Copyright (c) 2012 Mike Sheldrake @mesheldrake
|
|
///|/ Copyright (c) 2012 Mark Hindess
|
|
///|/
|
|
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
|
|
///|/
|
|
#include "libslic3r.h"
|
|
#include "Exception.hpp"
|
|
#include "Geometry.hpp"
|
|
#include "ClipperUtils.hpp"
|
|
#include "ExPolygon.hpp"
|
|
#include "Line.hpp"
|
|
#include "clipper.hpp"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <list>
|
|
#include <map>
|
|
#include <numeric>
|
|
#include <set>
|
|
#include <utility>
|
|
#include <stack>
|
|
#include <vector>
|
|
|
|
#include <boost/algorithm/string/classification.hpp>
|
|
#include <boost/algorithm/string/split.hpp>
|
|
#include <boost/log/trivial.hpp>
|
|
|
|
#if defined(_MSC_VER) && defined(__clang__)
|
|
#define BOOST_NO_CXX17_HDR_STRING_VIEW
|
|
#endif
|
|
|
|
namespace Slic3r { namespace Geometry {
|
|
|
|
bool directions_parallel(double angle1, double angle2, double max_diff)
|
|
{
|
|
double diff = fabs(angle1 - angle2);
|
|
max_diff += EPSILON;
|
|
return diff < max_diff || fabs(diff - PI) < max_diff;
|
|
}
|
|
|
|
bool directions_perpendicular(double angle1, double angle2, double max_diff)
|
|
{
|
|
double diff = fabs(angle1 - angle2);
|
|
max_diff += EPSILON;
|
|
return fabs(diff - 0.5 * PI) < max_diff || fabs(diff - 1.5 * PI) < max_diff;
|
|
}
|
|
|
|
template<class T>
|
|
bool contains(const std::vector<T> &vector, const Point &point)
|
|
{
|
|
for (typename std::vector<T>::const_iterator it = vector.begin(); it != vector.end(); ++it) {
|
|
if (it->contains(point)) return true;
|
|
}
|
|
return false;
|
|
}
|
|
template bool contains(const ExPolygons &vector, const Point &point);
|
|
|
|
void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval)
|
|
{
|
|
Polygons simplified_raw;
|
|
for (const Polygon &source_polygon : polygons) {
|
|
Points simplified = MultiPoint::douglas_peucker(to_polyline(source_polygon).points, tolerance);
|
|
if (simplified.size() > 3) {
|
|
simplified.pop_back();
|
|
simplified_raw.push_back(Polygon{ std::move(simplified) });
|
|
}
|
|
}
|
|
*retval = Slic3r::simplify_polygons(simplified_raw);
|
|
}
|
|
|
|
double linint(double value, double oldmin, double oldmax, double newmin, double newmax)
|
|
{
|
|
return (value - oldmin) * (newmax - newmin) / (oldmax - oldmin) + newmin;
|
|
}
|
|
|
|
#if 0
|
|
// Point with a weight, by which the points are sorted.
|
|
// If the points have the same weight, sort them lexicographically by their positions.
|
|
struct ArrangeItem {
|
|
ArrangeItem() {}
|
|
Vec2d pos;
|
|
coordf_t weight;
|
|
bool operator<(const ArrangeItem &other) const {
|
|
return weight < other.weight ||
|
|
((weight == other.weight) && (pos(1) < other.pos(1) || (pos(1) == other.pos(1) && pos(0) < other.pos(0))));
|
|
}
|
|
};
|
|
|
|
Pointfs arrange(size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box)
|
|
{
|
|
// Use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm.
|
|
const Vec2d cell_size(part_size(0) + gap, part_size(1) + gap);
|
|
|
|
const BoundingBoxf bed_bbox = (bed_bounding_box != NULL && bed_bounding_box->defined) ?
|
|
*bed_bounding_box :
|
|
// Bogus bed size, large enough not to trigger the unsufficient bed size error.
|
|
BoundingBoxf(
|
|
Vec2d(0, 0),
|
|
Vec2d(cell_size(0) * num_parts, cell_size(1) * num_parts));
|
|
|
|
// This is how many cells we have available into which to put parts.
|
|
size_t cellw = size_t(floor((bed_bbox.size()(0) + gap) / cell_size(0)));
|
|
size_t cellh = size_t(floor((bed_bbox.size()(1) + gap) / cell_size(1)));
|
|
if (num_parts > cellw * cellh)
|
|
throw Slic3r::InvalidArgument("%zu parts won't fit in your print area!\n", num_parts);
|
|
|
|
// Get a bounding box of cellw x cellh cells, centered at the center of the bed.
|
|
Vec2d cells_size(cellw * cell_size(0) - gap, cellh * cell_size(1) - gap);
|
|
Vec2d cells_offset(bed_bbox.center() - 0.5 * cells_size);
|
|
BoundingBoxf cells_bb(cells_offset, cells_size + cells_offset);
|
|
|
|
// List of cells, sorted by distance from center.
|
|
std::vector<ArrangeItem> cellsorder(cellw * cellh, ArrangeItem());
|
|
for (size_t j = 0; j < cellh; ++ j) {
|
|
// Center of the jth row on the bed.
|
|
coordf_t cy = linint(j + 0.5, 0., double(cellh), cells_bb.min(1), cells_bb.max(1));
|
|
// Offset from the bed center.
|
|
coordf_t yd = cells_bb.center()(1) - cy;
|
|
for (size_t i = 0; i < cellw; ++ i) {
|
|
// Center of the ith column on the bed.
|
|
coordf_t cx = linint(i + 0.5, 0., double(cellw), cells_bb.min(0), cells_bb.max(0));
|
|
// Offset from the bed center.
|
|
coordf_t xd = cells_bb.center()(0) - cx;
|
|
// Cell with a distance from the bed center.
|
|
ArrangeItem &ci = cellsorder[j * cellw + i];
|
|
// Cell center
|
|
ci.pos(0) = cx;
|
|
ci.pos(1) = cy;
|
|
// Square distance of the cell center to the bed center.
|
|
ci.weight = xd * xd + yd * yd;
|
|
}
|
|
}
|
|
// Sort the cells lexicographically by their distances to the bed center and left to right / bttom to top.
|
|
std::sort(cellsorder.begin(), cellsorder.end());
|
|
cellsorder.erase(cellsorder.begin() + num_parts, cellsorder.end());
|
|
|
|
// Return the (left,top) corners of the cells.
|
|
Pointfs positions;
|
|
positions.reserve(num_parts);
|
|
for (std::vector<ArrangeItem>::const_iterator it = cellsorder.begin(); it != cellsorder.end(); ++ it)
|
|
positions.push_back(Vec2d(it->pos(0) - 0.5 * part_size(0), it->pos(1) - 0.5 * part_size(1)));
|
|
return positions;
|
|
}
|
|
#else
|
|
class ArrangeItem {
|
|
public:
|
|
Vec2d pos = Vec2d::Zero();
|
|
size_t index_x, index_y;
|
|
coordf_t dist;
|
|
};
|
|
class ArrangeItemIndex {
|
|
public:
|
|
coordf_t index;
|
|
ArrangeItem item;
|
|
ArrangeItemIndex(coordf_t _index, ArrangeItem _item) : index(_index), item(_item) {};
|
|
};
|
|
|
|
bool
|
|
arrange(size_t total_parts, const Vec2d &part_size, coordf_t dist, const BoundingBoxf* bb, Pointfs &positions)
|
|
{
|
|
positions.clear();
|
|
|
|
Vec2d part = part_size;
|
|
|
|
// use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm
|
|
part(0) += dist;
|
|
part(1) += dist;
|
|
|
|
Vec2d area(Vec2d::Zero());
|
|
if (bb != NULL && bb->defined) {
|
|
area = bb->size();
|
|
} else {
|
|
// bogus area size, large enough not to trigger the error below
|
|
area(0) = part(0) * total_parts;
|
|
area(1) = part(1) * total_parts;
|
|
}
|
|
|
|
// this is how many cells we have available into which to put parts
|
|
size_t cellw = floor((area(0) + dist) / part(0));
|
|
size_t cellh = floor((area(1) + dist) / part(1));
|
|
if (total_parts > (cellw * cellh))
|
|
return false;
|
|
|
|
// total space used by cells
|
|
Vec2d cells(cellw * part(0), cellh * part(1));
|
|
|
|
// bounding box of total space used by cells
|
|
BoundingBoxf cells_bb;
|
|
cells_bb.merge(Vec2d(0,0)); // min
|
|
cells_bb.merge(cells); // max
|
|
|
|
// center bounding box to area
|
|
cells_bb.translate(
|
|
(area(0) - cells(0)) / 2,
|
|
(area(1) - cells(1)) / 2
|
|
);
|
|
|
|
// list of cells, sorted by distance from center
|
|
std::vector<ArrangeItemIndex> cellsorder;
|
|
|
|
// work out distance for all cells, sort into list
|
|
for (size_t i = 0; i <= cellw-1; ++i) {
|
|
for (size_t j = 0; j <= cellh-1; ++j) {
|
|
coordf_t cx = linint(i + 0.5, 0, cellw, cells_bb.min(0), cells_bb.max(0));
|
|
coordf_t cy = linint(j + 0.5, 0, cellh, cells_bb.min(1), cells_bb.max(1));
|
|
|
|
coordf_t xd = fabs((area(0) / 2) - cx);
|
|
coordf_t yd = fabs((area(1) / 2) - cy);
|
|
|
|
ArrangeItem c;
|
|
c.pos(0) = cx;
|
|
c.pos(1) = cy;
|
|
c.index_x = i;
|
|
c.index_y = j;
|
|
c.dist = xd * xd + yd * yd - fabs((cellw / 2) - (i + 0.5));
|
|
|
|
// binary insertion sort
|
|
{
|
|
coordf_t index = c.dist;
|
|
size_t low = 0;
|
|
size_t high = cellsorder.size();
|
|
while (low < high) {
|
|
size_t mid = (low + ((high - low) / 2)) | 0;
|
|
coordf_t midval = cellsorder[mid].index;
|
|
|
|
if (midval < index) {
|
|
low = mid + 1;
|
|
} else if (midval > index) {
|
|
high = mid;
|
|
} else {
|
|
cellsorder.insert(cellsorder.begin() + mid, ArrangeItemIndex(index, c));
|
|
goto ENDSORT;
|
|
}
|
|
}
|
|
cellsorder.insert(cellsorder.begin() + low, ArrangeItemIndex(index, c));
|
|
}
|
|
ENDSORT: ;
|
|
}
|
|
}
|
|
|
|
// the extents of cells actually used by objects
|
|
coordf_t lx = 0;
|
|
coordf_t ty = 0;
|
|
coordf_t rx = 0;
|
|
coordf_t by = 0;
|
|
|
|
// now find cells actually used by objects, map out the extents so we can position correctly
|
|
for (size_t i = 1; i <= total_parts; ++i) {
|
|
ArrangeItemIndex c = cellsorder[i - 1];
|
|
coordf_t cx = c.item.index_x;
|
|
coordf_t cy = c.item.index_y;
|
|
if (i == 1) {
|
|
lx = rx = cx;
|
|
ty = by = cy;
|
|
} else {
|
|
if (cx > rx) rx = cx;
|
|
if (cx < lx) lx = cx;
|
|
if (cy > by) by = cy;
|
|
if (cy < ty) ty = cy;
|
|
}
|
|
}
|
|
// now we actually place objects into cells, positioned such that the left and bottom borders are at 0
|
|
for (size_t i = 1; i <= total_parts; ++i) {
|
|
ArrangeItemIndex c = cellsorder.front();
|
|
cellsorder.erase(cellsorder.begin());
|
|
coordf_t cx = c.item.index_x - lx;
|
|
coordf_t cy = c.item.index_y - ty;
|
|
|
|
positions.push_back(Vec2d(cx * part(0), cy * part(1)));
|
|
}
|
|
|
|
if (bb != NULL && bb->defined) {
|
|
for (Pointfs::iterator p = positions.begin(); p != positions.end(); ++p) {
|
|
p->x() += bb->min(0);
|
|
p->y() += bb->min(1);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
// Euclidian distance of two boost::polygon points.
|
|
template<typename T>
|
|
T dist(const boost::polygon::point_data<T> &p1,const boost::polygon::point_data<T> &p2)
|
|
{
|
|
T dx = p2(0) - p1(0);
|
|
T dy = p2(1) - p1(1);
|
|
return sqrt(dx*dx+dy*dy);
|
|
}
|
|
|
|
// Find a foot point of "px" on a segment "seg".
|
|
template<typename segment_type, typename point_type>
|
|
inline point_type project_point_to_segment(segment_type &seg, point_type &px)
|
|
{
|
|
typedef typename point_type::coordinate_type T;
|
|
const point_type &p0 = low(seg);
|
|
const point_type &p1 = high(seg);
|
|
const point_type dir(p1(0)-p0(0), p1(1)-p0(1));
|
|
const point_type dproj(px(0)-p0(0), px(1)-p0(1));
|
|
const T t = (dir(0)*dproj(0) + dir(1)*dproj(1)) / (dir(0)*dir(0) + dir(1)*dir(1));
|
|
assert(t >= T(-1e-6) && t <= T(1. + 1e-6));
|
|
return point_type(p0(0) + t*dir(0), p0(1) + t*dir(1));
|
|
}
|
|
|
|
void assemble_transform(Transform3d& transform, const Vec3d& translation, const Vec3d& rotation, const Vec3d& scale, const Vec3d& mirror)
|
|
{
|
|
transform = Transform3d::Identity();
|
|
transform.translate(translation);
|
|
transform.rotate(Eigen::AngleAxisd(rotation(2), Vec3d::UnitZ()) * Eigen::AngleAxisd(rotation(1), Vec3d::UnitY()) * Eigen::AngleAxisd(rotation(0), Vec3d::UnitX()));
|
|
transform.scale(scale.cwiseProduct(mirror));
|
|
}
|
|
|
|
Transform3d assemble_transform(const Vec3d& translation, const Vec3d& rotation, const Vec3d& scale, const Vec3d& mirror)
|
|
{
|
|
Transform3d transform;
|
|
assemble_transform(transform, translation, rotation, scale, mirror);
|
|
return transform;
|
|
}
|
|
|
|
void assemble_transform(Transform3d& transform, const Transform3d& translation, const Transform3d& rotation, const Transform3d& scale, const Transform3d& mirror)
|
|
{
|
|
transform = translation * rotation * scale * mirror;
|
|
}
|
|
|
|
Transform3d assemble_transform(const Transform3d& translation, const Transform3d& rotation, const Transform3d& scale, const Transform3d& mirror)
|
|
{
|
|
Transform3d transform;
|
|
assemble_transform(transform, translation, rotation, scale, mirror);
|
|
return transform;
|
|
}
|
|
|
|
void translation_transform(Transform3d& transform, const Vec3d& translation)
|
|
{
|
|
transform = Transform3d::Identity();
|
|
transform.translate(translation);
|
|
}
|
|
|
|
Transform3d translation_transform(const Vec3d& translation)
|
|
{
|
|
Transform3d transform;
|
|
translation_transform(transform, translation);
|
|
return transform;
|
|
}
|
|
|
|
void rotation_transform(Transform3d& transform, const Vec3d& rotation)
|
|
{
|
|
transform = Transform3d::Identity();
|
|
transform.rotate(Eigen::AngleAxisd(rotation.z(), Vec3d::UnitZ()) * Eigen::AngleAxisd(rotation.y(), Vec3d::UnitY()) * Eigen::AngleAxisd(rotation.x(), Vec3d::UnitX()));
|
|
}
|
|
|
|
Transform3d rotation_transform(const Vec3d& rotation)
|
|
{
|
|
Transform3d transform;
|
|
rotation_transform(transform, rotation);
|
|
return transform;
|
|
}
|
|
|
|
void scale_transform(Transform3d& transform, double scale)
|
|
{
|
|
return scale_transform(transform, scale * Vec3d::Ones());
|
|
}
|
|
|
|
void scale_transform(Transform3d& transform, const Vec3d& scale)
|
|
{
|
|
transform = Transform3d::Identity();
|
|
transform.scale(scale);
|
|
}
|
|
|
|
Transform3d scale_transform(double scale)
|
|
{
|
|
return scale_transform(scale * Vec3d::Ones());
|
|
}
|
|
|
|
Transform3d scale_transform(const Vec3d& scale)
|
|
{
|
|
Transform3d transform;
|
|
scale_transform(transform, scale);
|
|
return transform;
|
|
}
|
|
|
|
Vec3d extract_rotation(const Eigen::Matrix<double, 3, 3, Eigen::DontAlign>& rotation_matrix)
|
|
{
|
|
// The extracted "rotation" is a triplet of numbers such that Geometry::rotation_transform
|
|
// returns the original transform. Because of the chosen order of rotations, the triplet
|
|
// is not equivalent to Euler angles in the usual sense.
|
|
Vec3d angles = rotation_matrix.eulerAngles(2,1,0);
|
|
std::swap(angles(0), angles(2));
|
|
return angles;
|
|
}
|
|
|
|
Vec3d extract_rotation(const Transform3d& transform)
|
|
{
|
|
// use only the non-translational part of the transform
|
|
Eigen::Matrix<double, 3, 3, Eigen::DontAlign> m = transform.matrix().block(0, 0, 3, 3);
|
|
// remove scale
|
|
m.col(0).normalize();
|
|
m.col(1).normalize();
|
|
m.col(2).normalize();
|
|
return extract_rotation(m);
|
|
}
|
|
|
|
Transform3d Transformation::get_offset_matrix() const
|
|
{
|
|
return translation_transform(get_offset());
|
|
}
|
|
|
|
static Transform3d extract_rotation_matrix(const Transform3d& trafo)
|
|
{
|
|
Matrix3d rotation;
|
|
Matrix3d scale;
|
|
trafo.computeRotationScaling(&rotation, &scale);
|
|
return Transform3d(rotation);
|
|
}
|
|
|
|
static Transform3d extract_scale(const Transform3d& trafo)
|
|
{
|
|
Matrix3d rotation;
|
|
Matrix3d scale;
|
|
trafo.computeRotationScaling(&rotation, &scale);
|
|
return Transform3d(scale);
|
|
}
|
|
|
|
static std::pair<Transform3d, Transform3d> extract_rotation_scale(const Transform3d& trafo)
|
|
{
|
|
Matrix3d rotation;
|
|
Matrix3d scale;
|
|
trafo.computeRotationScaling(&rotation, &scale);
|
|
return { Transform3d(rotation), Transform3d(scale) };
|
|
}
|
|
|
|
static bool contains_skew(const Transform3d& trafo)
|
|
{
|
|
Matrix3d rotation;
|
|
Matrix3d scale;
|
|
trafo.computeRotationScaling(&rotation, &scale);
|
|
|
|
if (scale.isDiagonal())
|
|
return false;
|
|
|
|
if (scale.determinant() >= 0.0)
|
|
return true;
|
|
|
|
// the matrix contains mirror
|
|
const Matrix3d ratio = scale.cwiseQuotient(trafo.matrix().block<3,3>(0,0));
|
|
|
|
auto check_skew = [&ratio](int i, int j, bool& skew) {
|
|
if (!std::isnan(ratio(i, j)) && !std::isnan(ratio(j, i)))
|
|
skew |= std::abs(ratio(i, j) * ratio(j, i) - 1.0) > EPSILON;
|
|
};
|
|
|
|
bool has_skew = false;
|
|
check_skew(0, 1, has_skew);
|
|
check_skew(0, 2, has_skew);
|
|
check_skew(1, 2, has_skew);
|
|
return has_skew;
|
|
}
|
|
|
|
Vec3d Transformation::get_rotation() const
|
|
{
|
|
return extract_rotation(extract_rotation_matrix(m_matrix));
|
|
}
|
|
|
|
Transform3d Transformation::get_rotation_matrix() const
|
|
{
|
|
return extract_rotation_matrix(m_matrix);
|
|
}
|
|
|
|
void Transformation::set_rotation(const Vec3d& rotation)
|
|
{
|
|
const Vec3d offset = get_offset();
|
|
m_matrix = rotation_transform(rotation) * extract_scale(m_matrix);
|
|
m_matrix.translation() = offset;
|
|
}
|
|
|
|
void Transformation::set_rotation(Axis axis, double rotation)
|
|
{
|
|
rotation = angle_to_0_2PI(rotation);
|
|
if (is_approx(std::abs(rotation), 2.0 * double(PI)))
|
|
rotation = 0.0;
|
|
|
|
auto [curr_rotation, scale] = extract_rotation_scale(m_matrix);
|
|
Vec3d angles = extract_rotation(curr_rotation);
|
|
angles[axis] = rotation;
|
|
|
|
const Vec3d offset = get_offset();
|
|
m_matrix = rotation_transform(angles) * scale;
|
|
m_matrix.translation() = offset;
|
|
}
|
|
|
|
Vec3d Transformation::get_scaling_factor() const
|
|
{
|
|
const Transform3d scale = extract_scale(m_matrix);
|
|
return { std::abs(scale(0, 0)), std::abs(scale(1, 1)), std::abs(scale(2, 2)) };
|
|
}
|
|
|
|
Transform3d Transformation::get_scaling_factor_matrix() const
|
|
{
|
|
Transform3d scale = extract_scale(m_matrix);
|
|
scale(0, 0) = std::abs(scale(0, 0));
|
|
scale(1, 1) = std::abs(scale(1, 1));
|
|
scale(2, 2) = std::abs(scale(2, 2));
|
|
return scale;
|
|
}
|
|
|
|
void Transformation::set_scaling_factor(const Vec3d& scaling_factor)
|
|
{
|
|
assert(scaling_factor.x() > 0.0 && scaling_factor.y() > 0.0 && scaling_factor.z() > 0.0);
|
|
|
|
const Vec3d offset = get_offset();
|
|
m_matrix = extract_rotation_matrix(m_matrix) * scale_transform(scaling_factor);
|
|
m_matrix.translation() = offset;
|
|
}
|
|
|
|
void Transformation::set_scaling_factor(Axis axis, double scaling_factor)
|
|
{
|
|
assert(scaling_factor > 0.0);
|
|
|
|
auto [rotation, scale] = extract_rotation_scale(m_matrix);
|
|
scale(axis, axis) = scaling_factor;
|
|
|
|
const Vec3d offset = get_offset();
|
|
m_matrix = rotation * scale;
|
|
m_matrix.translation() = offset;
|
|
}
|
|
|
|
Vec3d Transformation::get_mirror() const
|
|
{
|
|
const Transform3d scale = extract_scale(m_matrix);
|
|
return { scale(0, 0) / std::abs(scale(0, 0)), scale(1, 1) / std::abs(scale(1, 1)), scale(2, 2) / std::abs(scale(2, 2)) };
|
|
}
|
|
|
|
Transform3d Transformation::get_mirror_matrix() const
|
|
{
|
|
Transform3d scale = extract_scale(m_matrix);
|
|
scale(0, 0) = scale(0, 0) / std::abs(scale(0, 0));
|
|
scale(1, 1) = scale(1, 1) / std::abs(scale(1, 1));
|
|
scale(2, 2) = scale(2, 2) / std::abs(scale(2, 2));
|
|
return scale;
|
|
}
|
|
|
|
void Transformation::set_mirror(const Vec3d& mirror)
|
|
{
|
|
Vec3d copy(mirror);
|
|
const Vec3d abs_mirror = copy.cwiseAbs();
|
|
for (int i = 0; i < 3; ++i) {
|
|
if (abs_mirror(i) == 0.0)
|
|
copy(i) = 1.0;
|
|
else if (abs_mirror(i) != 1.0)
|
|
copy(i) /= abs_mirror(i);
|
|
}
|
|
|
|
auto [rotation, scale] = extract_rotation_scale(m_matrix);
|
|
const Vec3d curr_scales = { scale(0, 0), scale(1, 1), scale(2, 2) };
|
|
const Vec3d signs = curr_scales.cwiseProduct(copy);
|
|
|
|
if (signs[0] < 0.0) scale(0, 0) = -scale(0, 0);
|
|
if (signs[1] < 0.0) scale(1, 1) = -scale(1, 1);
|
|
if (signs[2] < 0.0) scale(2, 2) = -scale(2, 2);
|
|
|
|
const Vec3d offset = get_offset();
|
|
m_matrix = rotation * scale;
|
|
m_matrix.translation() = offset;
|
|
}
|
|
|
|
void Transformation::set_mirror(Axis axis, double mirror)
|
|
{
|
|
double abs_mirror = std::abs(mirror);
|
|
if (abs_mirror == 0.0)
|
|
mirror = 1.0;
|
|
else if (abs_mirror != 1.0)
|
|
mirror /= abs_mirror;
|
|
|
|
auto [rotation, scale] = extract_rotation_scale(m_matrix);
|
|
const double curr_scale = scale(axis, axis);
|
|
const double sign = curr_scale * mirror;
|
|
|
|
if (sign < 0.0) scale(axis, axis) = -scale(axis, axis);
|
|
|
|
const Vec3d offset = get_offset();
|
|
m_matrix = rotation * scale;
|
|
m_matrix.translation() = offset;
|
|
}
|
|
|
|
bool Transformation::has_skew() const
|
|
{
|
|
return contains_skew(m_matrix);
|
|
}
|
|
|
|
void Transformation::reset()
|
|
{
|
|
m_matrix = Transform3d::Identity();
|
|
}
|
|
|
|
void Transformation::reset_rotation()
|
|
{
|
|
const Geometry::TransformationSVD svd(*this);
|
|
m_matrix = get_offset_matrix() * Transform3d(svd.v * svd.s * svd.v.transpose()) * svd.mirror_matrix();
|
|
}
|
|
|
|
void Transformation::reset_scaling_factor()
|
|
{
|
|
const Geometry::TransformationSVD svd(*this);
|
|
m_matrix = get_offset_matrix() * Transform3d(svd.u) * Transform3d(svd.v.transpose()) * svd.mirror_matrix();
|
|
}
|
|
|
|
void Transformation::reset_skew()
|
|
{
|
|
auto new_scale_factor = [](const Matrix3d& s) {
|
|
return pow(s(0, 0) * s(1, 1) * s(2, 2), 1. / 3.); // scale average
|
|
};
|
|
|
|
const Geometry::TransformationSVD svd(*this);
|
|
m_matrix = get_offset_matrix() * Transform3d(svd.u) * scale_transform(new_scale_factor(svd.s)) * Transform3d(svd.v.transpose()) * svd.mirror_matrix();
|
|
}
|
|
|
|
Transform3d Transformation::get_matrix_no_offset() const
|
|
{
|
|
Transformation copy(*this);
|
|
copy.reset_offset();
|
|
return copy.get_matrix();
|
|
}
|
|
|
|
Transform3d Transformation::get_matrix_no_scaling_factor() const
|
|
{
|
|
Transformation copy(*this);
|
|
copy.reset_scaling_factor();
|
|
return copy.get_matrix();
|
|
}
|
|
|
|
Transformation Transformation::operator * (const Transformation& other) const
|
|
{
|
|
return Transformation(get_matrix() * other.get_matrix());
|
|
}
|
|
|
|
TransformationSVD::TransformationSVD(const Transform3d& trafo)
|
|
{
|
|
const auto &m0 = trafo.matrix().block<3, 3>(0, 0);
|
|
mirror = m0.determinant() < 0.0;
|
|
|
|
Matrix3d m;
|
|
if (mirror)
|
|
m = m0 * Eigen::DiagonalMatrix<double, 3, 3>(-1.0, 1.0, 1.0);
|
|
else
|
|
m = m0;
|
|
const Eigen::JacobiSVD<Matrix3d> svd(m, Eigen::ComputeFullU | Eigen::ComputeFullV);
|
|
u = svd.matrixU();
|
|
v = svd.matrixV();
|
|
s = svd.singularValues().asDiagonal();
|
|
|
|
scale = !s.isApprox(Matrix3d::Identity());
|
|
anisotropic_scale = ! is_approx(s(0, 0), s(1, 1)) || ! is_approx(s(1, 1), s(2, 2));
|
|
rotation = !v.isApprox(u);
|
|
|
|
if (anisotropic_scale) {
|
|
rotation_90_degrees = true;
|
|
for (int i = 0; i < 3; ++i) {
|
|
const Vec3d row = v.row(i).cwiseAbs();
|
|
const size_t num_zeros = is_approx(row[0], 0.) + is_approx(row[1], 0.) + is_approx(row[2], 0.);
|
|
const size_t num_ones = is_approx(row[0], 1.) + is_approx(row[1], 1.) + is_approx(row[2], 1.);
|
|
if (num_zeros != 2 || num_ones != 1) {
|
|
rotation_90_degrees = false;
|
|
break;
|
|
}
|
|
}
|
|
// Detect skew by brute force: check if the axes are still orthogonal after transformation
|
|
const Matrix3d trafo_linear = trafo.linear();
|
|
const std::array<Vec3d, 3> axes = { Vec3d::UnitX(), Vec3d::UnitY(), Vec3d::UnitZ() };
|
|
std::array<Vec3d, 3> transformed_axes;
|
|
for (int i = 0; i < 3; ++i) {
|
|
transformed_axes[i] = trafo_linear * axes[i];
|
|
}
|
|
skew = std::abs(transformed_axes[0].dot(transformed_axes[1])) > EPSILON ||
|
|
std::abs(transformed_axes[1].dot(transformed_axes[2])) > EPSILON ||
|
|
std::abs(transformed_axes[2].dot(transformed_axes[0])) > EPSILON;
|
|
|
|
// This following old code does not work under all conditions. The v matrix can become non diagonal (see SPE-1492)
|
|
// skew = ! rotation_90_degrees;
|
|
} else
|
|
skew = false;
|
|
}
|
|
|
|
// For parsing a transformation matrix from 3MF / AMF.
|
|
Transform3d transform3d_from_string(const std::string& transform_str)
|
|
{
|
|
assert(is_decimal_separator_point()); // for atof
|
|
Transform3d transform = Transform3d::Identity();
|
|
|
|
if (!transform_str.empty()) {
|
|
std::vector<std::string> mat_elements_str;
|
|
boost::split(mat_elements_str, transform_str, boost::is_any_of(" "), boost::token_compress_on);
|
|
|
|
const unsigned int size = (unsigned int)mat_elements_str.size();
|
|
if (size == 16) {
|
|
unsigned int i = 0;
|
|
for (unsigned int r = 0; r < 4; ++r) {
|
|
for (unsigned int c = 0; c < 4; ++c) {
|
|
transform(r, c) = ::atof(mat_elements_str[i++].c_str());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return transform;
|
|
}
|
|
|
|
Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
|
|
{
|
|
return
|
|
// From the current coordinate system to world.
|
|
Eigen::AngleAxisd(rot_xyz_to.z(), Vec3d::UnitZ()) * Eigen::AngleAxisd(rot_xyz_to.y(), Vec3d::UnitY()) * Eigen::AngleAxisd(rot_xyz_to.x(), Vec3d::UnitX()) *
|
|
// From world to the initial coordinate system.
|
|
Eigen::AngleAxisd(-rot_xyz_from.x(), Vec3d::UnitX()) * Eigen::AngleAxisd(-rot_xyz_from.y(), Vec3d::UnitY()) * Eigen::AngleAxisd(-rot_xyz_from.z(), Vec3d::UnitZ());
|
|
}
|
|
|
|
// This should only be called if it is known, that the two rotations only differ in rotation around the Z axis.
|
|
double rotation_diff_z(const Transform3d &trafo_from, const Transform3d &trafo_to)
|
|
{
|
|
auto m = trafo_to.linear() * trafo_from.linear().inverse();
|
|
assert(std::abs(m.determinant() - 1) < EPSILON);
|
|
Vec3d vx = m * Vec3d(1., 0., 0);
|
|
// Verify that the linear part of rotation from trafo_from to trafo_to rotates around Z and is unity.
|
|
assert(std::abs(std::hypot(vx.x(), vx.y()) - 1.) < 1e-5);
|
|
assert(std::abs(vx.z()) < 1e-5);
|
|
return atan2(vx.y(), vx.x());
|
|
}
|
|
|
|
bool trafos_differ_in_rotation_by_z_and_mirroring_by_xy_only(const Transform3d &t1, const Transform3d &t2)
|
|
{
|
|
if (std::abs(t1.translation().z() - t2.translation().z()) > EPSILON)
|
|
// One of the object is higher than the other above the build plate (or below the build plate).
|
|
return false;
|
|
Matrix3d m1 = t1.matrix().block<3, 3>(0, 0);
|
|
Matrix3d m2 = t2.matrix().block<3, 3>(0, 0);
|
|
Matrix3d m = m2.inverse() * m1;
|
|
Vec3d z = m.block<3, 1>(0, 2);
|
|
if (std::abs(z.x()) > EPSILON || std::abs(z.y()) > EPSILON || std::abs(z.z() - 1.) > EPSILON)
|
|
// Z direction or length changed.
|
|
return false;
|
|
// Z still points in the same direction and it has the same length.
|
|
Vec3d x = m.block<3, 1>(0, 0);
|
|
Vec3d y = m.block<3, 1>(0, 1);
|
|
if (std::abs(x.z()) > EPSILON || std::abs(y.z()) > EPSILON)
|
|
return false;
|
|
double lx2 = x.squaredNorm();
|
|
double ly2 = y.squaredNorm();
|
|
if (lx2 - 1. > EPSILON * EPSILON || ly2 - 1. > EPSILON * EPSILON)
|
|
return false;
|
|
// Verify whether the vectors x, y are still perpendicular.
|
|
double d = x.dot(y);
|
|
return std::abs(d * d) < EPSILON * lx2 * ly2;
|
|
}
|
|
|
|
}} // namespace Slic3r::Geometry
|