PrusaSlicer/src/libslic3r/GCode/ExtrusionProcessor.hpp
2022-12-14 14:49:20 +01:00

260 lines
9.9 KiB
C++

#ifndef slic3r_ExtrusionProcessor_hpp_
#define slic3r_ExtrusionProcessor_hpp_
#include "../AABBTreeLines.hpp"
#include "../SupportSpotsGenerator.hpp"
#include "../libslic3r.h"
#include "../ExtrusionEntity.hpp"
#include "../Layer.hpp"
#include "../Point.hpp"
#include "../SVG.hpp"
#include "../BoundingBox.hpp"
#include "../Polygon.hpp"
#include "../ClipperUtils.hpp"
#include "../Flow.hpp"
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <limits>
#include <numeric>
#include <vector>
namespace Slic3r {
class SlidingWindowCurvatureAccumulator
{
float window_size;
float total_distance = 0; // accumulated distance
float total_curvature = 0; // accumulated signed ccw angles
deque<float> distances;
deque<float> angles;
public:
SlidingWindowCurvatureAccumulator(float window_size) : window_size(window_size) {}
void add_point(float distance, float angle)
{
total_distance += distance;
total_curvature += std::abs(angle);
distances.push_back(distance);
angles.push_back(std::abs(angle));
while (distances.size() > 1 && total_distance > window_size) {
total_distance -= distances.front();
total_curvature -= angles.front();
distances.pop_front();
angles.pop_front();
}
}
float get_curvature() const
{
if (total_distance < EPSILON) { return 0.0; }
return total_curvature / window_size;
}
void reset()
{
total_curvature = 0;
total_distance = 0;
distances.clear();
angles.clear();
}
};
class CurvatureEstimator
{
static const size_t sliders_count = 3;
SlidingWindowCurvatureAccumulator sliders[sliders_count] = {{2.0}, {4.0}, {8.0}};
public:
void add_point(float distance, float angle)
{
if (distance < EPSILON) return;
for (SlidingWindowCurvatureAccumulator &slider : sliders) { slider.add_point(distance, angle); }
}
float get_curvature()
{
float max_curvature = std::numeric_limits<float>::min();
for (const SlidingWindowCurvatureAccumulator &slider : sliders) { max_curvature = std::max(max_curvature, slider.get_curvature()); }
return max_curvature;
}
void reset()
{
for (SlidingWindowCurvatureAccumulator &slider : sliders) { slider.reset(); }
}
};
struct ProcessedPoint
{
Point p;
float speed_factor = 1.0f;
};
class ExtrusionQualityEstimator
{
AABBTreeLines::LinesDistancer<Linef> prev_layer_boundary;
AABBTreeLines::LinesDistancer<Linef> next_layer_boundary;
CurvatureEstimator cestim;
public:
void reset_for_next_extrusion() { cestim.reset(); }
void prepare_for_new_layer(const std::vector<const Layer *> &layers)
{
std::vector<Linef> layer_lines;
for (const Layer *layer : layers) {
if (layer == nullptr) continue;
std::vector<Linef> object_lines = to_unscaled_linesf(layer->lslices);
layer_lines.insert(layer_lines.end(), object_lines.begin(), object_lines.end());
}
prev_layer_boundary = next_layer_boundary;
next_layer_boundary = AABBTreeLines::LinesDistancer<Linef>{std::move(layer_lines)};
#if 0 // EXPORT DEBUG FILES
Lines scaled_lines;
for (const Linef &lf : layer_lines) { scaled_lines.push_back({Point::new_scale(lf.a), Point::new_scale(lf.b)}); }
BoundingBox bb = get_extents(scaled_lines);
Points inside;
for (const Layer *layer : layers) {
if (layer == nullptr) continue;
auto in = to_points(to_polygons(offset_ex(layer->lslices, -scale_(0.4))));
inside.insert(inside.end(), in.begin(), in.end());
}
::Slic3r::SVG svg(debug_out_path(("processing" + std::to_string(rand() % 1000)).c_str()).c_str(), bb);
svg.draw(scaled_lines, "black", scale_(0.10));
for (Point p : inside) {
auto [distance, line_idx, nearest_point] = next_layer_boundary.signed_distance_from_lines_extra(unscaled(p));
if (distance > 0) {
svg.draw(p, "red", scale_(0.2));
svg.draw(Point::new_scale(nearest_point.x(), nearest_point.y()), "blue", scale_(0.2));
auto li = next_layer_boundary.get_line(line_idx);
Line ls{Point::new_scale(li.a), Point::new_scale(li.b)};
svg.draw(ls, "yellow", scale_(0.2));
}
}
if (inside.size() > 0) {
Line line{inside[0], inside[inside.size() * 0.5]};
auto inters = next_layer_boundary.intersections_with_line<true>({unscaled(line.a), unscaled(line.b)});
svg.draw(line, "purple", scale_(0.15));
for (auto inter : inters) {
svg.draw(Point::new_scale(inter), "red", scale_(0.2));
}
}
#endif
}
std::vector<ProcessedPoint> estimate_extrusion_quality(const ExtrusionPath &path)
{
struct ExtendedPoint
{
ExtendedPoint(const Vec2d &pos, float dist, float quality) : position(pos), distance(dist), quality(quality) {}
Vec2d position;
float distance; // in multiples of flow_width
float quality;
};
float flow_width = path.width;
float min_malformation_dist = 0.2 * flow_width;
float peak_malformation_dist = 0.75 * flow_width;
const Points &original_points = path.polyline.points;
std::vector<ExtendedPoint> points;
float distance = prev_layer_boundary.signed_distance_from_lines(unscaled(original_points[0])) + 0.5 * flow_width;
points.push_back({unscaled(original_points[0]), distance, 1.0f});
for (size_t i = 1; i < original_points.size(); i++) {
Vec2d next_point_pos = unscaled(original_points[i]);
float distance_of_next = prev_layer_boundary.signed_distance_from_lines(next_point_pos) + 0.5 * flow_width;
if ((points.back().distance < min_malformation_dist) != (distance_of_next < min_malformation_dist)) { // one in air, one not
auto intersections = prev_layer_boundary.intersections_with_line<true>({points.back().position, next_point_pos});
for (const auto &intersection : intersections) { points.push_back({intersection, 0.5f * flow_width, 1.0}); }
points.push_back({next_point_pos, distance_of_next, 1.0});
}
if (points.back().distance > min_malformation_dist && distance_of_next > min_malformation_dist) { // both in air
double line_len = (points.back().position - next_point_pos).norm();
if (line_len > 3.0) {
double a0 = std::clamp((0.5 * flow_width + points.back().distance) / line_len, 0.0, 1.0);
double a1 = std::clamp((0.5 * flow_width + distance_of_next) / line_len, 0.0, 1.0);
double t0 = std::min(a0, a1);
double t1 = std::max(a0, a1);
auto p0 = points.back().position + t0 * (next_point_pos - points.back().position);
auto p0_dist = prev_layer_boundary.signed_distance_from_lines(p0) + 0.5 * flow_width;
points.push_back({p0, float(p0_dist), 1.0});
auto p1 = points.back().position + t1 * (next_point_pos - points.back().position);
auto p1_dist = prev_layer_boundary.signed_distance_from_lines(p1) + 0.5 * flow_width;
points.push_back({p1, float(p1_dist), 1.0});
}
}
points.push_back({next_point_pos, distance_of_next, 1.0});
}
for (int point_idx = 0; point_idx < int(points.size()) - 1; ++point_idx) {
ExtendedPoint &a = points[point_idx];
ExtendedPoint &b = points[point_idx + 1];
float distance = std::min(a.distance, b.distance);
int prev_point_idx = point_idx;
while (prev_point_idx > 0) {
prev_point_idx--;
if ((b.position - points[prev_point_idx].position).squaredNorm() > EPSILON) { break; }
}
int next_point_index = point_idx;
while (next_point_index < int(points.size()) - 1) {
next_point_index++;
if ((b.position - points[next_point_index].position).squaredNorm() > EPSILON) { break; }
}
if (prev_point_idx != point_idx && next_point_index != point_idx) {
float distance = (b.position - a.position).norm();
float alfa = angle(b.position - points[prev_point_idx].position, points[next_point_index].position - b.position);
cestim.add_point(distance, alfa);
}
if (distance < min_malformation_dist) {
a.quality = 1.0;
cestim.reset();
} else if (distance < peak_malformation_dist) {
a.quality = 1.0 - (distance - min_malformation_dist) / (peak_malformation_dist - min_malformation_dist);
float curvature_penalty = 0.0f;
float curvature = std::abs(cestim.get_curvature());
if (curvature > 1.0f) {
curvature_penalty = 1.0f;
} else if (curvature > 0.1f) {
curvature_penalty = fmin(1.0, distance - min_malformation_dist) * curvature;
}
a.quality -= curvature_penalty;
} else {
a.quality = 0.0f;
}
}
if (points.size() > 3) {
points[points.size() - 2].quality = points[points.size()-3].quality;
}
std::vector<ProcessedPoint> result;
result.reserve(points.size());
for (const ExtendedPoint &p : points) { result.push_back({Point::new_scale(p.position), std::clamp(p.quality, 0.0f, 1.0f)}); }
return result;
}
};
} // namespace Slic3r
#endif // slic3r_ExtrusionProcessor_hpp_