mirror of
https://git.mirrors.martin98.com/https://github.com/slic3r/Slic3r.git
synced 2025-07-30 00:22:01 +08:00
Port several rectilinear infill tests from perl.
This commit is contained in:
parent
4d257930da
commit
02acbd625a
@ -1,122 +1,124 @@
|
||||
#include <catch.hpp>
|
||||
#include "test_data.hpp"
|
||||
#include "Fill/Fill.hpp"
|
||||
/*
|
||||
BEGIN {
|
||||
use FindBin;
|
||||
use lib "$FindBin::Bin/../lib";
|
||||
use local::lib "$FindBin::Bin/../local-lib";
|
||||
#include "Print.hpp"
|
||||
#include "Geometry.hpp"
|
||||
#include "Flow.hpp"
|
||||
|
||||
using namespace Slic3r;
|
||||
using namespace Slic3r::Geometry;
|
||||
|
||||
|
||||
TEST_CASE("Fill: adjusted solid distance") {
|
||||
Print print;
|
||||
int surface_width {250};
|
||||
|
||||
int distance {Slic3r::Flow::solid_spacing(surface_width, 47)};
|
||||
|
||||
REQUIRE(distance == Approx(50));
|
||||
REQUIRE(surface_width % distance == 0);
|
||||
}
|
||||
|
||||
use List::Util qw(first sum max);
|
||||
use Slic3r;
|
||||
use Slic3r::Geometry qw(PI X Y scaled_epsilon scale unscale convex_hull);
|
||||
use Slic3r::Geometry::Clipper qw(union diff diff_ex offset offset2_ex diff_pl union_ex);
|
||||
use Slic3r::Surface qw(:types);
|
||||
use Slic3r::Test;
|
||||
TEST_CASE("Fill: Pattern Path Length") {
|
||||
auto filler {Slic3r::Fill::new_from_type("rectilinear")};
|
||||
filler->angle = -(PI)/2.0;
|
||||
filler->min_spacing = 5;
|
||||
filler->dont_adjust = true;
|
||||
filler->endpoints_overlap = false;
|
||||
filler->density = filler->min_spacing / 50.0;
|
||||
|
||||
sub scale_points (@) { map [scale $_->[X], scale $_->[Y]], @_ }
|
||||
auto test {[filler] (const ExPolygon& poly) -> Polylines {
|
||||
auto surface {Slic3r::Surface(stTop, poly)};
|
||||
return filler->fill_surface(surface);
|
||||
}};
|
||||
|
||||
{
|
||||
my $print = Slic3r::Print->new;
|
||||
my $surface_width = 250;
|
||||
my $distance = Slic3r::Flow::solid_spacing($surface_width, 47);
|
||||
is $distance, 50, 'adjusted solid distance';
|
||||
is $surface_width % $distance, 0, 'adjusted solid distance';
|
||||
}
|
||||
|
||||
{
|
||||
my $filler = Slic3r::Filler->new_from_type('rectilinear');
|
||||
$filler->set_angle(-(PI)/2);
|
||||
$filler->set_min_spacing(5);
|
||||
$filler->set_dont_adjust(1);
|
||||
$filler->set_endpoints_overlap(0);
|
||||
|
||||
my $test = sub {
|
||||
my ($expolygon) = @_;
|
||||
my $surface = Slic3r::Surface->new(
|
||||
surface_type => S_TYPE_TOP,
|
||||
expolygon => $expolygon,
|
||||
);
|
||||
return $filler->fill_surface($surface);
|
||||
};
|
||||
|
||||
# square
|
||||
$filler->set_density($filler->min_spacing / 50);
|
||||
for my $i (0..3) {
|
||||
# check that it works regardless of the points order
|
||||
my @points = ([0,0], [100,0], [100,100], [0,100]);
|
||||
@points = (@points[$i..$#points], @points[0..($i-1)]);
|
||||
my $paths = $test->(my $e = Slic3r::ExPolygon->new([ scale_points @points ]));
|
||||
|
||||
is(scalar @$paths, 1, 'one continuous path') or done_testing, exit;
|
||||
ok abs($paths->[0]->length - scale(3*100 + 2*50)) - scaled_epsilon, 'path has expected length';
|
||||
}
|
||||
|
||||
# diamond with endpoints on grid
|
||||
{
|
||||
my $paths = $test->(my $e = Slic3r::ExPolygon->new([ scale_points [0,0], [100,0], [150,50], [100,100], [0,100], [-50,50] ]));
|
||||
is(scalar @$paths, 1, 'one continuous path') or done_testing, exit;
|
||||
}
|
||||
|
||||
# square with hole
|
||||
for my $angle (-(PI/2), -(PI/4), -(PI), PI/2, PI) {
|
||||
for my $spacing (25, 5, 7.5, 8.5) {
|
||||
$filler->set_density($filler->min_spacing / $spacing);
|
||||
$filler->set_angle($angle);
|
||||
my $paths = $test->(my $e = Slic3r::ExPolygon->new(
|
||||
[ scale_points [0,0], [100,0], [100,100], [0,100] ],
|
||||
[ scale_points reverse [25,25], [75,25], [75,75], [25,75] ],
|
||||
));
|
||||
|
||||
if (0) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output(
|
||||
"fill.svg",
|
||||
no_arrows => 1,
|
||||
expolygons => [$e],
|
||||
polylines => $paths,
|
||||
);
|
||||
}
|
||||
|
||||
ok(@$paths >= 2 && @$paths <= 3, '2 or 3 continuous paths') or done_testing, exit;
|
||||
ok(!@{diff_pl($paths->arrayref, offset(\@$e, +scaled_epsilon*10))},
|
||||
'paths don\'t cross hole') or done_testing, exit;
|
||||
SECTION("Square") {
|
||||
Points test_set;
|
||||
test_set.reserve(4);
|
||||
Pointfs points {Pointf(0,0), Pointf(100,0), Pointf(100,100), Pointf(0,100)};
|
||||
for (size_t i = 0; i < 4; ++i) {
|
||||
std::transform(points.cbegin()+i, points.cend(), std::back_inserter(test_set), [] (const Pointf& a) -> Point { return Point::new_scale(a); } );
|
||||
std::transform(points.cbegin(), points.cbegin()+i, std::back_inserter(test_set), [] (const Pointf& a) -> Point { return Point::new_scale(a); } );
|
||||
Polylines paths {test(Slic3r::ExPolygon(test_set))};
|
||||
REQUIRE(paths.size() == 1); // one continuous path
|
||||
|
||||
// TODO: determine what the "Expected length" should be for rectilinear fill of a 100x100 polygon.
|
||||
// This check only checks that it's above scale(3*100 + 2*50) + scaled_epsilon.
|
||||
// ok abs($paths->[0]->length - scale(3*100 + 2*50)) - scaled_epsilon, 'path has expected length';
|
||||
REQUIRE(std::abs(paths[0].length() - static_cast<double>(scale_(3*100 + 2*50))) - SCALED_EPSILON > 0); // path has expected length
|
||||
|
||||
test_set.clear();
|
||||
}
|
||||
}
|
||||
|
||||
# rotated square
|
||||
$filler->set_angle(PI/4);
|
||||
$filler->set_dont_adjust(0);
|
||||
$filler->set_min_spacing(0.654498);
|
||||
$filler->set_endpoints_overlap(unscale(359974));
|
||||
$filler->set_density(1);
|
||||
$filler->set_layer_id(66);
|
||||
$filler->set_z(20.15);
|
||||
{
|
||||
my $e = Slic3r::ExPolygon->new(
|
||||
Slic3r::Polygon->new([25771516,14142125],[14142138,25771515],[2512749,14142131],[14142125,2512749]),
|
||||
);
|
||||
my $paths = $test->($e);
|
||||
is(scalar @$paths, 1, 'one continuous path') or done_testing, exit;
|
||||
ok abs($paths->[0]->length - scale(3*100 + 2*50)) - scaled_epsilon, 'path has expected length';
|
||||
SECTION("Diamond with endpoints on grid") {
|
||||
Pointfs points {Pointf(0,0), Pointf(100,0), Pointf(150,50), Pointf(100,100), Pointf(0,100), Pointf(-50,50)};
|
||||
Points test_set;
|
||||
test_set.reserve(6);
|
||||
std::transform(points.cbegin(), points.cend(), std::back_inserter(test_set), [] (const Pointf& a) -> Point { return Point::new_scale(a); } );
|
||||
Polylines paths {test(Slic3r::ExPolygon(test_set))};
|
||||
REQUIRE(paths.size() == 1); // one continuous path
|
||||
}
|
||||
|
||||
SECTION("Square with hole") {
|
||||
Pointfs square { Pointf(0,0), Pointf(100,0), Pointf(100,100), Pointf(0,100)};
|
||||
Pointfs hole {Pointf(25,25), Pointf(75,25), Pointf(75,75), Pointf(25,75) };
|
||||
std::reverse(hole.begin(), hole.end());
|
||||
|
||||
Points test_hole;
|
||||
Points test_square;
|
||||
|
||||
std::transform(square.cbegin(), square.cend(), std::back_inserter(test_square), [] (const Pointf& a) -> Point { return Point::new_scale(a); } );
|
||||
std::transform(hole.cbegin(), hole.cend(), std::back_inserter(test_hole), [] (const Pointf& a) -> Point { return Point::new_scale(a); } );
|
||||
|
||||
for (double angle : {-(PI/2.0), -(PI/4.0), -(PI), PI/2.0, PI}) {
|
||||
for (double spacing : {25.0, 5.0, 7.5, 8.5}) {
|
||||
filler->density = filler->min_spacing / spacing;
|
||||
filler->angle = angle;
|
||||
ExPolygon e(test_square, test_hole);
|
||||
Polylines paths {test(e)};
|
||||
REQUIRE((paths.size() >= 2 && paths.size() <= 3));
|
||||
// paths don't cross hole
|
||||
REQUIRE(diff_pl(paths, offset(e, +SCALED_EPSILON*10)).size() == 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
SECTION("Rotated Square") {
|
||||
filler->angle = (PI/4.0);
|
||||
filler->dont_adjust = false;
|
||||
filler->min_spacing = 0.654498;
|
||||
filler->endpoints_overlap = unscale(359974);
|
||||
filler->density = 1;
|
||||
filler->layer_id = 66;
|
||||
filler->z = 20.15;
|
||||
|
||||
Points points {Point(25771516,14142125),Point(14142138,25771515),Point(2512749,14142131),Point(14142125,2512749)};
|
||||
Polylines paths {test(Slic3r::ExPolygon(points))};
|
||||
REQUIRE(paths.size() == 1); // one continuous path
|
||||
|
||||
// TODO: determine what the "Expected length" should be for rectilinear fill of a 100x100 polygon.
|
||||
// This check only checks that it's above scale(3*100 + 2*50) + scaled_epsilon.
|
||||
// ok abs($paths->[0]->length - scale(3*100 + 2*50)) - scaled_epsilon, 'path has expected length';
|
||||
REQUIRE(std::abs(paths[0].length() - static_cast<double>(scale_(3*100 + 2*50))) - SCALED_EPSILON > 0); // path has expected length
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
{
|
||||
my $expolygon = Slic3r::ExPolygon->new([ scale_points [0,0], [50,0], [50,50], [0,50] ]);
|
||||
my $filler = Slic3r::Filler->new_from_type('rectilinear');
|
||||
$filler->set_bounding_box($expolygon->bounding_box);
|
||||
$filler->set_angle(0);
|
||||
my $surface = Slic3r::Surface->new(
|
||||
surface_type => S_TYPE_TOP,
|
||||
expolygon => $expolygon,
|
||||
);
|
||||
surface_type => S_TYPE_TOP,
|
||||
expolygon => $expolygon,
|
||||
);
|
||||
my $flow = Slic3r::Flow->new(
|
||||
width => 0.69,
|
||||
height => 0.4,
|
||||
nozzle_diameter => 0.50,
|
||||
);
|
||||
width => 0.69,
|
||||
height => 0.4,
|
||||
nozzle_diameter => 0.50,
|
||||
);
|
||||
$filler->set_min_spacing($flow->spacing);
|
||||
$filler->set_density(1);
|
||||
foreach my $angle (0, 45) {
|
||||
@ -129,75 +131,75 @@ sub scale_points (@) { map [scale $_->[X], scale $_->[Y]], @_ }
|
||||
{
|
||||
my $test = sub {
|
||||
my ($expolygon, $flow_spacing, $angle, $density) = @_;
|
||||
|
||||
|
||||
my $filler = Slic3r::Filler->new_from_type('rectilinear');
|
||||
$filler->set_bounding_box($expolygon->bounding_box);
|
||||
$filler->set_angle($angle // 0);
|
||||
$filler->set_dont_adjust(0);
|
||||
my $surface = Slic3r::Surface->new(
|
||||
surface_type => S_TYPE_BOTTOM,
|
||||
expolygon => $expolygon,
|
||||
);
|
||||
surface_type => S_TYPE_BOTTOM,
|
||||
expolygon => $expolygon,
|
||||
);
|
||||
my $flow = Slic3r::Flow->new(
|
||||
width => $flow_spacing,
|
||||
height => 0.4,
|
||||
nozzle_diameter => $flow_spacing,
|
||||
);
|
||||
width => $flow_spacing,
|
||||
height => 0.4,
|
||||
nozzle_diameter => $flow_spacing,
|
||||
);
|
||||
$filler->set_min_spacing($flow->spacing);
|
||||
my $paths = $filler->fill_surface(
|
||||
$surface,
|
||||
layer_height => $flow->height,
|
||||
density => $density // 1,
|
||||
);
|
||||
|
||||
$surface,
|
||||
layer_height => $flow->height,
|
||||
density => $density // 1,
|
||||
);
|
||||
|
||||
# check whether any part was left uncovered
|
||||
my @grown_paths = map @{Slic3r::Polyline->new(@$_)->grow(scale $filler->spacing/2)}, @$paths;
|
||||
my $uncovered = diff_ex([ @$expolygon ], [ @grown_paths ], 1);
|
||||
|
||||
|
||||
# ignore very small dots
|
||||
@$uncovered = grep $_->area > (scale $flow_spacing)**2, @$uncovered;
|
||||
|
||||
|
||||
is scalar(@$uncovered), 0, 'solid surface is fully filled';
|
||||
|
||||
|
||||
if (0 && @$uncovered) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output(
|
||||
"uncovered.svg",
|
||||
expolygons => [$expolygon],
|
||||
red_expolygons => $uncovered,
|
||||
polylines => $paths,
|
||||
);
|
||||
"uncovered.svg",
|
||||
expolygons => [$expolygon],
|
||||
red_expolygons => $uncovered,
|
||||
polylines => $paths,
|
||||
);
|
||||
exit;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
my $expolygon = Slic3r::ExPolygon->new([
|
||||
[6883102, 9598327.01296997],
|
||||
[6883102, 20327272.01297],
|
||||
[3116896, 20327272.01297],
|
||||
[3116896, 9598327.01296997],
|
||||
[6883102, 9598327.01296997],
|
||||
[6883102, 20327272.01297],
|
||||
[3116896, 20327272.01297],
|
||||
[3116896, 9598327.01296997],
|
||||
]);
|
||||
$test->($expolygon, 0.55);
|
||||
|
||||
|
||||
for (1..20) {
|
||||
$expolygon->scale(1.05);
|
||||
$test->($expolygon, 0.55);
|
||||
}
|
||||
|
||||
|
||||
$expolygon = Slic3r::ExPolygon->new(
|
||||
[[59515297,5422499],[59531249,5578697],[59695801,6123186],[59965713,6630228],[60328214,7070685],[60773285,7434379],[61274561,7702115],[61819378,7866770],[62390306,7924789],[62958700,7866744],[63503012,7702244],[64007365,7434357],[64449960,7070398],[64809327,6634999],[65082143,6123325],[65245005,5584454],[65266967,5422499],[66267307,5422499],[66269190,8310081],[66275379,17810072],[66277259,20697500],[65267237,20697500],[65245004,20533538],[65082082,19994444],[64811462,19488579],[64450624,19048208],[64012101,18686514],[63503122,18415781],[62959151,18251378],[62453416,18198442],[62390147,18197355],[62200087,18200576],[61813519,18252990],[61274433,18415918],[60768598,18686517],[60327567,19047892],[59963609,19493297],[59695865,19994587],[59531222,20539379],[59515153,20697500],[58502480,20697500],[58502480,5422499]]
|
||||
);
|
||||
[[59515297,5422499],[59531249,5578697],[59695801,6123186],[59965713,6630228],[60328214,7070685],[60773285,7434379],[61274561,7702115],[61819378,7866770],[62390306,7924789],[62958700,7866744],[63503012,7702244],[64007365,7434357],[64449960,7070398],[64809327,6634999],[65082143,6123325],[65245005,5584454],[65266967,5422499],[66267307,5422499],[66269190,8310081],[66275379,17810072],[66277259,20697500],[65267237,20697500],[65245004,20533538],[65082082,19994444],[64811462,19488579],[64450624,19048208],[64012101,18686514],[63503122,18415781],[62959151,18251378],[62453416,18198442],[62390147,18197355],[62200087,18200576],[61813519,18252990],[61274433,18415918],[60768598,18686517],[60327567,19047892],[59963609,19493297],[59695865,19994587],[59531222,20539379],[59515153,20697500],[58502480,20697500],[58502480,5422499]]
|
||||
);
|
||||
$test->($expolygon, 0.524341649025257, PI/2);
|
||||
|
||||
|
||||
$expolygon = Slic3r::ExPolygon->new([ scale_points [0,0], [98,0], [98,10], [0,10] ]);
|
||||
$test->($expolygon, 0.5, 45, 0.99); # non-solid infill
|
||||
}
|
||||
|
||||
{
|
||||
my $collection = Slic3r::Polyline::Collection->new(
|
||||
Slic3r::Polyline->new([0,15], [0,18], [0,20]),
|
||||
Slic3r::Polyline->new([0,10], [0,8], [0,5]),
|
||||
);
|
||||
Slic3r::Polyline->new([0,15], [0,18], [0,20]),
|
||||
Slic3r::Polyline->new([0,10], [0,8], [0,5]),
|
||||
);
|
||||
is_deeply
|
||||
[ map $_->[Y], map @$_, @{$collection->chained_path_from(Slic3r::Point->new(0,30), 0)} ],
|
||||
[20, 18, 15, 10, 8, 5],
|
||||
@ -206,9 +208,9 @@ sub scale_points (@) { map [scale $_->[X], scale $_->[Y]], @_ }
|
||||
|
||||
{
|
||||
my $collection = Slic3r::Polyline::Collection->new(
|
||||
Slic3r::Polyline->new([4,0], [10,0], [15,0]),
|
||||
Slic3r::Polyline->new([10,5], [15,5], [20,5]),
|
||||
);
|
||||
Slic3r::Polyline->new([4,0], [10,0], [15,0]),
|
||||
Slic3r::Polyline->new([10,5], [15,5], [20,5]),
|
||||
);
|
||||
is_deeply
|
||||
[ map $_->[X], map @$_, @{$collection->chained_path_from(Slic3r::Point->new(30,0), 0)} ],
|
||||
[reverse 4, 10, 15, 10, 15, 20],
|
||||
@ -217,10 +219,10 @@ sub scale_points (@) { map [scale $_->[X], scale $_->[Y]], @_ }
|
||||
|
||||
{
|
||||
my $collection = Slic3r::ExtrusionPath::Collection->new(
|
||||
map Slic3r::ExtrusionPath->new(polyline => $_, role => 0, mm3_per_mm => 1),
|
||||
map Slic3r::ExtrusionPath->new(polyline => $_, role => 0, mm3_per_mm => 1),
|
||||
Slic3r::Polyline->new([0,15], [0,18], [0,20]),
|
||||
Slic3r::Polyline->new([0,10], [0,8], [0,5]),
|
||||
);
|
||||
);
|
||||
is_deeply
|
||||
[ map $_->[Y], map @{$_->polyline}, @{$collection->chained_path_from(Slic3r::Point->new(0,30), 0)} ],
|
||||
[20, 18, 15, 10, 8, 5],
|
||||
@ -229,10 +231,10 @@ sub scale_points (@) { map [scale $_->[X], scale $_->[Y]], @_ }
|
||||
|
||||
{
|
||||
my $collection = Slic3r::ExtrusionPath::Collection->new(
|
||||
map Slic3r::ExtrusionPath->new(polyline => $_, role => 0, mm3_per_mm => 1),
|
||||
map Slic3r::ExtrusionPath->new(polyline => $_, role => 0, mm3_per_mm => 1),
|
||||
Slic3r::Polyline->new([15,0], [10,0], [4,0]),
|
||||
Slic3r::Polyline->new([10,5], [15,5], [20,5]),
|
||||
);
|
||||
);
|
||||
is_deeply
|
||||
[ map $_->[X], map @{$_->polyline}, @{$collection->chained_path_from(Slic3r::Point->new(30,0), 0)} ],
|
||||
[reverse 4, 10, 15, 10, 15, 20],
|
||||
@ -254,18 +256,18 @@ for my $pattern (qw(rectilinear honeycomb hilbertcurve concentric)) {
|
||||
my $tool = undef;
|
||||
my @perimeter_points = my @infill_points = ();
|
||||
Slic3r::GCode::Reader->new->parse($gcode, sub {
|
||||
my ($self, $cmd, $args, $info) = @_;
|
||||
|
||||
if ($cmd =~ /^T(\d+)/) {
|
||||
my ($self, $cmd, $args, $info) = @_;
|
||||
|
||||
if ($cmd =~ /^T(\d+)/) {
|
||||
$tool = $1;
|
||||
} elsif ($cmd eq 'G1' && $info->{extruding} && $info->{dist_XY} > 0) {
|
||||
} elsif ($cmd eq 'G1' && $info->{extruding} && $info->{dist_XY} > 0) {
|
||||
if ($tool == $config->perimeter_extruder-1) {
|
||||
push @perimeter_points, Slic3r::Point->new_scale($args->{X}, $args->{Y});
|
||||
push @perimeter_points, Slic3r::Point->new_scale($args->{X}, $args->{Y});
|
||||
} elsif ($tool == $config->infill_extruder-1) {
|
||||
push @infill_points, Slic3r::Point->new_scale($args->{X}, $args->{Y});
|
||||
push @infill_points, Slic3r::Point->new_scale($args->{X}, $args->{Y});
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
my $convex_hull = convex_hull(\@perimeter_points);
|
||||
ok !(defined first { !$convex_hull->contains_point($_) } @infill_points), "infill does not exceed perimeters ($pattern)";
|
||||
}
|
||||
@ -278,42 +280,42 @@ for my $pattern (qw(rectilinear honeycomb hilbertcurve concentric)) {
|
||||
$config->set('infill_extrusion_width', 0.5);
|
||||
$config->set('fill_density', 40);
|
||||
$config->set('cooling', 0); # for preventing speeds from being altered
|
||||
$config->set('first_layer_speed', '100%'); # for preventing speeds from being altered
|
||||
|
||||
my $test = sub {
|
||||
my $print = Slic3r::Test::init_print('pyramid', config => $config);
|
||||
|
||||
my $tool = undef;
|
||||
my @infill_extrusions = (); # array of polylines
|
||||
Slic3r::GCode::Reader->new->parse(Slic3r::Test::gcode($print), sub {
|
||||
my ($self, $cmd, $args, $info) = @_;
|
||||
|
||||
if ($cmd =~ /^T(\d+)/) {
|
||||
$tool = $1;
|
||||
} elsif ($cmd eq 'G1' && $info->{extruding} && $info->{dist_XY} > 0) {
|
||||
if ($tool == $config->infill_extruder-1) {
|
||||
push @infill_extrusions, Slic3r::Line->new_scale(
|
||||
[ $self->X, $self->Y ],
|
||||
[ $info->{new_X}, $info->{new_Y} ],
|
||||
);
|
||||
}
|
||||
}
|
||||
});
|
||||
return 0 if !@infill_extrusions; # prevent calling convex_hull() with no points
|
||||
|
||||
my $convex_hull = convex_hull([ map $_->pp, map @$_, @infill_extrusions ]);
|
||||
return unscale unscale sum(map $_->area, @{offset([$convex_hull], scale(+$config->infill_extrusion_width/2))});
|
||||
};
|
||||
|
||||
$config->set('first_layer_speed', '100%'); # for preventing speeds from being altered
|
||||
|
||||
my $test = sub {
|
||||
my $print = Slic3r::Test::init_print('pyramid', config => $config);
|
||||
|
||||
my $tool = undef;
|
||||
my @infill_extrusions = (); # array of polylines
|
||||
Slic3r::GCode::Reader->new->parse(Slic3r::Test::gcode($print), sub {
|
||||
my ($self, $cmd, $args, $info) = @_;
|
||||
|
||||
if ($cmd =~ /^T(\d+)/) {
|
||||
$tool = $1;
|
||||
} elsif ($cmd eq 'G1' && $info->{extruding} && $info->{dist_XY} > 0) {
|
||||
if ($tool == $config->infill_extruder-1) {
|
||||
push @infill_extrusions, Slic3r::Line->new_scale(
|
||||
[ $self->X, $self->Y ],
|
||||
[ $info->{new_X}, $info->{new_Y} ],
|
||||
);
|
||||
}
|
||||
}
|
||||
});
|
||||
return 0 if !@infill_extrusions; # prevent calling convex_hull() with no points
|
||||
|
||||
my $convex_hull = convex_hull([ map $_->pp, map @$_, @infill_extrusions ]);
|
||||
return unscale unscale sum(map $_->area, @{offset([$convex_hull], scale(+$config->infill_extrusion_width/2))});
|
||||
};
|
||||
|
||||
my $tolerance = 5; # mm^2
|
||||
|
||||
$config->set('solid_infill_below_area', 0);
|
||||
|
||||
$config->set('solid_infill_below_area', 0);
|
||||
ok $test->() < $tolerance,
|
||||
'no infill is generated when using infill_only_where_needed on a pyramid';
|
||||
|
||||
'no infill is generated when using infill_only_where_needed on a pyramid';
|
||||
|
||||
$config->set('solid_infill_below_area', 70);
|
||||
ok abs($test->() - $config->solid_infill_below_area) < $tolerance,
|
||||
'infill is only generated under the forced solid shells';
|
||||
'infill is only generated under the forced solid shells';
|
||||
}
|
||||
|
||||
{
|
||||
@ -329,21 +331,21 @@ for my $pattern (qw(rectilinear honeycomb hilbertcurve concentric)) {
|
||||
$config->set('external_perimeter_speed', 99);
|
||||
$config->set('cooling', 0);
|
||||
$config->set('first_layer_speed', '100%');
|
||||
|
||||
|
||||
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);
|
||||
my %layers_with_extrusion = ();
|
||||
Slic3r::GCode::Reader->new->parse(Slic3r::Test::gcode($print), sub {
|
||||
my ($self, $cmd, $args, $info) = @_;
|
||||
|
||||
if ($cmd eq 'G1' && $info->{dist_XY} > 0 && $info->{extruding}) {
|
||||
my ($self, $cmd, $args, $info) = @_;
|
||||
|
||||
if ($cmd eq 'G1' && $info->{dist_XY} > 0 && $info->{extruding}) {
|
||||
if (($args->{F} // $self->F) != $config->perimeter_speed*60) {
|
||||
$layers_with_extrusion{$self->Z} = ($args->{F} // $self->F);
|
||||
$layers_with_extrusion{$self->Z} = ($args->{F} // $self->F);
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
}
|
||||
});
|
||||
|
||||
ok !%layers_with_extrusion,
|
||||
"solid_infill_below_area and solid_infill_every_layers are ignored when fill_density is 0";
|
||||
"solid_infill_below_area and solid_infill_every_layers are ignored when fill_density is 0";
|
||||
}
|
||||
|
||||
{
|
||||
@ -359,26 +361,26 @@ for my $pattern (qw(rectilinear honeycomb hilbertcurve concentric)) {
|
||||
$config->set('infill_extrusion_width', 0.52);
|
||||
$config->set('solid_infill_extrusion_width', 0.52);
|
||||
$config->set('first_layer_extrusion_width', 0);
|
||||
|
||||
|
||||
my $print = Slic3r::Test::init_print('A', config => $config);
|
||||
my %infill = (); # Z => [ Line, Line ... ]
|
||||
my $tool = undef;
|
||||
my $tool = undef;
|
||||
Slic3r::GCode::Reader->new->parse(Slic3r::Test::gcode($print), sub {
|
||||
my ($self, $cmd, $args, $info) = @_;
|
||||
|
||||
if ($cmd =~ /^T(\d+)/) {
|
||||
my ($self, $cmd, $args, $info) = @_;
|
||||
|
||||
if ($cmd =~ /^T(\d+)/) {
|
||||
$tool = $1;
|
||||
} elsif ($cmd eq 'G1' && $info->{extruding} && $info->{dist_XY} > 0) {
|
||||
} elsif ($cmd eq 'G1' && $info->{extruding} && $info->{dist_XY} > 0) {
|
||||
if ($tool == $config->infill_extruder-1) {
|
||||
my $z = 1 * $self->Z;
|
||||
$infill{$z} ||= [];
|
||||
push @{$infill{$z}}, Slic3r::Line->new_scale(
|
||||
my $z = 1 * $self->Z;
|
||||
$infill{$z} ||= [];
|
||||
push @{$infill{$z}}, Slic3r::Line->new_scale(
|
||||
[ $self->X, $self->Y ],
|
||||
[ $info->{new_X}, $info->{new_Y} ],
|
||||
);
|
||||
);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
my $grow_d = scale($config->infill_extrusion_width)/2;
|
||||
my $layer0_infill = union([ map @{$_->grow($grow_d)}, @{ $infill{0.2} } ]);
|
||||
my $layer1_infill = union([ map @{$_->grow($grow_d)}, @{ $infill{0.4} } ]);
|
||||
@ -394,32 +396,32 @@ for my $pattern (qw(rectilinear honeycomb hilbertcurve concentric)) {
|
||||
$config->set('perimeter_extrusion_width', 0.72);
|
||||
$config->set('top_infill_extrusion_width', 0.1);
|
||||
$config->set('infill_extruder', 2); # in order to distinguish infill
|
||||
$config->set('solid_infill_extruder', 2); # in order to distinguish infill
|
||||
|
||||
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);
|
||||
$config->set('solid_infill_extruder', 2); # in order to distinguish infill
|
||||
|
||||
my $print = Slic3r::Test::init_print('20mm_cube', config => $config);
|
||||
my %infill = (); # Z => [ Line, Line ... ]
|
||||
my %other = (); # Z => [ Line, Line ... ]
|
||||
my $tool = undef;
|
||||
my %other = (); # Z => [ Line, Line ... ]
|
||||
my $tool = undef;
|
||||
Slic3r::GCode::Reader->new->parse(Slic3r::Test::gcode($print), sub {
|
||||
my ($self, $cmd, $args, $info) = @_;
|
||||
|
||||
if ($cmd =~ /^T(\d+)/) {
|
||||
my ($self, $cmd, $args, $info) = @_;
|
||||
|
||||
if ($cmd =~ /^T(\d+)/) {
|
||||
$tool = $1;
|
||||
} elsif ($cmd eq 'G1' && $info->{extruding} && $info->{dist_XY} > 0) {
|
||||
} elsif ($cmd eq 'G1' && $info->{extruding} && $info->{dist_XY} > 0) {
|
||||
my $z = 1 * $self->Z;
|
||||
my $line = Slic3r::Line->new_scale(
|
||||
[ $self->X, $self->Y ],
|
||||
[ $info->{new_X}, $info->{new_Y} ],
|
||||
);
|
||||
[ $self->X, $self->Y ],
|
||||
[ $info->{new_X}, $info->{new_Y} ],
|
||||
);
|
||||
if ($tool == $config->infill_extruder-1) {
|
||||
$infill{$z} //= [];
|
||||
push @{$infill{$z}}, $line;
|
||||
$infill{$z} //= [];
|
||||
push @{$infill{$z}}, $line;
|
||||
} else {
|
||||
$other{$z} //= [];
|
||||
push @{$other{$z}}, $line;
|
||||
$other{$z} //= [];
|
||||
push @{$other{$z}}, $line;
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
my $top_z = max(keys %infill);
|
||||
my $top_infill_grow_d = scale($config->top_infill_extrusion_width)/2;
|
||||
my $top_infill = union([ map @{$_->grow($top_infill_grow_d)}, @{ $infill{$top_z} } ]);
|
||||
|
Loading…
x
Reference in New Issue
Block a user