Multithreading dense_infill

This commit is contained in:
supermerill 2021-10-31 22:48:30 +01:00
parent 0f897eeaa3
commit 05c03d7120
2 changed files with 147 additions and 129 deletions

View File

@ -1797,11 +1797,12 @@ void Print::process()
{ {
name_tbb_thread_pool_threads(); name_tbb_thread_pool_threads();
bool something_done = !is_step_done_unguarded(psBrim); bool something_done = !is_step_done_unguarded(psBrim);
BOOST_LOG_TRIVIAL(info) << "Starting the slicing process." << log_memory_info(); BOOST_LOG_TRIVIAL(info) << "Starting the slicing process." << log_memory_info();
for (PrintObject *obj : m_objects) for (PrintObject *obj : m_objects)
obj->make_perimeters(); obj->make_perimeters();
this->set_status(70, L("Infilling layers")); this->set_status(70, L("Infilling layers"));
//note: as object seems to be sliced independantly, it's maybe possible to add a tbb parallel_loop with simple partitioner on infill,
// as prepare_infill has some function not //
for (PrintObject *obj : m_objects) for (PrintObject *obj : m_objects)
obj->infill(); obj->infill();
for (PrintObject *obj : m_objects) for (PrintObject *obj : m_objects)

View File

@ -1155,160 +1155,177 @@ namespace Slic3r {
const float COEFF_SPLIT = 1.5; const float COEFF_SPLIT = 1.5;
for (const PrintRegion* region : this->m_print->regions()) { for (const PrintRegion* region : this->m_print->regions()) {
LayerRegion* previousOne = NULL;
//count how many surface there are on each one //count how many surface there are on each one
if (region->config().infill_dense.getBool() && region->config().fill_density < 40) { if (region->config().infill_dense.getBool() && region->config().fill_density < 40) {
for (size_t idx_layer = this->layers().size() - 1; idx_layer < this->layers().size(); --idx_layer) { std::vector<LayerRegion*> layeridx2lregion;
LayerRegion* layerm = NULL; std::vector<Surfaces> new_surfaces; //surface store, as you can't modify them when working in //
// store the LayerRegion on which we are working
layeridx2lregion.resize(this->layers().size(), nullptr);
new_surfaces.resize(this->layers().size(), Surfaces{});
for (size_t idx_layer = 0; idx_layer < this->layers().size(); ++idx_layer) {
LayerRegion* layerm = nullptr;
for (LayerRegion* lregion : this->layers()[idx_layer]->regions()) { for (LayerRegion* lregion : this->layers()[idx_layer]->regions()) {
if (lregion->region() == region) { if (lregion->region() == region) {
layerm = lregion; layerm = lregion;
break; break;
} }
} }
if (layerm == NULL) { if (layerm != nullptr)
previousOne = NULL; layeridx2lregion[idx_layer] = layerm;
continue; }
} // run in parallel, it's a costly thing.
if (previousOne == NULL) { tbb::parallel_for(tbb::blocked_range<size_t>(0, this->layers().size()-1),
previousOne = layerm; [this, &layeridx2lregion, &new_surfaces, region, COEFF_SPLIT](const tbb::blocked_range<size_t>& range) {
continue; for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++idx_layer) {
} // we our LayerRegion and the one on top
Surfaces surfs_to_add; LayerRegion* layerm = layeridx2lregion[idx_layer];
for (Surface& surface : layerm->fill_surfaces.surfaces) { const LayerRegion* previousOne = nullptr;
surface.maxNbSolidLayersOnTop = -1; previousOne = layeridx2lregion[idx_layer + 1];
if (!surface.has_fill_solid()) { if (layerm == nullptr || previousOne == nullptr) {
Surfaces surf_to_add; continue;
ExPolygons dense_polys; }
std::vector<uint16_t> dense_priority; Surfaces &surfs_to_add = new_surfaces[idx_layer];
const ExPolygons surfs_with_overlap = { surface.expolygon }; // check all surfaces to cover
////create a surface with overlap to allow the dense thing to bond to the infill for (Surface& surface : layerm->fill_surfaces.surfaces) {
coord_t scaled_width = layerm->flow(frInfill, true).scaled_width(); surface.maxNbSolidLayersOnTop = -1;
coord_t overlap = scaled_width / 4; if (!surface.has_fill_solid()) {
for (const ExPolygon& surf_with_overlap : surfs_with_overlap) { Surfaces surf_to_add;
ExPolygons sparse_polys = { surf_with_overlap }; ExPolygons dense_polys;
//find the surface which intersect with the smallest maxNb possible std::vector<uint16_t> dense_priority;
for (Surface& upp : previousOne->fill_surfaces.surfaces) { const ExPolygons surfs_with_overlap = { surface.expolygon };
if (upp.has_fill_solid()) { ////create a surface with overlap to allow the dense thing to bond to the infill
// i'm using intersection_ex because the result different than coord_t scaled_width = layerm->flow(frInfill, true).scaled_width();
// upp.expolygon.overlaps(surf.expolygon) or surf.expolygon.overlaps(upp.expolygon) coord_t overlap = scaled_width / 4;
//and a little offset2 to remove the almost supported area for (const ExPolygon& surf_with_overlap : surfs_with_overlap) {
ExPolygons intersect = ExPolygons sparse_polys = { surf_with_overlap };
offset2_ex( //find the surface which intersect with the smallest maxNb possible
intersection_ex(sparse_polys, { upp.expolygon }, true) for (const Surface& upp : previousOne->fill_surfaces.surfaces) {
, (float)-layerm->flow(frInfill).scaled_width(), (float)layerm->flow(frInfill).scaled_width()); if (upp.has_fill_solid()) {
if (!intersect.empty()) { // i'm using intersection_ex because the result different than
double area_intersect = 0; // upp.expolygon.overlaps(surf.expolygon) or surf.expolygon.overlaps(upp.expolygon)
// calculate area to decide if area is small enough for autofill //and a little offset2 to remove the almost supported area
if (layerm->region()->config().infill_dense_algo.value == dfaAutoNotFull || layerm->region()->config().infill_dense_algo.value == dfaAutoOrEnlarged) ExPolygons intersect =
for (ExPolygon poly_inter : intersect) offset2_ex(
area_intersect += poly_inter.area(); intersection_ex(sparse_polys, { upp.expolygon }, true)
, (float)-layerm->flow(frInfill).scaled_width(), (float)layerm->flow(frInfill).scaled_width());
double surf_with_overlap_area = surf_with_overlap.area();
if (layerm->region()->config().infill_dense_algo.value == dfaEnlarged
|| (layerm->region()->config().infill_dense_algo.value == dfaAutoOrEnlarged && surf_with_overlap_area <= area_intersect * COEFF_SPLIT)) {
//expand the area a bit
intersect = offset_ex(intersect, double(scale_(layerm->region()->config().external_infill_margin.get_abs_value(
region->config().perimeters == 0 ? 0 : (layerm->flow(frExternalPerimeter).width + layerm->flow(frPerimeter).spacing() * (region->config().perimeters - 1))))));
} else if (layerm->region()->config().infill_dense_algo.value == dfaAutoNotFull
|| layerm->region()->config().infill_dense_algo.value == dfaAutomatic) {
//like intersect.empty() but more resilient
if (layerm->region()->config().infill_dense_algo.value == dfaAutomatic
|| surf_with_overlap_area > area_intersect * COEFF_SPLIT) {
ExPolygons cover_intersect;
// it will be a dense infill, split the surface if needed
//ExPolygons cover_intersect;
for (ExPolygon& expoly_tocover : intersect) {
ExPolygons temp = dense_fill_fit_to_size(
expoly_tocover,
surf_with_overlap,
4 * layerm->flow(frInfill).scaled_width(),
0.01f);
cover_intersect.insert(cover_intersect.end(), temp.begin(), temp.end());
}
intersect = cover_intersect;
} else {
intersect.clear();
}
}
if (!intersect.empty()) { if (!intersect.empty()) {
double area_intersect = 0;
// calculate area to decide if area is small enough for autofill
if (layerm->region()->config().infill_dense_algo.value == dfaAutoNotFull || layerm->region()->config().infill_dense_algo.value == dfaAutoOrEnlarged)
for (ExPolygon poly_inter : intersect)
area_intersect += poly_inter.area();
ExPolygons sparse_surfaces = diff_ex(sparse_polys, intersect, true); double surf_with_overlap_area = surf_with_overlap.area();
ExPolygons dense_surfaces = diff_ex(sparse_polys, sparse_surfaces, true); if (layerm->region()->config().infill_dense_algo.value == dfaEnlarged
for (ExPolygon& poly : intersect) { || (layerm->region()->config().infill_dense_algo.value == dfaAutoOrEnlarged && surf_with_overlap_area <= area_intersect * COEFF_SPLIT)) {
uint16_t priority = 1; //expand the area a bit
ExPolygons dense = { poly }; intersect = offset_ex(intersect, (scaled(layerm->region()->config().external_infill_margin.get_abs_value(
for (size_t idx_dense = 0; idx_dense < dense_polys.size(); idx_dense++) { region->config().perimeters == 0 ? 0 : (layerm->flow(frExternalPerimeter).width + layerm->flow(frPerimeter).spacing() * (region->config().perimeters - 1))))));
ExPolygons dense_test = diff_ex(dense, { dense_polys[idx_dense] }, true); } else if (layerm->region()->config().infill_dense_algo.value == dfaAutoNotFull
if (dense_test != dense) { || layerm->region()->config().infill_dense_algo.value == dfaAutomatic) {
priority = std::max(priority, uint16_t(dense_priority[idx_dense] + 1));
//like intersect.empty() but more resilient
if (layerm->region()->config().infill_dense_algo.value == dfaAutomatic
|| surf_with_overlap_area > area_intersect * COEFF_SPLIT) {
ExPolygons cover_intersect;
// it will be a dense infill, split the surface if needed
//ExPolygons cover_intersect;
for (ExPolygon& expoly_tocover : intersect) {
ExPolygons temp = dense_fill_fit_to_size(
expoly_tocover,
surf_with_overlap,
4 * layerm->flow(frInfill).scaled_width(),
0.01f);
cover_intersect.insert(cover_intersect.end(), temp.begin(), temp.end());
} }
dense = dense_test; intersect = cover_intersect;
} else {
intersect.clear();
} }
dense_polys.insert(dense_polys.end(), dense.begin(), dense.end());
for (int i = 0; i < dense.size(); i++)
dense_priority.push_back(priority);
} }
//assign (copy) if (!intersect.empty()) {
sparse_polys = std::move(sparse_surfaces);
ExPolygons sparse_surfaces = diff_ex(sparse_polys, intersect, true);
ExPolygons dense_surfaces = diff_ex(sparse_polys, sparse_surfaces, true);
for (ExPolygon& poly : intersect) {
uint16_t priority = 1;
ExPolygons dense = { poly };
for (size_t idx_dense = 0; idx_dense < dense_polys.size(); idx_dense++) {
ExPolygons dense_test = diff_ex(dense, { dense_polys[idx_dense] }, true);
if (dense_test != dense) {
priority = std::max(priority, uint16_t(dense_priority[idx_dense] + 1));
}
dense = dense_test;
}
dense_polys.insert(dense_polys.end(), dense.begin(), dense.end());
for (int i = 0; i < dense.size(); i++)
dense_priority.push_back(priority);
}
//assign (copy)
sparse_polys = std::move(sparse_surfaces);
}
} }
} }
//check if we are full-dense
if (sparse_polys.empty()) break;
} }
//check if we are full-dense
if (sparse_polys.empty()) break;
}
//check if we need to split the surface //check if we need to split the surface
if (!dense_polys.empty()) { if (!dense_polys.empty()) {
double area_dense = 0; double area_dense = 0;
for (ExPolygon poly_inter : dense_polys) area_dense += poly_inter.area(); for (ExPolygon poly_inter : dense_polys) area_dense += poly_inter.area();
double area_sparse = 0; double area_sparse = 0;
for (ExPolygon poly_inter : sparse_polys) area_sparse += poly_inter.area(); for (ExPolygon poly_inter : sparse_polys) area_sparse += poly_inter.area();
// if almost no empty space, simplify by filling everything (else) // if almost no empty space, simplify by filling everything (else)
if (area_sparse > area_dense * 0.1) { if (area_sparse > area_dense * 0.1) {
//split //split
//dense_polys = union_ex(dense_polys); //dense_polys = union_ex(dense_polys);
for (int idx_dense = 0; idx_dense < dense_polys.size(); idx_dense++) { for (int idx_dense = 0; idx_dense < dense_polys.size(); idx_dense++) {
ExPolygon dense_poly = dense_polys[idx_dense]; ExPolygon dense_poly = dense_polys[idx_dense];
//remove overlap with perimeter //remove overlap with perimeter
ExPolygons offseted_dense_polys = intersection_ex({ dense_poly }, layerm->fill_no_overlap_expolygons); ExPolygons offseted_dense_polys = intersection_ex({ dense_poly }, layerm->fill_no_overlap_expolygons);
//add overlap with everything //add overlap with everything
offseted_dense_polys = offset_ex(offseted_dense_polys, overlap); offseted_dense_polys = offset_ex(offseted_dense_polys, overlap);
for (ExPolygon offseted_dense_poly : offseted_dense_polys) { for (ExPolygon offseted_dense_poly : offseted_dense_polys) {
Surface dense_surf(surface, offseted_dense_poly); Surface dense_surf(surface, offseted_dense_poly);
dense_surf.maxNbSolidLayersOnTop = 1; dense_surf.maxNbSolidLayersOnTop = 1;
dense_surf.priority = dense_priority[idx_dense]; dense_surf.priority = dense_priority[idx_dense];
surf_to_add.push_back(dense_surf); surf_to_add.push_back(dense_surf);
}
} }
sparse_polys = union_ex(sparse_polys);
for (ExPolygon sparse_poly : sparse_polys) {
Surface sparse_surf(surface, sparse_poly);
surf_to_add.push_back(sparse_surf);
}
//layerm->fill_surfaces.surfaces.erase(it_surf);
} else {
surface.maxNbSolidLayersOnTop = 1;
surf_to_add.clear();
surf_to_add.push_back(surface);
break;
} }
sparse_polys = union_ex(sparse_polys);
for (ExPolygon sparse_poly : sparse_polys) {
Surface sparse_surf(surface, sparse_poly);
surf_to_add.push_back(sparse_surf);
}
//layerm->fill_surfaces.surfaces.erase(it_surf);
} else { } else {
surface.maxNbSolidLayersOnTop = 1;
surf_to_add.clear(); surf_to_add.clear();
surf_to_add.push_back(surface); surf_to_add.emplace_back(std::move(surface));
// mitigation: if not possible, don't try the others.
break; break;
} }
} else {
surf_to_add.clear();
surf_to_add.emplace_back(std::move(surface));
// mitigation: if not possible, don't try the others.
break;
} }
} // break go here
// break go here surfs_to_add.insert(surfs_to_add.begin(), surf_to_add.begin(), surf_to_add.end());
surfs_to_add.insert(surfs_to_add.begin(), surf_to_add.begin(), surf_to_add.end()); } else surfs_to_add.emplace_back(std::move(surface));
} else surfs_to_add.emplace_back(std::move(surface)); }
//layerm->fill_surfaces.surfaces = std::move(surfs_to_add);
} }
layerm->fill_surfaces.surfaces = std::move(surfs_to_add); });
previousOne = layerm; // now set the new surfaces
for (size_t idx_layer = 0; idx_layer < this->layers().size() - 1; ++idx_layer) {
LayerRegion* lr = layeridx2lregion[idx_layer];
if(lr != nullptr && layeridx2lregion[idx_layer + 1] != nullptr)
lr->fill_surfaces.surfaces = new_surfaces[idx_layer];
} }
} }
} }