mirror of
https://git.mirrors.martin98.com/https://github.com/slic3r/Slic3r.git
synced 2025-08-16 04:35:57 +08:00
thin_walls : medial axis improvements
It's now an intensive post-processing of the raw voronoi diagram. It picks each crossing and try to merge branch where it makes sense, updating the width. + new tests (it fail the all medial axis segments of a semicircumference have the same orientation, but it's intended) + filter for too small thin walls + edge case for too many thin/thick chunks note: the algo do not know "the good direction". If the thing is more wide that long, it will extrude side-way.
This commit is contained in:
parent
453627440f
commit
107de68b03
24
t/thin.t
24
t/thin.t
@ -1,4 +1,4 @@
|
||||
use Test::More tests => 23;
|
||||
use Test::More tests => 28;
|
||||
use strict;
|
||||
use warnings;
|
||||
|
||||
@ -108,6 +108,28 @@ if (0) {
|
||||
'all medial axis segments of a semicircumference have the same orientation';
|
||||
}
|
||||
|
||||
{
|
||||
my $expolygon = Slic3r::ExPolygon->new(Slic3r::Polygon->new_scale(
|
||||
[4.3, 4], [4.3, 0], [4,0], [4,4], [0,4], [0,4.5], [4,4.5], [4,10], [4.3,10], [4.3, 4.5],
|
||||
[6, 4.5], [6,10], [6.2,10], [6.2,4.5], [10,4.5], [10,4], [6.2,4], [6.2,0], [6, 0], [6, 4],
|
||||
));
|
||||
my $res = $expolygon->medial_axis(scale 0.55, scale 0.25);
|
||||
is scalar(@$res), 2, 'medial axis of a (bit too narrow) french cross is two lines';
|
||||
ok unscale($res->[0]->length) >= (9.9) - epsilon, 'medial axis has reasonable length';
|
||||
ok unscale($res->[1]->length) >= (9.9) - epsilon, 'medial axis has reasonable length';
|
||||
}
|
||||
|
||||
{
|
||||
my $expolygon = Slic3r::ExPolygon->new(Slic3r::Polygon->new_scale(
|
||||
[0.86526705,1.4509841], [0.57696039,1.8637021], [0.4502297,2.5569978], [0.45626199,3.2965596], [1.1218851,3.3049455], [0.96681072,2.8243202], [0.86328971,2.2056997], [0.85367905,1.7790778],
|
||||
));
|
||||
my $res = $expolygon->medial_axis(scale 1, scale 0.25);
|
||||
is scalar(@$res), 1, 'medial axis of a (bit too narrow) french cross is two lines';
|
||||
ok unscale($res->[0]->length) >= (1.4) - epsilon, 'medial axis has reasonable length';
|
||||
# TODO: check if min width is < 0.3 and max width is > 0.6 (min($res->[0]->width.front, $res->[0]->width.back) # problem: can't have access to width
|
||||
|
||||
}
|
||||
|
||||
{
|
||||
my $expolygon = Slic3r::ExPolygon->new(Slic3r::Polygon->new_scale(
|
||||
[100, 100],
|
||||
|
@ -206,8 +206,101 @@ void ExPolygon::simplify(double tolerance, ExPolygons* expolygons) const
|
||||
append(*expolygons, this->simplify(tolerance));
|
||||
}
|
||||
|
||||
/// remove point that are at SCALED_EPSILON * 2 distance.
|
||||
void remove_point_too_near(ThickPolyline* to_reduce) {
|
||||
const int32_t smallest = SCALED_EPSILON * 2;
|
||||
uint32_t id = 1;
|
||||
while (id < to_reduce->points.size() - 2) {
|
||||
uint32_t newdist = min(to_reduce->points[id].distance_to(to_reduce->points[id - 1])
|
||||
, to_reduce->points[id].distance_to(to_reduce->points[id + 1]));
|
||||
if (newdist < smallest) {
|
||||
to_reduce->points.erase(to_reduce->points.begin() + id);
|
||||
to_reduce->width.erase(to_reduce->width.begin() + id);
|
||||
} else {
|
||||
++id;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// add points from pattern to to_modify at the same % of the length
|
||||
/// so not add if an other point is present at the correct position
|
||||
void add_point_same_percent(ThickPolyline* pattern, ThickPolyline* to_modify) {
|
||||
const double to_modify_length = to_modify->length();
|
||||
const double percent_epsilon = SCALED_EPSILON / to_modify_length;
|
||||
const double pattern_length = pattern->length();
|
||||
|
||||
double percent_length = 0;
|
||||
for (uint32_t idx_point = 1; idx_point < pattern->points.size() - 1; ++idx_point) {
|
||||
percent_length += pattern->points[idx_point-1].distance_to(pattern->points[idx_point]) / pattern_length;
|
||||
//find position
|
||||
uint32_t idx_other = 1;
|
||||
double percent_length_other_before = 0;
|
||||
double percent_length_other = 0;
|
||||
while (idx_other < to_modify->points.size()) {
|
||||
percent_length_other_before = percent_length_other;
|
||||
percent_length_other += to_modify->points[idx_other-1].distance_to(to_modify->points[idx_other])
|
||||
/ to_modify_length;
|
||||
if (percent_length_other > percent_length - percent_epsilon) {
|
||||
//if higher (we have gone over it)
|
||||
break;
|
||||
}
|
||||
++idx_other;
|
||||
}
|
||||
if (percent_length_other > percent_length + percent_epsilon) {
|
||||
//insert a new point before the position
|
||||
double percent_dist = (percent_length - percent_length_other_before) / (percent_length_other - percent_length_other_before);
|
||||
coordf_t new_width = to_modify->width[idx_other - 1] * (1 - percent_dist);
|
||||
new_width += to_modify->width[idx_other] * (percent_dist);
|
||||
Point new_point;
|
||||
new_point.x = (coord_t)((double)(to_modify->points[idx_other - 1].x) * (1 - percent_dist));
|
||||
new_point.x += (coord_t)((double)(to_modify->points[idx_other].x) * (percent_dist));
|
||||
new_point.y = (coord_t)((double)(to_modify->points[idx_other - 1].y) * (1 - percent_dist));
|
||||
new_point.y += (coord_t)((double)(to_modify->points[idx_other].y) * (percent_dist));
|
||||
to_modify->width.insert(to_modify->width.begin() + idx_other, new_width);
|
||||
to_modify->points.insert(to_modify->points.begin() + idx_other, new_point);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// find the nearest angle in the contour (or 2 nearest if it's difficult to choose)
|
||||
/// return 1 for an angle of 90° and 0 for an angle of 0° or 180°
|
||||
double get_coeff_from_angle_countour(Point &point, const ExPolygon &contour) {
|
||||
double nearestDist = point.distance_to(contour.contour.points.front());
|
||||
Point nearest = contour.contour.points.front();
|
||||
uint32_t id_nearest = 0;
|
||||
double nearDist = nearestDist;
|
||||
Point near = nearest;
|
||||
uint32_t id_near=0;
|
||||
for (uint32_t id_point = 1; id_point < contour.contour.points.size(); ++id_point) {
|
||||
if (nearestDist > point.distance_to(contour.contour.points[id_point])) {
|
||||
nearestDist = point.distance_to(contour.contour.points[id_point]);
|
||||
near = nearest;
|
||||
nearest = contour.contour.points[id_point];
|
||||
id_near = id_nearest;
|
||||
id_nearest = id_point;
|
||||
}
|
||||
}
|
||||
double angle = 0;
|
||||
Point point_before = id_nearest == 0 ? contour.contour.points.back() : contour.contour.points[id_nearest - 1];
|
||||
Point point_after = id_nearest == contour.contour.points.size()-1 ? contour.contour.points.front() : contour.contour.points[id_nearest + 1];
|
||||
//compute angle
|
||||
angle = min(nearest.ccw_angle(point_before, point_after), nearest.ccw_angle(point_after, point_before));
|
||||
//compute the diff from 90°
|
||||
angle = abs(angle - PI / 2);
|
||||
if (near != nearest && max(nearestDist, nearDist) + SCALED_EPSILON < nearest.distance_to(near)) {
|
||||
//not only nearest
|
||||
Point point_before = id_near == 0 ? contour.contour.points.back() : contour.contour.points[id_near - 1];
|
||||
Point point_after = id_near == contour.contour.points.size() - 1 ? contour.contour.points.front() : contour.contour.points[id_near + 1];
|
||||
double angle2 = min(nearest.ccw_angle(point_before, point_after), nearest.ccw_angle(point_after, point_before));
|
||||
angle2 = abs(angle - PI / 2);
|
||||
angle = (angle + angle2) / 2;
|
||||
}
|
||||
|
||||
return 1-(angle/(PI/2));
|
||||
}
|
||||
|
||||
void
|
||||
ExPolygon::medial_axis(const ExPolygon &bounds, double max_width, double min_width, ThickPolylines* polylines) const
|
||||
ExPolygon::medial_axis(const ExPolygon &bounds, double max_width, double min_width, ThickPolylines* polylines, double height) const
|
||||
{
|
||||
// init helper object
|
||||
Slic3r::Geometry::MedialAxis ma(max_width, min_width, this);
|
||||
@ -217,12 +310,16 @@ ExPolygon::medial_axis(const ExPolygon &bounds, double max_width, double min_wid
|
||||
ThickPolylines pp;
|
||||
ma.build(&pp);
|
||||
|
||||
/*
|
||||
SVG svg("medial_axis.svg");
|
||||
svg.draw(*this);
|
||||
svg.draw(pp);
|
||||
svg.Close();
|
||||
*/
|
||||
|
||||
//{
|
||||
// stringstream stri;
|
||||
// stri << "medial_axis" << id << ".svg";
|
||||
// SVG svg(stri.str());
|
||||
// svg.draw(bounds);
|
||||
// svg.draw(*this);
|
||||
// svg.draw(pp);
|
||||
// svg.Close();
|
||||
//}
|
||||
|
||||
/* Find the maximum width returned; we're going to use this for validating and
|
||||
filtering the output segments. */
|
||||
@ -230,51 +327,152 @@ ExPolygon::medial_axis(const ExPolygon &bounds, double max_width, double min_wid
|
||||
for (ThickPolylines::const_iterator it = pp.begin(); it != pp.end(); ++it)
|
||||
max_w = fmaxf(max_w, *std::max_element(it->width.begin(), it->width.end()));
|
||||
|
||||
/* Aligned fusion: Fusion the bits at the end of lines by "increasing thikness"
|
||||
* For that, we have to find other lines,
|
||||
* and with a next point no more distant than the max width.
|
||||
* Then, we can merge the bit from the first point to the second by following the mean.
|
||||
*/
|
||||
concatThickPolylines(pp);
|
||||
//reoder pp by length (ascending) It's really important to do that to avoid building the line from the width insteand of the length
|
||||
std::sort(pp.begin(), pp.end(), [](const ThickPolyline & a, const ThickPolyline & b) { return a.length() < b.length(); });
|
||||
|
||||
// Aligned fusion: Fusion the bits at the end of lines by "increasing thickness"
|
||||
// For that, we have to find other lines,
|
||||
// and with a next point no more distant than the max width.
|
||||
// Then, we can merge the bit from the first point to the second by following the mean.
|
||||
//
|
||||
int id_f = 0;
|
||||
bool changes = true;
|
||||
|
||||
|
||||
while (changes) {
|
||||
changes = false;
|
||||
for (size_t i = 0; i < pp.size(); ++i) {
|
||||
ThickPolyline& polyline = pp[i];
|
||||
|
||||
//simple check to see if i can be fusionned
|
||||
if (!polyline.endpoints.first && !polyline.endpoints.second) continue;
|
||||
|
||||
|
||||
ThickPolyline* best_candidate = nullptr;
|
||||
float best_dot = -1;
|
||||
int best_idx = 0;
|
||||
|
||||
double dot_poly_branch = 0;
|
||||
double dot_candidate_branch = 0;
|
||||
|
||||
// find another polyline starting here
|
||||
for (size_t j = i + 1; j < pp.size(); ++j) {
|
||||
ThickPolyline& other = pp[j];
|
||||
if (polyline.last_point().coincides_with(other.last_point())) {
|
||||
polyline.reverse();
|
||||
other.reverse();
|
||||
}
|
||||
else if (polyline.first_point().coincides_with(other.last_point())) {
|
||||
} else if (polyline.first_point().coincides_with(other.last_point())) {
|
||||
other.reverse();
|
||||
}
|
||||
else if (polyline.first_point().coincides_with(other.first_point())) {
|
||||
}
|
||||
else if (polyline.last_point().coincides_with(other.first_point())) {
|
||||
} else if (polyline.first_point().coincides_with(other.first_point())) {
|
||||
} else if (polyline.last_point().coincides_with(other.first_point())) {
|
||||
polyline.reverse();
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
//std::cout << " try : " << i << ":" << j << " : " <<
|
||||
// (polyline.points.size() < 2 && other.points.size() < 2) <<
|
||||
// (!polyline.endpoints.second || !other.endpoints.second) <<
|
||||
// ((polyline.points.back().distance_to(other.points.back())
|
||||
// + (polyline.width.back() + other.width.back()) / 4)
|
||||
// > max_width*1.05) <<
|
||||
// (abs(polyline.length() - other.length()) > max_width / 2) << "\n";
|
||||
|
||||
//only consider the other if the next point is near us
|
||||
//// mergeable tests
|
||||
if (polyline.points.size() < 2 && other.points.size() < 2) continue;
|
||||
if (!polyline.endpoints.second || !other.endpoints.second) continue;
|
||||
if (polyline.points.back().distance_to(other.points.back()) > max_width) continue;
|
||||
if (polyline.points.size() != other.points.size()) continue;
|
||||
// test if the new width will not be too big if a fusion occur
|
||||
//note that this isn't the real calcul. It's just to avoid merging lines too far apart.
|
||||
if (
|
||||
((polyline.points.back().distance_to(other.points.back())
|
||||
+ (polyline.width.back() + other.width.back()) / 4)
|
||||
> max_width*1.05))
|
||||
continue;
|
||||
// test if the lines are not too different in length.
|
||||
if (abs(polyline.length() - other.length()) > max_width / 2) continue;
|
||||
|
||||
|
||||
//test if we don't merge with something too different and without any relevance.
|
||||
double coeffSizePolyI = 1;
|
||||
if (polyline.width.back() == 0) {
|
||||
coeffSizePolyI = 0.1 + 0.9*get_coeff_from_angle_countour(polyline.points.back(), *this);
|
||||
}
|
||||
double coeffSizeOtherJ = 1;
|
||||
if (other.width.back() == 0) {
|
||||
coeffSizeOtherJ = 0.1+0.9*get_coeff_from_angle_countour(other.points.back(), *this);
|
||||
}
|
||||
if (abs(polyline.length()*coeffSizePolyI - other.length()*coeffSizeOtherJ) > max_width / 2) continue;
|
||||
|
||||
//compute angle to see if it's better than previous ones (straighter = better).
|
||||
Pointf v_poly(polyline.lines().front().vector().x, polyline.lines().front().vector().y);
|
||||
v_poly.scale(1 / std::sqrt(v_poly.x*v_poly.x + v_poly.y*v_poly.y));
|
||||
Pointf v_other(other.lines().front().vector().x, other.lines().front().vector().y);
|
||||
v_other.scale(1 / std::sqrt(v_other.x*v_other.x + v_other.y*v_other.y));
|
||||
float other_dot = v_poly.x*v_other.x + v_poly.y*v_other.y;
|
||||
|
||||
// Get the branch/line in wich we may merge, if possible
|
||||
// with that, we can decide what is important, and how we can merge that.
|
||||
// angle_poly - angle_candi =90° => one is useless
|
||||
// both angle are equal => both are useful with same strength
|
||||
// ex: Y => | both are useful to crete a nice line
|
||||
// ex2: TTTTT => ----- these 90° useless lines should be discarded
|
||||
bool find_main_branch = false;
|
||||
int biggest_main_branch_id = 0;
|
||||
int biggest_main_branch_length = 0;
|
||||
for (size_t k = 0; k < pp.size(); ++k) {
|
||||
//std::cout << "try to find main : " << k << " ? " << i << " " << j << " ";
|
||||
if (k == i | k == j) continue;
|
||||
ThickPolyline& main = pp[k];
|
||||
if (polyline.first_point().coincides_with(main.last_point())) {
|
||||
main.reverse();
|
||||
if (!main.endpoints.second)
|
||||
find_main_branch = true;
|
||||
else if (biggest_main_branch_length < main.length()) {
|
||||
biggest_main_branch_id = k;
|
||||
biggest_main_branch_length = main.length();
|
||||
}
|
||||
} else if (polyline.first_point().coincides_with(main.first_point())) {
|
||||
if (!main.endpoints.second)
|
||||
find_main_branch = true;
|
||||
else if (biggest_main_branch_length < main.length()) {
|
||||
biggest_main_branch_id = k;
|
||||
biggest_main_branch_length = main.length();
|
||||
}
|
||||
}
|
||||
if (find_main_branch) {
|
||||
//use this variable to store the good index and break to compute it
|
||||
biggest_main_branch_id = k;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!find_main_branch && biggest_main_branch_length == 0) {
|
||||
// nothing -> it's impossible!
|
||||
dot_poly_branch = 0.707;
|
||||
dot_candidate_branch = 0.707;
|
||||
//std::cout << "no main branch... impossible!!\n";
|
||||
} else if (!find_main_branch &&
|
||||
(pp[biggest_main_branch_id].length() < polyline.length() || pp[biggest_main_branch_id].length() < other.length()) ){
|
||||
//the main branch should have no endpoint or be bigger!
|
||||
//here, it have an endpoint, and is not the biggest -> bad!
|
||||
continue;
|
||||
} else {
|
||||
//compute the dot (biggest_main_branch_id)
|
||||
Pointf v_poly(polyline.lines().front().vector().x, polyline.lines().front().vector().y);
|
||||
v_poly.scale(1 / std::sqrt(v_poly.x*v_poly.x + v_poly.y*v_poly.y));
|
||||
Pointf v_candid(other.lines().front().vector().x, other.lines().front().vector().y);
|
||||
v_candid.scale(1 / std::sqrt(v_candid.x*v_candid.x + v_candid.y*v_candid.y));
|
||||
Pointf v_branch(-pp[biggest_main_branch_id].lines().front().vector().x, -pp[biggest_main_branch_id].lines().front().vector().y);
|
||||
v_branch.scale(1 / std::sqrt(v_branch.x*v_branch.x + v_branch.y*v_branch.y));
|
||||
dot_poly_branch = v_poly.x*v_branch.x + v_poly.y*v_branch.y;
|
||||
dot_candidate_branch = v_candid.x*v_branch.x + v_candid.y*v_branch.y;
|
||||
if (dot_poly_branch < 0) dot_poly_branch = 0;
|
||||
if (dot_candidate_branch < 0) dot_candidate_branch = 0;
|
||||
}
|
||||
//test if it's useful to merge or not
|
||||
//ie, don't merge 'T' but ok for 'Y', merge only lines of not disproportionate different length (ratio max: 4)
|
||||
if (dot_poly_branch < 0.1 || dot_candidate_branch < 0.1 ||
|
||||
(polyline.length()>other.length() ? polyline.length() / other.length() : other.length() / polyline.length()) > 4) {
|
||||
continue;
|
||||
}
|
||||
if (other_dot > best_dot) {
|
||||
best_candidate = &other;
|
||||
best_idx = j;
|
||||
@ -282,20 +480,48 @@ ExPolygon::medial_axis(const ExPolygon &bounds, double max_width, double min_wid
|
||||
}
|
||||
}
|
||||
if (best_candidate != nullptr) {
|
||||
// delete very near points
|
||||
remove_point_too_near(&polyline);
|
||||
remove_point_too_near(best_candidate);
|
||||
|
||||
//TODO: witch if polyline.size > best_candidate->size
|
||||
//doesn't matter rright now because a if in the selection process prevent this.
|
||||
// add point at the same pos than the other line to have a nicer fusion
|
||||
add_point_same_percent(&polyline, best_candidate);
|
||||
add_point_same_percent(best_candidate, &polyline);
|
||||
|
||||
//get the angle of the nearest points of the contour to see : _| (good) \_ (average) __(bad)
|
||||
//sqrt because the result are nicer this way: don't over-penalize /_ angles
|
||||
//TODO: try if we can achieve a better result if we use a different algo if the angle is <90°
|
||||
const double coeff_angle_poly = (get_coeff_from_angle_countour(polyline.points.back(), *this));
|
||||
const double coeff_angle_candi = (get_coeff_from_angle_countour(best_candidate->points.back(), *this));
|
||||
|
||||
//this will encourage to follow the curve, a little, because it's shorter near the center
|
||||
//without that, it tends to go to the outter rim.
|
||||
double weight_poly = 2 - polyline.length() / max(polyline.length(), best_candidate->length());
|
||||
double weight_candi = 2 - best_candidate->length() / max(polyline.length(), best_candidate->length());
|
||||
weight_poly *= coeff_angle_poly;
|
||||
weight_candi *= coeff_angle_candi;
|
||||
const double coeff_poly = (dot_poly_branch * weight_poly) / (dot_poly_branch * weight_poly + dot_candidate_branch * weight_candi);
|
||||
const double coeff_candi = 1.0 - coeff_poly;
|
||||
//iterate the points
|
||||
// as voronoi should create symetric thing, we can iterate synchonously
|
||||
unsigned int idx_point = 1;
|
||||
while (idx_point < polyline.points.size() && polyline.points[idx_point].distance_to(best_candidate->points[idx_point]) < max_width) {
|
||||
while (idx_point < min(polyline.points.size(), best_candidate->points.size())) {
|
||||
//fusion
|
||||
polyline.points[idx_point].x += best_candidate->points[idx_point].x;
|
||||
polyline.points[idx_point].x /= 2;
|
||||
polyline.points[idx_point].y += best_candidate->points[idx_point].y;
|
||||
polyline.points[idx_point].y /= 2;
|
||||
polyline.width[idx_point] += best_candidate->width[idx_point];
|
||||
polyline.points[idx_point].x = polyline.points[idx_point].x * coeff_poly + best_candidate->points[idx_point].x * coeff_candi;
|
||||
polyline.points[idx_point].y = polyline.points[idx_point].y * coeff_poly + best_candidate->points[idx_point].y * coeff_candi;
|
||||
|
||||
// The width decrease with distance from the centerline.
|
||||
// This formula is what works the best, even if it's not perfect (created empirically). 0->3% error on a gap fill on some tests.
|
||||
//If someone find an other formula based on the properties of the voronoi algorithm used here, and it works better, please use it.
|
||||
//or maybe just use the distance to nearest edge in bounds...
|
||||
double value_from_current_width = 0.5*polyline.width[idx_point] * dot_poly_branch / max(dot_poly_branch, dot_candidate_branch);
|
||||
value_from_current_width += 0.5*best_candidate->width[idx_point] * dot_candidate_branch / max(dot_poly_branch, dot_candidate_branch);
|
||||
double value_from_dist = 2 * polyline.points[idx_point].distance_to(best_candidate->points[idx_point]);
|
||||
value_from_dist *= sqrt(min(dot_poly_branch, dot_candidate_branch) / max(dot_poly_branch, dot_candidate_branch));
|
||||
polyline.width[idx_point] = value_from_current_width + value_from_dist;
|
||||
//failsafe
|
||||
if (polyline.width[idx_point] > max_width) polyline.width[idx_point] = max_width;
|
||||
|
||||
++idx_point;
|
||||
}
|
||||
if (idx_point < best_candidate->points.size()) {
|
||||
@ -323,21 +549,22 @@ ExPolygon::medial_axis(const ExPolygon &bounds, double max_width, double min_wid
|
||||
|
||||
//remove points that are the same or too close each other, ie simplify
|
||||
for (unsigned int idx_point = 1; idx_point < polyline.points.size(); ++idx_point) {
|
||||
//distance of 1 is on the sclaed coordinates, so it correspond to SCALE_FACTOR, so it's very small
|
||||
if (polyline.points[idx_point - 1].distance_to(polyline.points[idx_point]) < 1) {
|
||||
if (polyline.points[idx_point - 1].distance_to(polyline.points[idx_point]) < SCALED_EPSILON) {
|
||||
if (idx_point < polyline.points.size() -1) {
|
||||
polyline.points.erase(polyline.points.begin() + idx_point);
|
||||
polyline.width.erase(polyline.width.begin() + idx_point);
|
||||
} else {
|
||||
polyline.points.erase(polyline.points.begin() + idx_point -1);
|
||||
polyline.points.erase(polyline.points.begin() + idx_point - 1);
|
||||
polyline.width.erase(polyline.width.begin() + idx_point - 1);
|
||||
}
|
||||
--idx_point;
|
||||
}
|
||||
}
|
||||
//remove points that are outside of the geometry
|
||||
for (unsigned int idx_point = 0; idx_point < polyline.points.size(); ++idx_point) {
|
||||
//distance of 1 is on the sclaed coordinates, so it correspond to SCALE_FACTOR, so it's very small
|
||||
if (!bounds.contains_b(polyline.points[idx_point])) {
|
||||
polyline.points.erase(polyline.points.begin() + idx_point);
|
||||
polyline.width.erase(polyline.width.begin() + idx_point);
|
||||
--idx_point;
|
||||
}
|
||||
}
|
||||
@ -350,31 +577,90 @@ ExPolygon::medial_axis(const ExPolygon &bounds, double max_width, double min_wid
|
||||
|
||||
pp.erase(pp.begin() + best_idx);
|
||||
changes = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (changes) {
|
||||
concatThickPolylines(pp);
|
||||
///reorder, in case of change
|
||||
std::sort(pp.begin(), pp.end(), [](const ThickPolyline & a, const ThickPolyline & b) { return a.length() < b.length(); });
|
||||
}
|
||||
}
|
||||
|
||||
// remove too small extrusion at start & end of polylines
|
||||
changes = false;
|
||||
for (size_t i = 0; i < pp.size(); ++i) {
|
||||
ThickPolyline& polyline = pp[i];
|
||||
// remove bits with too small extrusion
|
||||
while (polyline.points.size() > 1 && polyline.width.front() < min_width && polyline.endpoints.first) {
|
||||
//try to split if possible
|
||||
if (polyline.width[1] > min_width) {
|
||||
double percent_can_keep = (min_width - polyline.width[0]) / (polyline.width[1] - polyline.width[0]);
|
||||
if (polyline.points.front().distance_to(polyline.points[1]) * percent_can_keep > max_width / 2
|
||||
&& polyline.points.front().distance_to(polyline.points[1])* (1 - percent_can_keep) > max_width / 2) {
|
||||
//Can split => move the first point and assign a new weight.
|
||||
//the update of endpoints wil be performed in concatThickPolylines
|
||||
polyline.points.front().x = polyline.points.front().x +
|
||||
(coord_t)((polyline.points[1].x - polyline.points.front().x) * percent_can_keep);
|
||||
polyline.points.front().y = polyline.points.front().y +
|
||||
(coord_t)((polyline.points[1].y - polyline.points.front().y) * percent_can_keep);
|
||||
polyline.width.front() = min_width;
|
||||
changes = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
polyline.points.erase(polyline.points.begin());
|
||||
polyline.width.erase(polyline.width.begin());
|
||||
changes = true;
|
||||
}
|
||||
while (polyline.points.size() > 1 && polyline.width.back() < min_width && polyline.endpoints.second) {
|
||||
//try to split if possible
|
||||
if (polyline.width[polyline.points.size()-2] > min_width) {
|
||||
double percent_can_keep = (min_width - polyline.width.back()) / (polyline.width[polyline.points.size() - 2] - polyline.width.back());
|
||||
if (polyline.points.back().distance_to(polyline.points[polyline.points.size() - 2]) * percent_can_keep > max_width / 2
|
||||
&& polyline.points.back().distance_to(polyline.points[polyline.points.size() - 2]) * (1-percent_can_keep) > max_width / 2) {
|
||||
//Can split => move the first point and assign a new weight.
|
||||
//the update of endpoints wil be performed in concatThickPolylines
|
||||
polyline.points.back().x = polyline.points.back().x +
|
||||
(coord_t)((polyline.points[polyline.points.size() - 2].x - polyline.points.back().x) * percent_can_keep);
|
||||
polyline.points.back().y = polyline.points.back().y +
|
||||
(coord_t)((polyline.points[polyline.points.size() - 2].y - polyline.points.back().y) * percent_can_keep);
|
||||
polyline.width.back() = min_width;
|
||||
changes = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
polyline.points.erase(polyline.points.end()-1);
|
||||
polyline.width.erase(polyline.width.end() - 1);
|
||||
changes = true;
|
||||
}
|
||||
if (polyline.points.size() < 2) {
|
||||
//remove self if too small
|
||||
pp.erase(pp.begin() + i);
|
||||
--i;
|
||||
}
|
||||
}
|
||||
if (changes) concatThickPolylines(pp);
|
||||
|
||||
/* Loop through all returned polylines in order to extend their endpoints to the
|
||||
expolygon boundaries */
|
||||
bool removed = false;
|
||||
// Loop through all returned polylines in order to extend their endpoints to the
|
||||
// expolygon boundaries
|
||||
for (size_t i = 0; i < pp.size(); ++i) {
|
||||
ThickPolyline& polyline = pp[i];
|
||||
|
||||
// extend initial and final segments of each polyline if they're actual endpoints
|
||||
/* We assign new endpoints to temporary variables because in case of a single-line
|
||||
polyline, after we extend the start point it will be caught by the intersection()
|
||||
call, so we keep the inner point until we perform the second intersection() as well */
|
||||
// We assign new endpoints to temporary variables because in case of a single-line
|
||||
// polyline, after we extend the start point it will be caught by the intersection()
|
||||
// call, so we keep the inner point until we perform the second intersection() as well
|
||||
Point new_front = polyline.points.front();
|
||||
Point new_back = polyline.points.back();
|
||||
if (polyline.endpoints.first && !bounds.has_boundary_point(new_front)) {
|
||||
Line line(polyline.points.front(), polyline.points[1]);
|
||||
Line line(polyline.points[1], polyline.points.front());
|
||||
|
||||
// prevent the line from touching on the other side, otherwise intersection() might return that solution
|
||||
if (polyline.points.size() == 2) line.b = line.midpoint();
|
||||
if (polyline.points.size() == 2) line.a = line.midpoint();
|
||||
|
||||
line.extend_start(max_width);
|
||||
(void)bounds.contour.intersection(line, &new_front);
|
||||
line.extend_end(max_width);
|
||||
(void)bounds.contour.first_intersection(line, &new_front);
|
||||
}
|
||||
if (polyline.endpoints.second && !bounds.has_boundary_point(new_back)) {
|
||||
Line line(
|
||||
@ -386,7 +672,7 @@ ExPolygon::medial_axis(const ExPolygon &bounds, double max_width, double min_wid
|
||||
if (polyline.points.size() == 2) line.a = line.midpoint();
|
||||
line.extend_end(max_width);
|
||||
|
||||
(void)bounds.contour.intersection(line, &new_back);
|
||||
(void)bounds.contour.first_intersection(line, &new_back);
|
||||
}
|
||||
polyline.points.front() = new_front;
|
||||
polyline.points.back() = new_back;
|
||||
@ -394,7 +680,7 @@ ExPolygon::medial_axis(const ExPolygon &bounds, double max_width, double min_wid
|
||||
}
|
||||
|
||||
|
||||
|
||||
// concatenate, but even where multiple thickpolyline join, to create nice long strait polylines
|
||||
/* If we removed any short polylines we now try to connect consecutive polylines
|
||||
in order to allow loop detection. Note that this algorithm is greedier than
|
||||
MedialAxis::process_edge_neighbors() as it will connect random pairs of
|
||||
@ -405,6 +691,7 @@ ExPolygon::medial_axis(const ExPolygon &bounds, double max_width, double min_wid
|
||||
Optimisation of the old algorithm : now we select the most "strait line" choice
|
||||
when we merge with an other line at a point with more than two meet.
|
||||
*/
|
||||
changes = false;
|
||||
for (size_t i = 0; i < pp.size(); ++i) {
|
||||
ThickPolyline& polyline = pp[i];
|
||||
if (polyline.endpoints.first && polyline.endpoints.second) continue; // optimization
|
||||
@ -441,32 +728,130 @@ ExPolygon::medial_axis(const ExPolygon &bounds, double max_width, double min_wid
|
||||
if (best_candidate != nullptr) {
|
||||
|
||||
polyline.points.insert(polyline.points.end(), best_candidate->points.begin() + 1, best_candidate->points.end());
|
||||
polyline.width.insert(polyline.width.end(), best_candidate->width.begin(), best_candidate->width.end());
|
||||
polyline.width.insert(polyline.width.end(), best_candidate->width.begin() + 1, best_candidate->width.end());
|
||||
polyline.endpoints.second = best_candidate->endpoints.second;
|
||||
assert(polyline.width.size() == polyline.points.size()*2 - 2);
|
||||
|
||||
assert(polyline.width.size() == polyline.points.size());
|
||||
changes = true;
|
||||
pp.erase(pp.begin() + best_idx);
|
||||
}
|
||||
}
|
||||
if (changes) concatThickPolylines(pp);
|
||||
|
||||
//remove too thin polylines points (inside a polyline : split it)
|
||||
for (size_t i = 0; i < pp.size(); ++i) {
|
||||
ThickPolyline& polyline = pp[i];
|
||||
|
||||
/* remove too short polylines
|
||||
(we can't do this check before endpoints extension and clipping because we don't
|
||||
know how long will the endpoints be extended since it depends on polygon thickness
|
||||
which is variable - extension will be <= max_width/2 on each side) */
|
||||
if ((polyline.endpoints.first || polyline.endpoints.second)
|
||||
&& polyline.length() < max_w * 2) {
|
||||
pp.erase(pp.begin() + i);
|
||||
--i;
|
||||
removed = true;
|
||||
continue;
|
||||
}
|
||||
// remove bits with too small extrusion
|
||||
size_t idx_point = 0;
|
||||
while (idx_point<polyline.points.size()) {
|
||||
if (polyline.width[idx_point] < min_width) {
|
||||
if (idx_point == 0) {
|
||||
//too thin at start
|
||||
polyline.points.erase(polyline.points.begin());
|
||||
polyline.width.erase(polyline.width.begin());
|
||||
idx_point = 0;
|
||||
} else if (idx_point == 1) {
|
||||
//too thin at start
|
||||
polyline.points.erase(polyline.points.begin());
|
||||
polyline.width.erase(polyline.width.begin());
|
||||
polyline.points.erase(polyline.points.begin());
|
||||
polyline.width.erase(polyline.width.begin());
|
||||
idx_point = 0;
|
||||
} else if (idx_point == polyline.points.size() - 2) {
|
||||
//too thin at (near) end
|
||||
polyline.points.erase(polyline.points.end() - 1);
|
||||
polyline.width.erase(polyline.width.end() - 1);
|
||||
polyline.points.erase(polyline.points.end() - 1);
|
||||
polyline.width.erase(polyline.width.end() - 1);
|
||||
} else if (idx_point == polyline.points.size() - 1) {
|
||||
//too thin at end
|
||||
polyline.points.erase(polyline.points.end() - 1);
|
||||
polyline.width.erase(polyline.width.end() - 1);
|
||||
} else {
|
||||
//too thin in middle : split
|
||||
pp.emplace_back();
|
||||
ThickPolyline &newone = pp.back();
|
||||
newone.points.insert(newone.points.begin(), polyline.points.begin() + idx_point + 1, polyline.points.end());
|
||||
newone.width.insert(newone.width.begin(), polyline.width.begin() + idx_point + 1, polyline.width.end());
|
||||
polyline.points.erase(polyline.points.begin() + idx_point, polyline.points.end());
|
||||
polyline.width.erase(polyline.width.begin() + idx_point, polyline.width.end());
|
||||
}
|
||||
} else idx_point++;
|
||||
|
||||
if (polyline.points.size() < 2) {
|
||||
//remove self if too small
|
||||
pp.erase(pp.begin() + i);
|
||||
--i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//remove too short polyline
|
||||
changes = true;
|
||||
while (changes) {
|
||||
changes = false;
|
||||
|
||||
double shortest_size = max_w * 2;
|
||||
int32_t shortest_idx = -1;
|
||||
for (size_t i = 0; i < pp.size(); ++i) {
|
||||
ThickPolyline& polyline = pp[i];
|
||||
// Remove the shortest polylines : polyline that are shorter than wider
|
||||
// (we can't do this check before endpoints extension and clipping because we don't
|
||||
// know how long will the endpoints be extended since it depends on polygon thickness
|
||||
// which is variable - extension will be <= max_width/2 on each side)
|
||||
if ((polyline.endpoints.first || polyline.endpoints.second)
|
||||
&& polyline.length() < max_width / 2) {
|
||||
if (shortest_size > polyline.length()) {
|
||||
shortest_size = polyline.length();
|
||||
shortest_idx = i;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
if (shortest_idx >= 0 && shortest_idx < pp.size()) {
|
||||
pp.erase(pp.begin() + shortest_idx);
|
||||
changes = true;
|
||||
}
|
||||
if (changes) concatThickPolylines(pp);
|
||||
}
|
||||
|
||||
//TODO: reduce the flow at the intersection ( + ) points ?
|
||||
|
||||
//ensure the volume extruded is correct for what we have been asked
|
||||
// => don't over-extrude
|
||||
double surface = 0;
|
||||
double volume = 0;
|
||||
for (ThickPolyline& polyline : pp) {
|
||||
for (ThickLine l : polyline.thicklines()) {
|
||||
surface += l.length() * (l.a_width + l.b_width) / 2;
|
||||
double width_mean = (l.a_width + l.b_width) / 2;
|
||||
volume += height * (width_mean - height * (1. - 0.25 * PI)) * l.length();
|
||||
}
|
||||
}
|
||||
|
||||
// compute bounds volume
|
||||
double boundsVolume = 0;
|
||||
boundsVolume += height*bounds.area();
|
||||
// add external "perimeter gap"
|
||||
double perimeterRoundGap = bounds.contour.length() * height * (1 - 0.25*PI) * 0.5;
|
||||
// add holes "perimeter gaps"
|
||||
double holesGaps = 0;
|
||||
for (auto hole = bounds.holes.begin(); hole != bounds.holes.end(); ++hole) {
|
||||
holesGaps += hole->length() * height * (1 - 0.25*PI) * 0.5;
|
||||
}
|
||||
boundsVolume += perimeterRoundGap + holesGaps;
|
||||
|
||||
if (boundsVolume < volume) {
|
||||
//reduce width
|
||||
double reduce_by = boundsVolume / volume;
|
||||
for (ThickPolyline& polyline : pp) {
|
||||
for (ThickLine l : polyline.thicklines()) {
|
||||
l.a_width *= reduce_by;
|
||||
l.b_width *= reduce_by;
|
||||
}
|
||||
}
|
||||
}
|
||||
polylines->insert(polylines->end(), pp.begin(), pp.end());
|
||||
}
|
||||
|
||||
@ -474,7 +859,7 @@ void
|
||||
ExPolygon::medial_axis(double max_width, double min_width, Polylines* polylines) const
|
||||
{
|
||||
ThickPolylines tp;
|
||||
this->medial_axis(*this, max_width, min_width, &tp);
|
||||
this->medial_axis(*this, max_width, min_width, &tp, max_width/2.0);
|
||||
polylines->insert(polylines->end(), tp.begin(), tp.end());
|
||||
}
|
||||
|
||||
|
@ -53,7 +53,7 @@ public:
|
||||
Polygons simplify_p(double tolerance) const;
|
||||
ExPolygons simplify(double tolerance) const;
|
||||
void simplify(double tolerance, ExPolygons* expolygons) const;
|
||||
void medial_axis(const ExPolygon &bounds, double max_width, double min_width, ThickPolylines* polylines) const;
|
||||
void medial_axis(const ExPolygon &bounds, double max_width, double min_width, ThickPolylines* polylines, double height) const;
|
||||
void medial_axis(double max_width, double min_width, Polylines* polylines) const;
|
||||
void get_trapezoids(Polygons* polygons) const;
|
||||
void get_trapezoids(Polygons* polygons, double angle) const;
|
||||
|
@ -174,6 +174,9 @@ void Fill::fill_surface_extrusion(const Surface *surface, const FillParams ¶
|
||||
// (poylineVolume) / extrudedVolume,
|
||||
// this->no_overlap_expolygons.size());
|
||||
if (extrudedVolume != 0 && poylineVolume != 0) multFlow = poylineVolume / extrudedVolume;
|
||||
//failsafe, it can happen
|
||||
if (multFlow > 1.3) multFlow = 1.3;
|
||||
if (multFlow < 0.8) multFlow = 0.8;
|
||||
}
|
||||
|
||||
// Save into layer.
|
||||
|
@ -907,7 +907,7 @@ MedialAxis::build(ThickPolylines* polylines)
|
||||
polyline.endpoints.first = rpolyline.endpoints.second;
|
||||
}
|
||||
|
||||
assert(polyline.width.size() == polyline.points.size()*2 - 2);
|
||||
assert(polyline.width.size() == polyline.points.size());
|
||||
|
||||
// prevent loop endpoints from being extended
|
||||
if (polyline.first_point().coincides_with(polyline.last_point())) {
|
||||
@ -968,8 +968,8 @@ MedialAxis::process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* pol
|
||||
|
||||
Point new_point(neighbor->vertex1()->x(), neighbor->vertex1()->y());
|
||||
polyline->points.push_back(new_point);
|
||||
polyline->width.push_back(this->thickness[neighbor].first);
|
||||
polyline->width.push_back(this->thickness[neighbor].second);
|
||||
|
||||
(void)this->edges.erase(neighbor);
|
||||
(void)this->edges.erase(neighbor->twin());
|
||||
edge = neighbor;
|
||||
@ -1049,34 +1049,39 @@ MedialAxis::validate_edge(const VD::edge_type* edge)
|
||||
? line.b.distance_to(segment_l)*2
|
||||
: line.b.distance_to(this->retrieve_endpoint(cell_l))*2;
|
||||
|
||||
if (cell_l->contains_segment() && cell_r->contains_segment()) {
|
||||
// calculate the relative angle between the two boundary segments
|
||||
double angle = fabs(segment_r.orientation() - segment_l.orientation());
|
||||
if (angle > PI) angle = 2*PI - angle;
|
||||
assert(angle >= 0 && angle <= PI);
|
||||
|
||||
// fabs(angle) ranges from 0 (collinear, same direction) to PI (collinear, opposite direction)
|
||||
// we're interested only in segments close to the second case (facing segments)
|
||||
// so we allow some tolerance.
|
||||
// this filter ensures that we're dealing with a narrow/oriented area (longer than thick)
|
||||
// we don't run it on edges not generated by two segments (thus generated by one segment
|
||||
// and the endpoint of another segment), since their orientation would not be meaningful
|
||||
if (PI - angle > PI/8) {
|
||||
// angle is not narrow enough
|
||||
|
||||
// only apply this filter to segments that are not too short otherwise their
|
||||
// angle could possibly be not meaningful
|
||||
if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON || line.length() >= this->min_width)
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON)
|
||||
return false;
|
||||
}
|
||||
|
||||
if (w0 < this->min_width && w1 < this->min_width)
|
||||
return false;
|
||||
|
||||
//don't remove the line that goes to the intersection of the contour
|
||||
// we use them to create nicer thin wall lines
|
||||
//if (cell_l->contains_segment() && cell_r->contains_segment()) {
|
||||
// // calculate the relative angle between the two boundary segments
|
||||
// double angle = fabs(segment_r.orientation() - segment_l.orientation());
|
||||
// if (angle > PI) angle = 2*PI - angle;
|
||||
// assert(angle >= 0 && angle <= PI);
|
||||
//
|
||||
// // fabs(angle) ranges from 0 (collinear, same direction) to PI (collinear, opposite direction)
|
||||
// // we're interested only in segments close to the second case (facing segments)
|
||||
// // so we allow some tolerance.
|
||||
// // this filter ensures that we're dealing with a narrow/oriented area (longer than thick)
|
||||
// // we don't run it on edges not generated by two segments (thus generated by one segment
|
||||
// // and the endpoint of another segment), since their orientation would not be meaningful
|
||||
// if (PI - angle > PI/8) {
|
||||
// // angle is not narrow enough
|
||||
//
|
||||
// // only apply this filter to segments that are not too short otherwise their
|
||||
// // angle could possibly be not meaningful
|
||||
// if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON || line.length() >= this->min_width)
|
||||
// return false;
|
||||
// }
|
||||
//} else {
|
||||
// if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON)
|
||||
// return false;
|
||||
//}
|
||||
|
||||
// don't do that before we try to fusion them
|
||||
//if (w0 < this->min_width && w1 < this->min_width)
|
||||
// return false;
|
||||
//
|
||||
|
||||
//shouldn't occur if perimeter_generator is well made
|
||||
if (w0 > this->max_width && w1 > this->max_width)
|
||||
return false;
|
||||
|
||||
|
@ -127,7 +127,7 @@ void PerimeterGenerator::process()
|
||||
//and we want at least 1 perimeter of overlap
|
||||
ExPolygons bridge = unsupported_filtered;
|
||||
unsupported_filtered = intersection_ex(offset_ex(unsupported_filtered, (float)(perimeter_spacing)), last);
|
||||
// remove from the bridge & support the small inmperfections of the union
|
||||
// remove from the bridge & support the small imperfections of the union
|
||||
ExPolygons bridge_and_support = offset2_ex(union_ex(bridge, support, true), perimeter_spacing/2, -perimeter_spacing/2);
|
||||
// make him flush with perimeter area
|
||||
unsupported_filtered = intersection_ex(offset_ex(unsupported_filtered, (float)(perimeter_spacing / 2)), bridge_and_support);
|
||||
@ -208,37 +208,66 @@ void PerimeterGenerator::process()
|
||||
//this variable stored the nexyt onion
|
||||
ExPolygons next_onion;
|
||||
if (i == 0) {
|
||||
// the minimum thickness of a single loop is:
|
||||
// ext_width/2 + ext_spacing/2 + spacing/2 + width/2
|
||||
next_onion = this->config->thin_walls ?
|
||||
offset2_ex(
|
||||
last,
|
||||
-(float)(ext_perimeter_width / 2 + ext_min_spacing / 2 - 1),
|
||||
+(float)(ext_min_spacing / 2 - 1)) :
|
||||
offset_ex(last, -(float)(ext_perimeter_width / 2));
|
||||
// compute next onion, without taking care of thin_walls : destroy too thin areas.
|
||||
if (!this->config->thin_walls)
|
||||
next_onion = offset_ex(last, -(float)(ext_perimeter_width / 2));
|
||||
|
||||
|
||||
// look for thin walls
|
||||
if (this->config->thin_walls) {
|
||||
// the minimum thickness of a single loop is:
|
||||
// ext_width/2 + ext_spacing/2 + spacing/2 + width/2
|
||||
|
||||
next_onion = offset2_ex(
|
||||
last,
|
||||
-(float)(ext_perimeter_width / 2 + ext_min_spacing / 2 - 1),
|
||||
+(float)(ext_min_spacing / 2 - 1));
|
||||
|
||||
// detect edge case where a curve can be split in multiple small chunks.
|
||||
ExPolygons no_thin_onion = offset_ex(last, -(float)(ext_perimeter_width / 2));
|
||||
if (no_thin_onion.size()>0 && next_onion.size() > 3 * no_thin_onion.size()) {
|
||||
//use a sightly smaller spacing to try to drastically improve the split
|
||||
ExPolygons next_onion_secondTry = offset2_ex(
|
||||
last,
|
||||
-(float)(ext_perimeter_width / 2 + ext_min_spacing / 2.5 - 1),
|
||||
+(float)(ext_min_spacing / 2.5 - 1));
|
||||
if (abs(((int32_t)next_onion.size()) - ((int32_t)no_thin_onion.size())) >
|
||||
2*abs(((int32_t)next_onion_secondTry.size()) - ((int32_t)no_thin_onion.size()))) {
|
||||
next_onion = next_onion_secondTry;
|
||||
}
|
||||
}
|
||||
|
||||
// the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
|
||||
// (actually, something larger than that still may exist due to mitering or other causes)
|
||||
coord_t min_width = (coord_t)scale_(this->ext_perimeter_flow.nozzle_diameter / 3);
|
||||
|
||||
Polygons no_thin_zone = offset(next_onion, (float)(ext_perimeter_width / 2));
|
||||
ExPolygons expp = offset2_ex(
|
||||
// medial axis requires non-overlapping geometry
|
||||
diff_ex(to_polygons(last),
|
||||
no_thin_zone,
|
||||
true),
|
||||
(float)(-min_width / 2), (float)(min_width / 2));
|
||||
ExPolygons no_thin_zone = offset_ex(next_onion, (float)(ext_perimeter_width / 2));
|
||||
// medial axis requires non-overlapping geometry
|
||||
ExPolygons thin_zones = diff_ex(last, no_thin_zone, true);
|
||||
//don't use offset2_ex, because we don't want to merge the zones that have been separated.
|
||||
ExPolygons expp = offset_ex(thin_zones, (float)(-min_width / 2));
|
||||
//we push the bits removed and put them into what we will use as our anchor
|
||||
if (expp.size() > 0) {
|
||||
no_thin_zone = diff_ex(last, offset_ex(expp, (float)(min_width / 2)), true);
|
||||
}
|
||||
// compute a bit of overlap to anchor thin walls inside the print.
|
||||
ExPolygons anchor = intersection_ex(to_polygons(offset_ex(expp, (float)(ext_perimeter_width / 2))), no_thin_zone, true);
|
||||
for (ExPolygon &ex : expp) {
|
||||
ExPolygons bounds = union_ex(ExPolygons() = { ex }, anchor, true);
|
||||
//growing back the polygon
|
||||
//a vary little bit of overlap can be created here with other thin polygon, but it's more useful than worisome.
|
||||
ExPolygons ex_bigger = offset_ex(ex, (float)(min_width / 2));
|
||||
if (ex_bigger.size() != 1) continue; // impossible error, growing a single polygon can't create multiple or 0.
|
||||
ExPolygons anchor = intersection_ex(offset_ex(ex, (float)(min_width / 2) +
|
||||
(float)(ext_perimeter_width / 2), jtSquare), no_thin_zone, true);
|
||||
ExPolygons bounds = union_ex(ex_bigger, anchor, true);
|
||||
for (ExPolygon &bound : bounds) {
|
||||
if (!intersection_ex(ex, bound).empty()) {
|
||||
// the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
|
||||
ex.medial_axis(bound, ext_perimeter_width + ext_perimeter_spacing2, min_width, &thin_walls);
|
||||
continue;
|
||||
if (!intersection_ex(ex_bigger[0], bound).empty()) {
|
||||
//be sure it's not too small to extrude reliably
|
||||
if (ex_bigger[0].area() > min_width*(ext_perimeter_width + ext_perimeter_spacing2)) {
|
||||
// the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
|
||||
ex_bigger[0].medial_axis(bound, ext_perimeter_width + ext_perimeter_spacing2, min_width,
|
||||
&thin_walls, this->layer_height);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -390,13 +419,17 @@ void PerimeterGenerator::process()
|
||||
double min = 0.2 * perimeter_width * (1 - INSET_OVERLAP_TOLERANCE);
|
||||
double max = 2. * perimeter_spacing;
|
||||
ExPolygons gaps_ex = diff_ex(
|
||||
//FIXME offset2 would be enough and cheaper.
|
||||
offset2_ex(gaps, -min/2, +min/2),
|
||||
offset2_ex(gaps, -max/2, +max/2),
|
||||
true);
|
||||
ThickPolylines polylines;
|
||||
for (const ExPolygon &ex : gaps_ex)
|
||||
ex.medial_axis(ex, max, min, &polylines);
|
||||
for (const ExPolygon &ex : gaps_ex) {
|
||||
//remove too small gaps that are too hard to fill.
|
||||
//ie one that are smaller than an extrusion with width of min and a length of max.
|
||||
if (ex.area() > min*max) {
|
||||
ex.medial_axis(ex, max, min, &polylines, this->layer_height);
|
||||
}
|
||||
}
|
||||
if (!polylines.empty()) {
|
||||
ExtrusionEntityCollection gap_fill = this->_variable_width(polylines,
|
||||
erGapFill, this->solid_infill_flow);
|
||||
|
@ -6,6 +6,7 @@
|
||||
#include "Polygon.hpp"
|
||||
#include <iostream>
|
||||
#include <utility>
|
||||
#include <algorithm>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
@ -262,8 +263,8 @@ ThickPolyline::thicklines() const
|
||||
lines.reserve(this->points.size() - 1);
|
||||
for (size_t i = 0; i < this->points.size()-1; ++i) {
|
||||
ThickLine line(this->points[i], this->points[i+1]);
|
||||
line.a_width = this->width[2*i];
|
||||
line.b_width = this->width[2*i+1];
|
||||
line.a_width = this->width[i];
|
||||
line.b_width = this->width[i + 1];
|
||||
lines.push_back(line);
|
||||
}
|
||||
}
|
||||
@ -292,4 +293,96 @@ Lines3 Polyline3::lines() const
|
||||
return lines;
|
||||
}
|
||||
|
||||
void concatThickPolylines(ThickPolylines& pp) {
|
||||
bool changes = true;
|
||||
while (changes){
|
||||
changes = false;
|
||||
//concat polyline if only 2 polyline at a point
|
||||
for (size_t i = 0; i < pp.size(); ++i) {
|
||||
ThickPolyline *polyline = &pp[i];
|
||||
|
||||
int32_t id_candidate_first_point = -1;
|
||||
int32_t id_candidate_last_point = -1;
|
||||
int32_t nbCandidate_first_point = 0;
|
||||
int32_t nbCandidate_last_point = 0;
|
||||
// find another polyline starting here
|
||||
for (size_t j = 0; j < pp.size(); ++j) {
|
||||
if (j == i) continue;
|
||||
ThickPolyline *other = &pp[j];
|
||||
if (polyline->last_point().coincides_with(other->last_point())) {
|
||||
other->reverse();
|
||||
id_candidate_last_point = j;
|
||||
nbCandidate_last_point++;
|
||||
} else if (polyline->first_point().coincides_with(other->last_point())) {
|
||||
id_candidate_first_point = j;
|
||||
nbCandidate_first_point++;
|
||||
} else if (polyline->first_point().coincides_with(other->first_point())) {
|
||||
id_candidate_first_point = j;
|
||||
nbCandidate_first_point++;
|
||||
other->reverse();
|
||||
} else if (polyline->last_point().coincides_with(other->first_point())) {
|
||||
id_candidate_last_point = j;
|
||||
nbCandidate_last_point++;
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
if (id_candidate_last_point == id_candidate_first_point && nbCandidate_first_point == 1 && nbCandidate_last_point == 1) {
|
||||
// it's a trap! it's a loop!
|
||||
if (pp[id_candidate_first_point].points.size() > 2) {
|
||||
polyline->points.insert(polyline->points.begin(), pp[id_candidate_first_point].points.begin() + 1, pp[id_candidate_first_point].points.end() - 1);
|
||||
polyline->width.insert(polyline->width.begin(), pp[id_candidate_first_point].width.begin() + 1, pp[id_candidate_first_point].width.end() - 1);
|
||||
}
|
||||
pp.erase(pp.begin() + id_candidate_first_point);
|
||||
changes = true;
|
||||
polyline->endpoints.first = false;
|
||||
polyline->endpoints.second = false;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (nbCandidate_first_point == 1) {
|
||||
//concat at front
|
||||
polyline->width[0] = std::max(polyline->width.front(), pp[id_candidate_first_point].width.back());
|
||||
polyline->points.insert(polyline->points.begin(), pp[id_candidate_first_point].points.begin(), pp[id_candidate_first_point].points.end() - 1);
|
||||
polyline->width.insert(polyline->width.begin(), pp[id_candidate_first_point].width.begin(), pp[id_candidate_first_point].width.end() - 1);
|
||||
polyline->endpoints.first = pp[id_candidate_first_point].endpoints.first;
|
||||
pp.erase(pp.begin() + id_candidate_first_point);
|
||||
changes = true;
|
||||
if (id_candidate_first_point < i) {
|
||||
i--;
|
||||
polyline = &pp[i];
|
||||
}
|
||||
if (id_candidate_last_point > id_candidate_first_point) {
|
||||
id_candidate_last_point--;
|
||||
}
|
||||
} else if (nbCandidate_first_point == 0 && !polyline->endpoints.first && !polyline->first_point().coincides_with(polyline->last_point())) {
|
||||
//update endpoint
|
||||
polyline->endpoints.first = true;
|
||||
}
|
||||
if (nbCandidate_last_point == 1) {
|
||||
//concat at back
|
||||
polyline->width[polyline->width.size() - 1] = std::max(polyline->width.back(), pp[id_candidate_last_point].width.front());
|
||||
polyline->points.insert(polyline->points.end(), pp[id_candidate_last_point].points.begin() + 1, pp[id_candidate_last_point].points.end());
|
||||
polyline->width.insert(polyline->width.end(), pp[id_candidate_last_point].width.begin() + 1, pp[id_candidate_last_point].width.end());
|
||||
polyline->endpoints.second = pp[id_candidate_last_point].endpoints.second;
|
||||
pp.erase(pp.begin() + id_candidate_last_point);
|
||||
changes = true;
|
||||
if (id_candidate_last_point < i) {
|
||||
i--;
|
||||
polyline = &pp[i];
|
||||
}
|
||||
} else if (nbCandidate_last_point == 0 && !polyline->endpoints.second && !polyline->first_point().coincides_with(polyline->last_point())) {
|
||||
//update endpoint
|
||||
polyline->endpoints.second = true;
|
||||
}
|
||||
|
||||
if (polyline->last_point().coincides_with(polyline->first_point())) {
|
||||
//the concat has created a loop : update endpoints
|
||||
polyline->endpoints.first = false;
|
||||
polyline->endpoints.second = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -128,15 +128,26 @@ inline void polylines_append(Polylines &dst, Polylines &&src)
|
||||
|
||||
bool remove_degenerate(Polylines &polylines);
|
||||
|
||||
|
||||
/// ThickPolyline : a polyline with a width for each point
|
||||
/// This calss has a vector of coordf_t, it must be the same size than points.
|
||||
/// it's used to store the size of the line at this point.
|
||||
/// Also, the endpoint let us know if the front() and back() of the polyline
|
||||
/// join something or is a dead-end.
|
||||
class ThickPolyline : public Polyline {
|
||||
public:
|
||||
/// width size must be == point size
|
||||
std::vector<coordf_t> width;
|
||||
/// if true => it's an endpoint, if false it join an other ThickPolyline. first is at front(), second is at back()
|
||||
std::pair<bool,bool> endpoints;
|
||||
ThickPolyline() : endpoints(std::make_pair(false, false)) {};
|
||||
ThickLines thicklines() const;
|
||||
void reverse();
|
||||
};
|
||||
|
||||
/// concatenate poylines if possible and refresh the endpoints
|
||||
void concatThickPolylines(ThickPolylines &polylines);
|
||||
|
||||
class Polyline3 : public MultiPoint3
|
||||
{
|
||||
public:
|
||||
|
Loading…
x
Reference in New Issue
Block a user