thin wall : medial axis:

* corrections from review
* more functions for a clearer code
* now simplify the frontier with the anchor to avoid weird edge-cases.
* new post-process: remove "curve edge" before merging
* new post-process: cube corner: the small bit that go from the voronoi corner to the cube corner is now a "pulling string" that pull the voronoi corner a bit to make a nicer cube.
* _variable_width : reduce the threshold for creating a new extrusion by half vs threshold to create segments (if not, it doesn't create enough)
This commit is contained in:
supermerill 2018-09-25 10:52:29 +02:00
parent 75e79189a2
commit 619370950c
7 changed files with 49 additions and 955 deletions

View File

@ -136,6 +136,8 @@ add_library(libslic3r STATIC
${LIBDIR}/libslic3r/libslic3r.h
${LIBDIR}/libslic3r/Line.cpp
${LIBDIR}/libslic3r/Line.hpp
${LIBDIR}/libslic3r/MedialAxis.cpp
${LIBDIR}/libslic3r/MedialAxis.hpp
${LIBDIR}/libslic3r/Model.cpp
${LIBDIR}/libslic3r/Model.hpp
${LIBDIR}/libslic3r/ModelArrange.hpp
@ -506,7 +508,7 @@ if (WIN32)
endif ()
# SLIC3R_MSVC_PDB
if (MSVC AND SLIC3R_MSVC_PDB AND ${CMAKE_BUILD_TYPE} STREQUAL "Release")
if (MSVC AND SLIC3R_MSVC_PDB AND "${CMAKE_BUILD_TYPE}" STREQUAL "Release")
set_target_properties(XS PROPERTIES
COMPILE_FLAGS "/Zi"
LINK_FLAGS "/DEBUG /OPT:REF /OPT:ICF"

View File

@ -1,5 +1,6 @@
#include "BoundingBox.hpp"
#include "ExPolygon.hpp"
#include "MedialAxis.hpp"
#include "Geometry.hpp"
#include "Polygon.hpp"
#include "Line.hpp"
@ -168,13 +169,15 @@ ExPolygon::overlaps(const ExPolygon &other) const
return ! other.contour.points.empty() && this->contains_b(other.contour.points.front());
}
void ExPolygon::simplify_p(double tolerance, Polygons* polygons) const
void
ExPolygon::simplify_p(double tolerance, Polygons* polygons) const
{
Polygons pp = this->simplify_p(tolerance);
polygons->insert(polygons->end(), pp.begin(), pp.end());
}
Polygons ExPolygon::simplify_p(double tolerance) const
Polygons
ExPolygon::simplify_p(double tolerance) const
{
Polygons pp;
pp.reserve(this->holes.size() + 1);
@ -196,663 +199,50 @@ Polygons ExPolygon::simplify_p(double tolerance) const
return simplify_polygons(pp);
}
ExPolygons ExPolygon::simplify(double tolerance) const
ExPolygons
ExPolygon::simplify(double tolerance) const
{
return union_ex(this->simplify_p(tolerance));
}
void ExPolygon::simplify(double tolerance, ExPolygons* expolygons) const
void
ExPolygon::simplify(double tolerance, ExPolygons* expolygons) const
{
append(*expolygons, this->simplify(tolerance));
}
/// remove point that are at SCALED_EPSILON * 2 distance.
void remove_point_too_near(ThickPolyline* to_reduce) {
const int32_t smallest = SCALED_EPSILON * 2;
uint32_t id = 1;
while (id < to_reduce->points.size() - 2) {
uint32_t newdist = min(to_reduce->points[id].distance_to(to_reduce->points[id - 1])
, to_reduce->points[id].distance_to(to_reduce->points[id + 1]));
if (newdist < smallest) {
to_reduce->points.erase(to_reduce->points.begin() + id);
to_reduce->width.erase(to_reduce->width.begin() + id);
} else {
++id;
}
//simplier than simplify
void
ExPolygon::remove_point_too_near(const coord_t tolerance) {
size_t id = 1;
while (id < this->contour.points.size() - 1) {
size_t newdist = min(this->contour.points[id].distance_to(this->contour.points[id - 1])
, this->contour.points[id].distance_to(this->contour.points[id + 1]));
if (newdist < tolerance) {
this->contour.points.erase(this->contour.points.begin() + id);
newdist = this->contour.points[id].distance_to(this->contour.points[id - 1]);
}
}
/// add points from pattern to to_modify at the same % of the length
/// so not add if an other point is present at the correct position
void add_point_same_percent(ThickPolyline* pattern, ThickPolyline* to_modify) {
const double to_modify_length = to_modify->length();
const double percent_epsilon = SCALED_EPSILON / to_modify_length;
const double pattern_length = pattern->length();
double percent_length = 0;
for (uint32_t idx_point = 1; idx_point < pattern->points.size() - 1; ++idx_point) {
percent_length += pattern->points[idx_point-1].distance_to(pattern->points[idx_point]) / pattern_length;
//find position
uint32_t idx_other = 1;
double percent_length_other_before = 0;
double percent_length_other = 0;
while (idx_other < to_modify->points.size()) {
percent_length_other_before = percent_length_other;
percent_length_other += to_modify->points[idx_other-1].distance_to(to_modify->points[idx_other])
/ to_modify_length;
if (percent_length_other > percent_length - percent_epsilon) {
//if higher (we have gone over it)
break;
}
++idx_other;
}
if (percent_length_other > percent_length + percent_epsilon) {
//insert a new point before the position
double percent_dist = (percent_length - percent_length_other_before) / (percent_length_other - percent_length_other_before);
coordf_t new_width = to_modify->width[idx_other - 1] * (1 - percent_dist);
new_width += to_modify->width[idx_other] * (percent_dist);
Point new_point;
new_point.x = (coord_t)((double)(to_modify->points[idx_other - 1].x) * (1 - percent_dist));
new_point.x += (coord_t)((double)(to_modify->points[idx_other].x) * (percent_dist));
new_point.y = (coord_t)((double)(to_modify->points[idx_other - 1].y) * (1 - percent_dist));
new_point.y += (coord_t)((double)(to_modify->points[idx_other].y) * (percent_dist));
to_modify->width.insert(to_modify->width.begin() + idx_other, new_width);
to_modify->points.insert(to_modify->points.begin() + idx_other, new_point);
//go to next one
//if you removed a point, it check if the next one isn't too near from the previous one.
// if not, it byepass it.
if (newdist > tolerance) {
++id;
}
}
}
/// find the nearest angle in the contour (or 2 nearest if it's difficult to choose)
/// return 1 for an angle of 90° and 0 for an angle of 0° or 180°
double get_coeff_from_angle_countour(Point &point, const ExPolygon &contour) {
double nearestDist = point.distance_to(contour.contour.points.front());
Point nearest = contour.contour.points.front();
uint32_t id_nearest = 0;
double nearDist = nearestDist;
Point near = nearest;
uint32_t id_near=0;
for (uint32_t id_point = 1; id_point < contour.contour.points.size(); ++id_point) {
if (nearestDist > point.distance_to(contour.contour.points[id_point])) {
nearestDist = point.distance_to(contour.contour.points[id_point]);
near = nearest;
nearest = contour.contour.points[id_point];
id_near = id_nearest;
id_nearest = id_point;
}
if (this->contour.points.front().distance_to(this->contour.points.back()) < tolerance) {
this->contour.points.erase(this->contour.points.end() -1);
}
double angle = 0;
Point point_before = id_nearest == 0 ? contour.contour.points.back() : contour.contour.points[id_nearest - 1];
Point point_after = id_nearest == contour.contour.points.size()-1 ? contour.contour.points.front() : contour.contour.points[id_nearest + 1];
//compute angle
angle = min(nearest.ccw_angle(point_before, point_after), nearest.ccw_angle(point_after, point_before));
//compute the diff from 90°
angle = abs(angle - PI / 2);
if (near != nearest && max(nearestDist, nearDist) + SCALED_EPSILON < nearest.distance_to(near)) {
//not only nearest
Point point_before = id_near == 0 ? contour.contour.points.back() : contour.contour.points[id_near - 1];
Point point_after = id_near == contour.contour.points.size() - 1 ? contour.contour.points.front() : contour.contour.points[id_near + 1];
double angle2 = min(nearest.ccw_angle(point_before, point_after), nearest.ccw_angle(point_after, point_before));
angle2 = abs(angle - PI / 2);
angle = (angle + angle2) / 2;
}
return 1-(angle/(PI/2));
}
void
ExPolygon::medial_axis(const ExPolygon &bounds, double max_width, double min_width, ThickPolylines* polylines, double height) const
{
// init helper object
Slic3r::Geometry::MedialAxis ma(max_width, min_width, this);
ma.lines = this->lines();
// compute the Voronoi diagram and extract medial axis polylines
ThickPolylines pp;
ma.build(&pp);
//{
// stringstream stri;
// stri << "medial_axis" << id << ".svg";
// SVG svg(stri.str());
// svg.draw(bounds);
// svg.draw(*this);
// svg.draw(pp);
// svg.Close();
//}
/* Find the maximum width returned; we're going to use this for validating and
filtering the output segments. */
double max_w = 0;
for (ThickPolylines::const_iterator it = pp.begin(); it != pp.end(); ++it)
max_w = fmaxf(max_w, *std::max_element(it->width.begin(), it->width.end()));
concatThickPolylines(pp);
//reoder pp by length (ascending) It's really important to do that to avoid building the line from the width insteand of the length
std::sort(pp.begin(), pp.end(), [](const ThickPolyline & a, const ThickPolyline & b) { return a.length() < b.length(); });
// Aligned fusion: Fusion the bits at the end of lines by "increasing thickness"
// For that, we have to find other lines,
// and with a next point no more distant than the max width.
// Then, we can merge the bit from the first point to the second by following the mean.
//
int id_f = 0;
bool changes = true;
while (changes) {
changes = false;
for (size_t i = 0; i < pp.size(); ++i) {
ThickPolyline& polyline = pp[i];
//simple check to see if i can be fusionned
if (!polyline.endpoints.first && !polyline.endpoints.second) continue;
ThickPolyline* best_candidate = nullptr;
float best_dot = -1;
int best_idx = 0;
double dot_poly_branch = 0;
double dot_candidate_branch = 0;
// find another polyline starting here
for (size_t j = i + 1; j < pp.size(); ++j) {
ThickPolyline& other = pp[j];
if (polyline.last_point().coincides_with(other.last_point())) {
polyline.reverse();
other.reverse();
} else if (polyline.first_point().coincides_with(other.last_point())) {
other.reverse();
} else if (polyline.first_point().coincides_with(other.first_point())) {
} else if (polyline.last_point().coincides_with(other.first_point())) {
polyline.reverse();
} else {
continue;
}
//std::cout << " try : " << i << ":" << j << " : " <<
// (polyline.points.size() < 2 && other.points.size() < 2) <<
// (!polyline.endpoints.second || !other.endpoints.second) <<
// ((polyline.points.back().distance_to(other.points.back())
// + (polyline.width.back() + other.width.back()) / 4)
// > max_width*1.05) <<
// (abs(polyline.length() - other.length()) > max_width / 2) << "\n";
//// mergeable tests
if (polyline.points.size() < 2 && other.points.size() < 2) continue;
if (!polyline.endpoints.second || !other.endpoints.second) continue;
// test if the new width will not be too big if a fusion occur
//note that this isn't the real calcul. It's just to avoid merging lines too far apart.
if (
((polyline.points.back().distance_to(other.points.back())
+ (polyline.width.back() + other.width.back()) / 4)
> max_width*1.05))
continue;
// test if the lines are not too different in length.
if (abs(polyline.length() - other.length()) > max_width / 2) continue;
//test if we don't merge with something too different and without any relevance.
double coeffSizePolyI = 1;
if (polyline.width.back() == 0) {
coeffSizePolyI = 0.1 + 0.9*get_coeff_from_angle_countour(polyline.points.back(), *this);
}
double coeffSizeOtherJ = 1;
if (other.width.back() == 0) {
coeffSizeOtherJ = 0.1+0.9*get_coeff_from_angle_countour(other.points.back(), *this);
}
if (abs(polyline.length()*coeffSizePolyI - other.length()*coeffSizeOtherJ) > max_width / 2) continue;
//compute angle to see if it's better than previous ones (straighter = better).
Pointf v_poly(polyline.lines().front().vector().x, polyline.lines().front().vector().y);
v_poly.scale(1 / std::sqrt(v_poly.x*v_poly.x + v_poly.y*v_poly.y));
Pointf v_other(other.lines().front().vector().x, other.lines().front().vector().y);
v_other.scale(1 / std::sqrt(v_other.x*v_other.x + v_other.y*v_other.y));
float other_dot = v_poly.x*v_other.x + v_poly.y*v_other.y;
// Get the branch/line in wich we may merge, if possible
// with that, we can decide what is important, and how we can merge that.
// angle_poly - angle_candi =90° => one is useless
// both angle are equal => both are useful with same strength
// ex: Y => | both are useful to crete a nice line
// ex2: TTTTT => ----- these 90° useless lines should be discarded
bool find_main_branch = false;
int biggest_main_branch_id = 0;
int biggest_main_branch_length = 0;
for (size_t k = 0; k < pp.size(); ++k) {
//std::cout << "try to find main : " << k << " ? " << i << " " << j << " ";
if (k == i | k == j) continue;
ThickPolyline& main = pp[k];
if (polyline.first_point().coincides_with(main.last_point())) {
main.reverse();
if (!main.endpoints.second)
find_main_branch = true;
else if (biggest_main_branch_length < main.length()) {
biggest_main_branch_id = k;
biggest_main_branch_length = main.length();
}
} else if (polyline.first_point().coincides_with(main.first_point())) {
if (!main.endpoints.second)
find_main_branch = true;
else if (biggest_main_branch_length < main.length()) {
biggest_main_branch_id = k;
biggest_main_branch_length = main.length();
}
}
if (find_main_branch) {
//use this variable to store the good index and break to compute it
biggest_main_branch_id = k;
break;
}
}
if (!find_main_branch && biggest_main_branch_length == 0) {
// nothing -> it's impossible!
dot_poly_branch = 0.707;
dot_candidate_branch = 0.707;
//std::cout << "no main branch... impossible!!\n";
} else if (!find_main_branch &&
(pp[biggest_main_branch_id].length() < polyline.length() || pp[biggest_main_branch_id].length() < other.length()) ){
//the main branch should have no endpoint or be bigger!
//here, it have an endpoint, and is not the biggest -> bad!
continue;
} else {
//compute the dot (biggest_main_branch_id)
Pointf v_poly(polyline.lines().front().vector().x, polyline.lines().front().vector().y);
v_poly.scale(1 / std::sqrt(v_poly.x*v_poly.x + v_poly.y*v_poly.y));
Pointf v_candid(other.lines().front().vector().x, other.lines().front().vector().y);
v_candid.scale(1 / std::sqrt(v_candid.x*v_candid.x + v_candid.y*v_candid.y));
Pointf v_branch(-pp[biggest_main_branch_id].lines().front().vector().x, -pp[biggest_main_branch_id].lines().front().vector().y);
v_branch.scale(1 / std::sqrt(v_branch.x*v_branch.x + v_branch.y*v_branch.y));
dot_poly_branch = v_poly.x*v_branch.x + v_poly.y*v_branch.y;
dot_candidate_branch = v_candid.x*v_branch.x + v_candid.y*v_branch.y;
if (dot_poly_branch < 0) dot_poly_branch = 0;
if (dot_candidate_branch < 0) dot_candidate_branch = 0;
}
//test if it's useful to merge or not
//ie, don't merge 'T' but ok for 'Y', merge only lines of not disproportionate different length (ratio max: 4)
if (dot_poly_branch < 0.1 || dot_candidate_branch < 0.1 ||
(polyline.length()>other.length() ? polyline.length() / other.length() : other.length() / polyline.length()) > 4) {
continue;
}
if (other_dot > best_dot) {
best_candidate = &other;
best_idx = j;
best_dot = other_dot;
}
}
if (best_candidate != nullptr) {
// delete very near points
remove_point_too_near(&polyline);
remove_point_too_near(best_candidate);
// add point at the same pos than the other line to have a nicer fusion
add_point_same_percent(&polyline, best_candidate);
add_point_same_percent(best_candidate, &polyline);
//get the angle of the nearest points of the contour to see : _| (good) \_ (average) __(bad)
//sqrt because the result are nicer this way: don't over-penalize /_ angles
//TODO: try if we can achieve a better result if we use a different algo if the angle is <90°
const double coeff_angle_poly = (get_coeff_from_angle_countour(polyline.points.back(), *this));
const double coeff_angle_candi = (get_coeff_from_angle_countour(best_candidate->points.back(), *this));
//this will encourage to follow the curve, a little, because it's shorter near the center
//without that, it tends to go to the outter rim.
double weight_poly = 2 - polyline.length() / max(polyline.length(), best_candidate->length());
double weight_candi = 2 - best_candidate->length() / max(polyline.length(), best_candidate->length());
weight_poly *= coeff_angle_poly;
weight_candi *= coeff_angle_candi;
const double coeff_poly = (dot_poly_branch * weight_poly) / (dot_poly_branch * weight_poly + dot_candidate_branch * weight_candi);
const double coeff_candi = 1.0 - coeff_poly;
//iterate the points
// as voronoi should create symetric thing, we can iterate synchonously
unsigned int idx_point = 1;
while (idx_point < min(polyline.points.size(), best_candidate->points.size())) {
//fusion
polyline.points[idx_point].x = polyline.points[idx_point].x * coeff_poly + best_candidate->points[idx_point].x * coeff_candi;
polyline.points[idx_point].y = polyline.points[idx_point].y * coeff_poly + best_candidate->points[idx_point].y * coeff_candi;
// The width decrease with distance from the centerline.
// This formula is what works the best, even if it's not perfect (created empirically). 0->3% error on a gap fill on some tests.
//If someone find an other formula based on the properties of the voronoi algorithm used here, and it works better, please use it.
//or maybe just use the distance to nearest edge in bounds...
double value_from_current_width = 0.5*polyline.width[idx_point] * dot_poly_branch / max(dot_poly_branch, dot_candidate_branch);
value_from_current_width += 0.5*best_candidate->width[idx_point] * dot_candidate_branch / max(dot_poly_branch, dot_candidate_branch);
double value_from_dist = 2 * polyline.points[idx_point].distance_to(best_candidate->points[idx_point]);
value_from_dist *= sqrt(min(dot_poly_branch, dot_candidate_branch) / max(dot_poly_branch, dot_candidate_branch));
polyline.width[idx_point] = value_from_current_width + value_from_dist;
//failsafe
if (polyline.width[idx_point] > max_width) polyline.width[idx_point] = max_width;
++idx_point;
}
if (idx_point < best_candidate->points.size()) {
if (idx_point + 1 < best_candidate->points.size()) {
//create a new polyline
pp.emplace_back();
pp.back().endpoints.first = true;
pp.back().endpoints.second = best_candidate->endpoints.second;
for (int idx_point_new_line = idx_point; idx_point_new_line < best_candidate->points.size(); ++idx_point_new_line) {
pp.back().points.push_back(best_candidate->points[idx_point_new_line]);
pp.back().width.push_back(best_candidate->width[idx_point_new_line]);
}
} else {
//Add last point
polyline.points.push_back(best_candidate->points[idx_point]);
polyline.width.push_back(best_candidate->width[idx_point]);
//select if an end opccur
polyline.endpoints.second &= best_candidate->endpoints.second;
}
} else {
//select if an end opccur
polyline.endpoints.second &= best_candidate->endpoints.second;
}
//remove points that are the same or too close each other, ie simplify
for (unsigned int idx_point = 1; idx_point < polyline.points.size(); ++idx_point) {
if (polyline.points[idx_point - 1].distance_to(polyline.points[idx_point]) < SCALED_EPSILON) {
if (idx_point < polyline.points.size() -1) {
polyline.points.erase(polyline.points.begin() + idx_point);
polyline.width.erase(polyline.width.begin() + idx_point);
} else {
polyline.points.erase(polyline.points.begin() + idx_point - 1);
polyline.width.erase(polyline.width.begin() + idx_point - 1);
}
--idx_point;
}
}
//remove points that are outside of the geometry
for (unsigned int idx_point = 0; idx_point < polyline.points.size(); ++idx_point) {
if (!bounds.contains_b(polyline.points[idx_point])) {
polyline.points.erase(polyline.points.begin() + idx_point);
polyline.width.erase(polyline.width.begin() + idx_point);
--idx_point;
}
}
if (polyline.points.size() < 2) {
//remove self
pp.erase(pp.begin() + i);
--i;
--best_idx;
}
pp.erase(pp.begin() + best_idx);
changes = true;
break;
}
}
if (changes) {
concatThickPolylines(pp);
///reorder, in case of change
std::sort(pp.begin(), pp.end(), [](const ThickPolyline & a, const ThickPolyline & b) { return a.length() < b.length(); });
}
}
// remove too small extrusion at start & end of polylines
changes = false;
for (size_t i = 0; i < pp.size(); ++i) {
ThickPolyline& polyline = pp[i];
// remove bits with too small extrusion
while (polyline.points.size() > 1 && polyline.width.front() < min_width && polyline.endpoints.first) {
//try to split if possible
if (polyline.width[1] > min_width) {
double percent_can_keep = (min_width - polyline.width[0]) / (polyline.width[1] - polyline.width[0]);
if (polyline.points.front().distance_to(polyline.points[1]) * percent_can_keep > max_width / 2
&& polyline.points.front().distance_to(polyline.points[1])* (1 - percent_can_keep) > max_width / 2) {
//Can split => move the first point and assign a new weight.
//the update of endpoints wil be performed in concatThickPolylines
polyline.points.front().x = polyline.points.front().x +
(coord_t)((polyline.points[1].x - polyline.points.front().x) * percent_can_keep);
polyline.points.front().y = polyline.points.front().y +
(coord_t)((polyline.points[1].y - polyline.points.front().y) * percent_can_keep);
polyline.width.front() = min_width;
changes = true;
break;
}
}
polyline.points.erase(polyline.points.begin());
polyline.width.erase(polyline.width.begin());
changes = true;
}
while (polyline.points.size() > 1 && polyline.width.back() < min_width && polyline.endpoints.second) {
//try to split if possible
if (polyline.width[polyline.points.size()-2] > min_width) {
double percent_can_keep = (min_width - polyline.width.back()) / (polyline.width[polyline.points.size() - 2] - polyline.width.back());
if (polyline.points.back().distance_to(polyline.points[polyline.points.size() - 2]) * percent_can_keep > max_width / 2
&& polyline.points.back().distance_to(polyline.points[polyline.points.size() - 2]) * (1-percent_can_keep) > max_width / 2) {
//Can split => move the first point and assign a new weight.
//the update of endpoints wil be performed in concatThickPolylines
polyline.points.back().x = polyline.points.back().x +
(coord_t)((polyline.points[polyline.points.size() - 2].x - polyline.points.back().x) * percent_can_keep);
polyline.points.back().y = polyline.points.back().y +
(coord_t)((polyline.points[polyline.points.size() - 2].y - polyline.points.back().y) * percent_can_keep);
polyline.width.back() = min_width;
changes = true;
break;
}
}
polyline.points.erase(polyline.points.end()-1);
polyline.width.erase(polyline.width.end() - 1);
changes = true;
}
if (polyline.points.size() < 2) {
//remove self if too small
pp.erase(pp.begin() + i);
--i;
}
}
if (changes) concatThickPolylines(pp);
// Loop through all returned polylines in order to extend their endpoints to the
// expolygon boundaries
for (size_t i = 0; i < pp.size(); ++i) {
ThickPolyline& polyline = pp[i];
// extend initial and final segments of each polyline if they're actual endpoints
// We assign new endpoints to temporary variables because in case of a single-line
// polyline, after we extend the start point it will be caught by the intersection()
// call, so we keep the inner point until we perform the second intersection() as well
Point new_front = polyline.points.front();
Point new_back = polyline.points.back();
if (polyline.endpoints.first && !bounds.has_boundary_point(new_front)) {
Line line(polyline.points[1], polyline.points.front());
// prevent the line from touching on the other side, otherwise intersection() might return that solution
if (polyline.points.size() == 2) line.a = line.midpoint();
line.extend_end(max_width);
(void)bounds.contour.first_intersection(line, &new_front);
}
if (polyline.endpoints.second && !bounds.has_boundary_point(new_back)) {
Line line(
*(polyline.points.end() - 2),
polyline.points.back()
);
// prevent the line from touching on the other side, otherwise intersection() might return that solution
if (polyline.points.size() == 2) line.a = line.midpoint();
line.extend_end(max_width);
(void)bounds.contour.first_intersection(line, &new_back);
}
polyline.points.front() = new_front;
polyline.points.back() = new_back;
}
// concatenate, but even where multiple thickpolyline join, to create nice long strait polylines
/* If we removed any short polylines we now try to connect consecutive polylines
in order to allow loop detection. Note that this algorithm is greedier than
MedialAxis::process_edge_neighbors() as it will connect random pairs of
polylines even when more than two start from the same point. This has no
drawbacks since we optimize later using nearest-neighbor which would do the
same, but should we use a more sophisticated optimization algorithm we should
not connect polylines when more than two meet.
Optimisation of the old algorithm : now we select the most "strait line" choice
when we merge with an other line at a point with more than two meet.
*/
changes = false;
for (size_t i = 0; i < pp.size(); ++i) {
ThickPolyline& polyline = pp[i];
if (polyline.endpoints.first && polyline.endpoints.second) continue; // optimization
ThickPolyline* best_candidate = nullptr;
float best_dot = -1;
int best_idx = 0;
// find another polyline starting here
for (size_t j = i + 1; j < pp.size(); ++j) {
ThickPolyline& other = pp[j];
if (polyline.last_point().coincides_with(other.last_point())) {
other.reverse();
} else if (polyline.first_point().coincides_with(other.last_point())) {
polyline.reverse();
other.reverse();
} else if (polyline.first_point().coincides_with(other.first_point())) {
polyline.reverse();
} else if (!polyline.last_point().coincides_with(other.first_point())) {
continue;
}
Pointf v_poly(polyline.lines().back().vector().x, polyline.lines().back().vector().y);
v_poly.scale(1 / std::sqrt(v_poly.x*v_poly.x + v_poly.y*v_poly.y));
Pointf v_other(other.lines().front().vector().x, other.lines().front().vector().y);
v_other.scale(1 / std::sqrt(v_other.x*v_other.x + v_other.y*v_other.y));
float other_dot = v_poly.x*v_other.x + v_poly.y*v_other.y;
if (other_dot > best_dot) {
best_candidate = &other;
best_idx = j;
best_dot = other_dot;
}
}
if (best_candidate != nullptr) {
polyline.points.insert(polyline.points.end(), best_candidate->points.begin() + 1, best_candidate->points.end());
polyline.width.insert(polyline.width.end(), best_candidate->width.begin() + 1, best_candidate->width.end());
polyline.endpoints.second = best_candidate->endpoints.second;
assert(polyline.width.size() == polyline.points.size());
changes = true;
pp.erase(pp.begin() + best_idx);
}
}
if (changes) concatThickPolylines(pp);
//remove too thin polylines points (inside a polyline : split it)
for (size_t i = 0; i < pp.size(); ++i) {
ThickPolyline& polyline = pp[i];
// remove bits with too small extrusion
size_t idx_point = 0;
while (idx_point<polyline.points.size()) {
if (polyline.width[idx_point] < min_width) {
if (idx_point == 0) {
//too thin at start
polyline.points.erase(polyline.points.begin());
polyline.width.erase(polyline.width.begin());
idx_point = 0;
} else if (idx_point == 1) {
//too thin at start
polyline.points.erase(polyline.points.begin());
polyline.width.erase(polyline.width.begin());
polyline.points.erase(polyline.points.begin());
polyline.width.erase(polyline.width.begin());
idx_point = 0;
} else if (idx_point == polyline.points.size() - 2) {
//too thin at (near) end
polyline.points.erase(polyline.points.end() - 1);
polyline.width.erase(polyline.width.end() - 1);
polyline.points.erase(polyline.points.end() - 1);
polyline.width.erase(polyline.width.end() - 1);
} else if (idx_point == polyline.points.size() - 1) {
//too thin at end
polyline.points.erase(polyline.points.end() - 1);
polyline.width.erase(polyline.width.end() - 1);
} else {
//too thin in middle : split
pp.emplace_back();
ThickPolyline &newone = pp.back();
newone.points.insert(newone.points.begin(), polyline.points.begin() + idx_point + 1, polyline.points.end());
newone.width.insert(newone.width.begin(), polyline.width.begin() + idx_point + 1, polyline.width.end());
polyline.points.erase(polyline.points.begin() + idx_point, polyline.points.end());
polyline.width.erase(polyline.width.begin() + idx_point, polyline.width.end());
}
} else idx_point++;
if (polyline.points.size() < 2) {
//remove self if too small
pp.erase(pp.begin() + i);
--i;
break;
}
}
}
//remove too short polyline
changes = true;
while (changes) {
changes = false;
double shortest_size = max_w * 2;
int32_t shortest_idx = -1;
for (size_t i = 0; i < pp.size(); ++i) {
ThickPolyline& polyline = pp[i];
// Remove the shortest polylines : polyline that are shorter than wider
// (we can't do this check before endpoints extension and clipping because we don't
// know how long will the endpoints be extended since it depends on polygon thickness
// which is variable - extension will be <= max_width/2 on each side)
if ((polyline.endpoints.first || polyline.endpoints.second)
&& polyline.length() < max_width / 2) {
if (shortest_size > polyline.length()) {
shortest_size = polyline.length();
shortest_idx = i;
}
}
}
if (shortest_idx >= 0 && shortest_idx < pp.size()) {
pp.erase(pp.begin() + shortest_idx);
changes = true;
}
if (changes) concatThickPolylines(pp);
}
//TODO: reduce the flow at the intersection ( + ) points ?
//ensure the volume extruded is correct for what we have been asked
// => don't over-extrude
double surface = 0;
double volume = 0;
for (ThickPolyline& polyline : pp) {
for (ThickLine l : polyline.thicklines()) {
surface += l.length() * (l.a_width + l.b_width) / 2;
double width_mean = (l.a_width + l.b_width) / 2;
volume += height * (width_mean - height * (1. - 0.25 * PI)) * l.length();
}
}
// compute bounds volume
double boundsVolume = 0;
boundsVolume += height*bounds.area();
// add external "perimeter gap"
double perimeterRoundGap = bounds.contour.length() * height * (1 - 0.25*PI) * 0.5;
// add holes "perimeter gaps"
double holesGaps = 0;
for (auto hole = bounds.holes.begin(); hole != bounds.holes.end(); ++hole) {
holesGaps += hole->length() * height * (1 - 0.25*PI) * 0.5;
}
boundsVolume += perimeterRoundGap + holesGaps;
if (boundsVolume < volume) {
//reduce width
double reduce_by = boundsVolume / volume;
for (ThickPolyline& polyline : pp) {
for (ThickLine l : polyline.thicklines()) {
l.a_width *= reduce_by;
l.b_width *= reduce_by;
}
}
}
polylines->insert(polylines->end(), pp.begin(), pp.end());
ExPolygon::medial_axis(const ExPolygon &bounds, double max_width, double min_width, ThickPolylines* polylines, double height) const {
ExPolygon simplifiedBounds = bounds;
simplifiedBounds.remove_point_too_near(SCALED_RESOLUTION);
ExPolygon simplifiedPolygon = *this;
simplifiedPolygon.remove_point_too_near(SCALED_RESOLUTION);
Slic3r::MedialAxis ma(simplifiedPolygon, simplifiedBounds, max_width, min_width, height);
ma.build(polylines);
}
void

View File

@ -53,6 +53,7 @@ public:
Polygons simplify_p(double tolerance) const;
ExPolygons simplify(double tolerance) const;
void simplify(double tolerance, ExPolygons* expolygons) const;
void remove_point_too_near(const coord_t tolerance);
void medial_axis(const ExPolygon &bounds, double max_width, double min_width, ThickPolylines* polylines, double height) const;
void medial_axis(double max_width, double min_width, Polylines* polylines) const;
void get_trapezoids(Polygons* polygons) const;

View File

@ -850,277 +850,5 @@ private:
const Lines &lines;
};
void
MedialAxis::build(ThickPolylines* polylines)
{
construct_voronoi(this->lines.begin(), this->lines.end(), &this->vd);
/*
// DEBUG: dump all Voronoi edges
{
for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
if (edge->is_infinite()) continue;
ThickPolyline polyline;
polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() ));
polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() ));
polylines->push_back(polyline);
}
return;
}
*/
typedef const VD::vertex_type vert_t;
typedef const VD::edge_type edge_t;
// collect valid edges (i.e. prune those not belonging to MAT)
// note: this keeps twins, so it inserts twice the number of the valid edges
this->valid_edges.clear();
{
std::set<const VD::edge_type*> seen_edges;
for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
// if we only process segments representing closed loops, none if the
// infinite edges (if any) would be part of our MAT anyway
if (edge->is_secondary() || edge->is_infinite()) continue;
// don't re-validate twins
if (seen_edges.find(&*edge) != seen_edges.end()) continue; // TODO: is this needed?
seen_edges.insert(&*edge);
seen_edges.insert(edge->twin());
if (!this->validate_edge(&*edge)) continue;
this->valid_edges.insert(&*edge);
this->valid_edges.insert(edge->twin());
}
}
this->edges = this->valid_edges;
// iterate through the valid edges to build polylines
while (!this->edges.empty()) {
const edge_t* edge = *this->edges.begin();
// start a polyline
ThickPolyline polyline;
polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() ));
polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() ));
polyline.width.push_back(this->thickness[edge].first);
polyline.width.push_back(this->thickness[edge].second);
// remove this edge and its twin from the available edges
(void)this->edges.erase(edge);
(void)this->edges.erase(edge->twin());
// get next points
this->process_edge_neighbors(edge, &polyline);
// get previous points
{
ThickPolyline rpolyline;
this->process_edge_neighbors(edge->twin(), &rpolyline);
polyline.points.insert(polyline.points.begin(), rpolyline.points.rbegin(), rpolyline.points.rend());
polyline.width.insert(polyline.width.begin(), rpolyline.width.rbegin(), rpolyline.width.rend());
polyline.endpoints.first = rpolyline.endpoints.second;
}
assert(polyline.width.size() == polyline.points.size());
// prevent loop endpoints from being extended
if (polyline.first_point().coincides_with(polyline.last_point())) {
polyline.endpoints.first = false;
polyline.endpoints.second = false;
}
// append polyline to result
polylines->push_back(polyline);
}
#ifdef SLIC3R_DEBUG
{
static int iRun = 0;
dump_voronoi_to_svg(this->lines, this->vd, polylines, debug_out_path("MedialAxis-%d.svg", iRun ++).c_str());
printf("Thick lines: ");
for (ThickPolylines::const_iterator it = polylines->begin(); it != polylines->end(); ++ it) {
ThickLines lines = it->thicklines();
for (ThickLines::const_iterator it2 = lines.begin(); it2 != lines.end(); ++ it2) {
printf("%f,%f ", it2->a_width, it2->b_width);
}
}
printf("\n");
}
#endif /* SLIC3R_DEBUG */
}
void
MedialAxis::build(Polylines* polylines)
{
ThickPolylines tp;
this->build(&tp);
polylines->insert(polylines->end(), tp.begin(), tp.end());
}
void
MedialAxis::process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline)
{
while (true) {
// Since rot_next() works on the edge starting point but we want
// to find neighbors on the ending point, we just swap edge with
// its twin.
const VD::edge_type* twin = edge->twin();
// count neighbors for this edge
std::vector<const VD::edge_type*> neighbors;
for (const VD::edge_type* neighbor = twin->rot_next(); neighbor != twin;
neighbor = neighbor->rot_next()) {
if (this->valid_edges.count(neighbor) > 0) neighbors.push_back(neighbor);
}
// if we have a single neighbor then we can continue recursively
if (neighbors.size() == 1) {
const VD::edge_type* neighbor = neighbors.front();
// break if this is a closed loop
if (this->edges.count(neighbor) == 0) return;
Point new_point(neighbor->vertex1()->x(), neighbor->vertex1()->y());
polyline->points.push_back(new_point);
polyline->width.push_back(this->thickness[neighbor].second);
(void)this->edges.erase(neighbor);
(void)this->edges.erase(neighbor->twin());
edge = neighbor;
} else if (neighbors.size() == 0) {
polyline->endpoints.second = true;
return;
} else {
// T-shaped or star-shaped joint
return;
}
}
}
bool
MedialAxis::validate_edge(const VD::edge_type* edge)
{
// prevent overflows and detect almost-infinite edges
if (std::abs(edge->vertex0()->x()) > double(CLIPPER_MAX_COORD_UNSCALED) ||
std::abs(edge->vertex0()->y()) > double(CLIPPER_MAX_COORD_UNSCALED) ||
std::abs(edge->vertex1()->x()) > double(CLIPPER_MAX_COORD_UNSCALED) ||
std::abs(edge->vertex1()->y()) > double(CLIPPER_MAX_COORD_UNSCALED))
return false;
// construct the line representing this edge of the Voronoi diagram
const Line line(
Point( edge->vertex0()->x(), edge->vertex0()->y() ),
Point( edge->vertex1()->x(), edge->vertex1()->y() )
);
// discard edge if it lies outside the supplied shape
// this could maybe be optimized (checking inclusion of the endpoints
// might give false positives as they might belong to the contour itself)
if (this->expolygon != NULL) {
if (line.a.coincides_with(line.b)) {
// in this case, contains(line) returns a false positive
if (!this->expolygon->contains(line.a)) return false;
} else {
if (!this->expolygon->contains(line)) return false;
}
}
// retrieve the original line segments which generated the edge we're checking
const VD::cell_type* cell_l = edge->cell();
const VD::cell_type* cell_r = edge->twin()->cell();
const Line &segment_l = this->retrieve_segment(cell_l);
const Line &segment_r = this->retrieve_segment(cell_r);
/*
SVG svg("edge.svg");
svg.draw(*this->expolygon);
svg.draw(line);
svg.draw(segment_l, "red");
svg.draw(segment_r, "blue");
svg.Close();
*/
/* Calculate thickness of the cross-section at both the endpoints of this edge.
Our Voronoi edge is part of a CCW sequence going around its Voronoi cell
located on the left side. (segment_l).
This edge's twin goes around segment_r. Thus, segment_r is
oriented in the same direction as our main edge, and segment_l is oriented
in the same direction as our twin edge.
We used to only consider the (half-)distances to segment_r, and that works
whenever segment_l and segment_r are almost specular and facing. However,
at curves they are staggered and they only face for a very little length
(our very short edge represents such visibility).
Both w0 and w1 can be calculated either towards cell_l or cell_r with equal
results by Voronoi definition.
When cell_l or cell_r don't refer to the segment but only to an endpoint, we
calculate the distance to that endpoint instead. */
coordf_t w0 = cell_r->contains_segment()
? line.a.distance_to(segment_r)*2
: line.a.distance_to(this->retrieve_endpoint(cell_r))*2;
coordf_t w1 = cell_l->contains_segment()
? line.b.distance_to(segment_l)*2
: line.b.distance_to(this->retrieve_endpoint(cell_l))*2;
//don't remove the line that goes to the intersection of the contour
// we use them to create nicer thin wall lines
//if (cell_l->contains_segment() && cell_r->contains_segment()) {
// // calculate the relative angle between the two boundary segments
// double angle = fabs(segment_r.orientation() - segment_l.orientation());
// if (angle > PI) angle = 2*PI - angle;
// assert(angle >= 0 && angle <= PI);
//
// // fabs(angle) ranges from 0 (collinear, same direction) to PI (collinear, opposite direction)
// // we're interested only in segments close to the second case (facing segments)
// // so we allow some tolerance.
// // this filter ensures that we're dealing with a narrow/oriented area (longer than thick)
// // we don't run it on edges not generated by two segments (thus generated by one segment
// // and the endpoint of another segment), since their orientation would not be meaningful
// if (PI - angle > PI/8) {
// // angle is not narrow enough
//
// // only apply this filter to segments that are not too short otherwise their
// // angle could possibly be not meaningful
// if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON || line.length() >= this->min_width)
// return false;
// }
//} else {
// if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON)
// return false;
//}
// don't do that before we try to fusion them
//if (w0 < this->min_width && w1 < this->min_width)
// return false;
//
//shouldn't occur if perimeter_generator is well made
if (w0 > this->max_width && w1 > this->max_width)
return false;
this->thickness[edge] = std::make_pair(w0, w1);
this->thickness[edge->twin()] = std::make_pair(w1, w0);
return true;
}
const Line&
MedialAxis::retrieve_segment(const VD::cell_type* cell) const
{
return this->lines[cell->source_index()];
}
const Point&
MedialAxis::retrieve_endpoint(const VD::cell_type* cell) const
{
const Line& line = this->retrieve_segment(cell);
if (cell->source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) {
return line.a;
} else {
return line.b;
}
}
} }

View File

@ -3,13 +3,11 @@
#include "libslic3r.h"
#include "BoundingBox.hpp"
#include "MedialAxis.hpp"
#include "ExPolygon.hpp"
#include "Polygon.hpp"
#include "Polyline.hpp"
#include "boost/polygon/voronoi.hpp"
using boost::polygon::voronoi_builder;
using boost::polygon::voronoi_diagram;
namespace Slic3r { namespace Geometry {
@ -129,34 +127,6 @@ bool arrange(
// output
Pointfs &positions);
class MedialAxis {
public:
Lines lines;
const ExPolygon* expolygon;
double max_width;
double min_width;
MedialAxis(double _max_width, double _min_width, const ExPolygon* _expolygon = NULL)
: expolygon(_expolygon), max_width(_max_width), min_width(_min_width) {};
void build(ThickPolylines* polylines);
void build(Polylines* polylines);
private:
class VD : public voronoi_diagram<double> {
public:
typedef double coord_type;
typedef boost::polygon::point_data<coordinate_type> point_type;
typedef boost::polygon::segment_data<coordinate_type> segment_type;
typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
};
VD vd;
std::set<const VD::edge_type*> edges, valid_edges;
std::map<const VD::edge_type*, std::pair<coordf_t,coordf_t> > thickness;
void process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline);
bool validate_edge(const VD::edge_type* edge);
const Line& retrieve_segment(const VD::cell_type* cell) const;
const Point& retrieve_endpoint(const VD::cell_type* cell) const;
};
} }
#endif

View File

@ -241,7 +241,7 @@ void PerimeterGenerator::process()
// (actually, something larger than that still may exist due to mitering or other causes)
coord_t min_width = (coord_t)scale_(this->ext_perimeter_flow.nozzle_diameter / 3);
ExPolygons no_thin_zone = offset_ex(next_onion, (float)(ext_perimeter_width / 2));
ExPolygons no_thin_zone = offset_ex(next_onion, (float)(ext_perimeter_width / 2), jtSquare);
// medial axis requires non-overlapping geometry
ExPolygons thin_zones = diff_ex(last, no_thin_zone, true);
//don't use offset2_ex, because we don't want to merge the zones that have been separated.
@ -253,7 +253,8 @@ void PerimeterGenerator::process()
// compute a bit of overlap to anchor thin walls inside the print.
for (ExPolygon &ex : expp) {
//growing back the polygon
//a vary little bit of overlap can be created here with other thin polygon, but it's more useful than worisome.
//a very little bit of overlap can be created here with other thin polygons, but it's more useful than worisome.
ex.remove_point_too_near(SCALED_RESOLUTION);
ExPolygons ex_bigger = offset_ex(ex, (float)(min_width / 2));
if (ex_bigger.size() != 1) continue; // impossible error, growing a single polygon can't create multiple or 0.
ExPolygons anchor = intersection_ex(offset_ex(ex, (float)(min_width / 2) +
@ -264,7 +265,7 @@ void PerimeterGenerator::process()
//be sure it's not too small to extrude reliably
if (ex_bigger[0].area() > min_width*(ext_perimeter_width + ext_perimeter_spacing2)) {
// the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
ex_bigger[0].medial_axis(bound, ext_perimeter_width + ext_perimeter_spacing2, min_width,
ex_bigger[0].medial_axis(bound, ext_perimeter_width + ext_perimeter_spacing2, min_width,
&thin_walls, this->layer_height);
}
break;
@ -602,8 +603,10 @@ ExtrusionEntityCollection PerimeterGenerator::_variable_width(const ThickPolylin
// of segments, and any pruning shall be performed before we apply this tolerance
const double tolerance = scale_(0.05);
int id_line = 0;
ExtrusionEntityCollection coll;
for (const ThickPolyline &p : polylines) {
id_line++;
ExtrusionPaths paths;
ExtrusionPath path(role);
ThickLines lines = p.thicklines();
@ -665,7 +668,7 @@ ExtrusionEntityCollection PerimeterGenerator::_variable_width(const ThickPolylin
path.height = flow.height;
} else {
thickness_delta = fabs(scale_(flow.width) - w);
if (thickness_delta <= tolerance) {
if (thickness_delta <= tolerance/2) {
// the width difference between this line and the current flow width is
// within the accepted tolerance
path.polyline.append(line.b);

View File

@ -301,10 +301,10 @@ void concatThickPolylines(ThickPolylines& pp) {
for (size_t i = 0; i < pp.size(); ++i) {
ThickPolyline *polyline = &pp[i];
int32_t id_candidate_first_point = -1;
int32_t id_candidate_last_point = -1;
int32_t nbCandidate_first_point = 0;
int32_t nbCandidate_last_point = 0;
size_t id_candidate_first_point = -1;
size_t id_candidate_last_point = -1;
size_t nbCandidate_first_point = 0;
size_t nbCandidate_last_point = 0;
// find another polyline starting here
for (size_t j = 0; j < pp.size(); ++j) {
if (j == i) continue;