Better bridge angle computation, and ready for tweaking weights

(currently 70% coverage, 15% median length, 15% max length, 5% bonus for following a perimeter)
Fix: Now consider bridge as full fill whatever the bridge_overlap is
supermerill/SuperSlicer#565
supermerill/SuperSlicer#234
supermerill/SuperSlicer#149
This commit is contained in:
supermerill 2021-10-28 19:47:40 +02:00
parent 137726a237
commit 6832dab603
3 changed files with 88 additions and 43 deletions

View File

@ -34,8 +34,8 @@ BridgeDetector::BridgeDetector(
void BridgeDetector::initialize() void BridgeDetector::initialize()
{ {
// 5 degrees stepping // 2 degrees stepping
this->resolution = PI/(36.0*5); this->resolution = PI/(90);
// output angle not known // output angle not known
this->angle = -1.; this->angle = -1.;
@ -80,10 +80,7 @@ bool BridgeDetector::detect_angle(double bridge_direction_override)
std::vector<BridgeDirection> candidates; std::vector<BridgeDirection> candidates;
if (bridge_direction_override == 0.) { if (bridge_direction_override == 0.) {
std::vector<double> angles = bridge_direction_candidates(); candidates = bridge_direction_candidates();
candidates.reserve(angles.size());
for (size_t i = 0; i < angles.size(); ++ i)
candidates.emplace_back(BridgeDirection(angles[i]));
} else } else
candidates.emplace_back(BridgeDirection(bridge_direction_override)); candidates.emplace_back(BridgeDirection(bridge_direction_override));
@ -118,50 +115,90 @@ bool BridgeDetector::detect_angle(double bridge_direction_override)
Point((coord_t)round(c * bbox.max(0) - s * y), (coord_t)round(c * y + s * bbox.max(0))))); Point((coord_t)round(c * bbox.max(0) - s * y), (coord_t)round(c * y + s * bbox.max(0)))));
} }
double total_length = 0; //compute stat on line with anchors, and their lengths.
uint32_t nbLines = 0; BridgeDirection& c = candidates[i_angle];
double max_length = 0; std::vector<coordf_t> dist_anchored;
{ {
Lines clipped_lines = intersection_ln(lines, clip_area); Lines clipped_lines = intersection_ln(lines, clip_area);
for (size_t i = 0; i < clipped_lines.size(); ++i) { for (size_t i = 0; i < clipped_lines.size(); ++i) {
const Line &line = clipped_lines[i]; const Line &line = clipped_lines[i];
if (expolygons_contain(this->_anchor_regions, line.a) && expolygons_contain(this->_anchor_regions, line.b)) { if (expolygons_contain(this->_anchor_regions, line.a) && expolygons_contain(this->_anchor_regions, line.b)) {
// This line could be anchored. // This line could be anchored.
double len = line.length(); coordf_t len = line.length();
total_length += len; //store stats
max_length = std::max(max_length, len); c.total_length_anchored += len;
nbLines++; c.max_length_anchored = std::max(c.max_length_anchored, len);
c.nb_lines_anchored++;
dist_anchored.push_back(len);
} else {
// this line could NOT be anchored.
coordf_t len = line.length();
c.total_length_free += len;
c.max_length_free = std::max(c.max_length_free, len);
c.nb_lines_free++;
} }
} }
} }
if (total_length == 0. || nbLines == 0) if (c.total_length_anchored == 0. || c.nb_lines_anchored == 0) {
continue; continue;
} else {
have_coverage = true;
// compute median
if (!dist_anchored.empty()) {
std::sort(dist_anchored.begin(), dist_anchored.end());
c.median_length_anchor = dist_anchored[dist_anchored.size() / 2];
}
have_coverage = true;
// Sum length of bridged lines. // size is 20%
candidates[i_angle].coverage = total_length; }
/* The following produces more correct results in some cases and more broken in others.
TODO: investigate, as it looks more reliable than line clipping. */
// $directions_coverage{$angle} = sum(map $_->area, @{$self->coverage($angle)}) // 0;
// max length of bridged lines
candidates[i_angle].max_length = max_length;
candidates[i_angle].mean_length = total_length / nbLines;
} }
// if no direction produced coverage, then there's no bridge direction // if no direction produced coverage, then there's no bridge direction
if (! have_coverage) if (! have_coverage)
return false; return false;
// sort directions by coverage - most coverage first
std::sort(candidates.begin(), candidates.end()); //compute global stat (max & min median & max length)
std::vector<coordf_t> all_median_length;
std::vector<coordf_t> all_max_length;
for (BridgeDirection &c : candidates) {
all_median_length.push_back(c.median_length_anchor);
all_max_length.push_back(c.max_length_anchored);
}
std::sort(all_median_length.begin(), all_median_length.end());
std::sort(all_max_length.begin(), all_max_length.end());
coordf_t median_max_length = all_max_length[all_max_length.size() / 2];
coordf_t min_max_length = all_max_length.front();
coordf_t max_max_length = all_max_length.back();
coordf_t median_median_length = all_median_length[all_median_length.size() / 2];
coordf_t min_median_length = all_median_length.front();
coordf_t max_median_length = all_median_length.back();
//compute individual score
for (BridgeDirection& c : candidates) {
c.coverage = 0;
//ratio_anchored is 70% of the score
double ratio_anchored = c.total_length_anchored / (c.total_length_anchored + c.total_length_free);
c.coverage = 70 * ratio_anchored;
//median is 15% (and need to invert it)
double ratio_median = 1 - double(c.median_length_anchor - min_median_length) / (double)std::max(1., max_median_length - min_median_length);
c.coverage += 15 * ratio_median;
//max is 15 % (and need to invert it)
double ratio_max = 1 - double(c.max_length_anchored - min_max_length) / (double)std::max(1., max_max_length - min_max_length);
c.coverage += 15 * ratio_max;
//bonus for perimeter dir
if (c.along_perimeter)
c.coverage += 0.05;
}
// if any other direction is within extrusion width of coverage, prefer it if shorter // if any other direction is within extrusion width of coverage, prefer it if shorter
// shorter = shorter max length, or if in espilon (10) range, the shorter mean length. // shorter = shorter max length, or if in espilon (10) range, the shorter mean length.
// TODO: There are two options here - within width of the angle with most coverage, or within width of the currently perferred? // TODO: There are two options here - within width of the angle with most coverage, or within width of the currently perferred?
size_t i_best = 0; size_t i_best = 0;
for (size_t i = 1; i < candidates.size() && candidates[i_best].coverage - candidates[i].coverage < this->spacing; ++ i) for (size_t i = 1; i < candidates.size(); ++ i)
if (candidates[i].max_length < candidates[i_best].max_length || if (candidates[i].coverage > candidates[i_best].coverage)
(candidates[i].max_length < candidates[i_best].max_length - 10 && candidates[i].mean_length < candidates[i_best].mean_length))
i_best = i; i_best = i;
this->angle = candidates[i_best].angle; this->angle = candidates[i_best].angle;
@ -171,42 +208,42 @@ bool BridgeDetector::detect_angle(double bridge_direction_override)
#ifdef SLIC3R_DEBUG #ifdef SLIC3R_DEBUG
printf(" Optimal infill angle is %d degrees\n", (int)Slic3r::Geometry::rad2deg(this->angle)); printf(" Optimal infill angle is %d degrees\n", (int)Slic3r::Geometry::rad2deg(this->angle));
#endif #endif
return true; return true;
} }
std::vector<double> BridgeDetector::bridge_direction_candidates() const std::vector<BridgeDetector::BridgeDirection> BridgeDetector::bridge_direction_candidates() const
{ {
// we test angles according to configured resolution // we test angles according to configured resolution
std::vector<double> angles; std::vector<BridgeDirection> angles;
for (int i = 0; i <= PI/this->resolution; ++i) for (int i = 0; i <= PI/this->resolution; ++i)
angles.push_back(i * this->resolution); angles.emplace_back(i * this->resolution);
// we also test angles of each bridge contour // we also test angles of each bridge contour
{ {
Lines lines = to_lines(this->expolygons); Lines lines = to_lines(this->expolygons);
for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line)
angles.push_back(line->direction()); angles.emplace_back(line->direction(), true);
} }
/* we also test angles of each open supporting edge /* we also test angles of each open supporting edge
(this finds the optimal angle for C-shaped supports) */ (this finds the optimal angle for C-shaped supports) */
for (const Polyline &edge : this->_edges) for (const Polyline &edge : this->_edges)
if (edge.first_point() != edge.last_point()) if (edge.first_point() != edge.last_point())
angles.push_back(Line(edge.first_point(), edge.last_point()).direction()); angles.emplace_back(Line(edge.first_point(), edge.last_point()).direction());
// remove duplicates // remove duplicates
double min_resolution = PI/180.0; // 1 degree double min_resolution = PI/(4*180.0); // /180 = 1 degree
std::sort(angles.begin(), angles.end()); std::sort(angles.begin(), angles.end());
for (size_t i = 1; i < angles.size(); ++i) { for (size_t i = 1; i < angles.size(); ++i) {
if (Slic3r::Geometry::directions_parallel(angles[i], angles[i-1], min_resolution)) { if (Slic3r::Geometry::directions_parallel(angles[i].angle, angles[i-1].angle, min_resolution)) {
angles.erase(angles.begin() + i); angles.erase(angles.begin() + i);
--i; --i;
} }
} }
/* compare first value with last one and remove the greatest one (PI) /* compare first value with last one and remove the greatest one (PI)
in case they are parallel (PI, 0) */ in case they are parallel (PI, 0) */
if (Slic3r::Geometry::directions_parallel(angles.front(), angles.back(), min_resolution)) if (Slic3r::Geometry::directions_parallel(angles.front().angle, angles.back().angle, min_resolution))
angles.pop_back(); angles.pop_back();
return angles; return angles;

View File

@ -43,7 +43,7 @@ private:
void initialize(); void initialize();
struct BridgeDirection { struct BridgeDirection {
BridgeDirection(double a = -1.) : angle(a), coverage(0.), max_length(0.) {} BridgeDirection(double a = -1., bool along_perimeter = false) : angle(a), coverage(0.), along_perimeter(along_perimeter){}
// the best direction is the one causing most lines to be bridged (thus most coverage) // the best direction is the one causing most lines to be bridged (thus most coverage)
bool operator<(const BridgeDirection &other) const { bool operator<(const BridgeDirection &other) const {
// Initial sort by coverage only - comparator must obey strict weak ordering // Initial sort by coverage only - comparator must obey strict weak ordering
@ -51,12 +51,19 @@ private:
}; };
double angle; double angle;
double coverage; double coverage;
double max_length;
double mean_length; bool along_perimeter;
coordf_t total_length_anchored = 0;
coordf_t median_length_anchor = 0;
coordf_t max_length_anchored = 0;
uint32_t nb_lines_anchored = 0;
coordf_t total_length_free = 0;
coordf_t max_length_free = 0;
uint32_t nb_lines_free = 0;
}; };
public: public:
// Get possible briging direction candidates. // Get possible briging direction candidates.
std::vector<double> bridge_direction_candidates() const; std::vector<BridgeDirection> bridge_direction_candidates() const;
// Open lines representing the supporting edges. // Open lines representing the supporting edges.
Polylines _edges; Polylines _edges;

View File

@ -36,7 +36,8 @@ public:
struct FillParams struct FillParams
{ {
bool full_infill() const { return density > 0.9999f && density < 1.0001f; } // Allways consider bridge as full infill, whatever the density is.
bool full_infill() const { return flow.bridge || (density > 0.9999f && density < 1.0001f); }
// Don't connect the fill lines around the inner perimeter. // Don't connect the fill lines around the inner perimeter.
bool dont_connect() const { return connection == InfillConnection::icNotConnected; } bool dont_connect() const { return connection == InfillConnection::icNotConnected; }