Merge branch 'master' into alexrj_flagssurfacetype

This commit is contained in:
Merill 2018-11-27 14:25:16 +01:00 committed by GitHub
commit 74b02336ba
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 243 additions and 602 deletions

View File

@ -255,134 +255,6 @@ EOF
print "Done.\n" unless $params{quiet}; print "Done.\n" unless $params{quiet};
} }
sub make_skirt {
my $self = shift;
# prerequisites
$_->make_perimeters for @{$self->objects};
$_->infill for @{$self->objects};
$_->generate_support_material for @{$self->objects};
return if $self->step_done(STEP_SKIRT);
$self->set_step_started(STEP_SKIRT);
# since this method must be idempotent, we clear skirt paths *before*
# checking whether we need to generate them
$self->skirt->clear;
if (!$self->has_skirt) {
$self->set_step_done(STEP_SKIRT);
return;
}
$self->status_cb->(88, "Generating skirt");
# First off we need to decide how tall the skirt must be.
# The skirt_height option from config is expressed in layers, but our
# object might have different layer heights, so we need to find the print_z
# of the highest layer involved.
# Note that unless has_infinite_skirt() == true
# the actual skirt might not reach this $skirt_height_z value since the print
# order of objects on each layer is not guaranteed and will not generally
# include the thickest object first. It is just guaranteed that a skirt is
# prepended to the first 'n' layers (with 'n' = skirt_height).
# $skirt_height_z in this case is the highest possible skirt height for safety.
my $skirt_height_z = -1;
foreach my $object (@{$self->objects}) {
my $skirt_height = $self->has_infinite_skirt
? $object->layer_count
: min($self->config->skirt_height, $object->layer_count);
my $highest_layer = $object->get_layer($skirt_height - 1);
$skirt_height_z = max($skirt_height_z, $highest_layer->print_z);
}
# collect points from all layers contained in skirt height
my @points = ();
foreach my $object (@{$self->objects}) {
my @object_points = ();
# get object layers up to $skirt_height_z
foreach my $layer (@{$object->layers}) {
last if $layer->print_z > $skirt_height_z;
push @object_points, map @$_, map @$_, @{$layer->slices};
}
# get support layers up to $skirt_height_z
foreach my $layer (@{$object->support_layers}) {
last if $layer->print_z > $skirt_height_z;
push @object_points, map @{$_->polyline}, @{$layer->support_fills} if $layer->support_fills;
push @object_points, map @{$_->polyline}, @{$layer->support_interface_fills} if $layer->support_interface_fills;
}
# repeat points for each object copy
foreach my $copy (@{$object->_shifted_copies}) {
my @copy_points = map $_->clone, @object_points;
$_->translate(@$copy) for @copy_points;
push @points, @copy_points;
}
}
return if @points < 3; # at least three points required for a convex hull
# find out convex hull
my $convex_hull = convex_hull(\@points);
my @extruded_length = (); # for each extruder
# skirt may be printed on several layers, having distinct layer heights,
# but loops must be aligned so can't vary width/spacing
# TODO: use each extruder's own flow
my $first_layer_height = $self->skirt_first_layer_height;
my $flow = $self->skirt_flow;
my $spacing = $flow->spacing;
my $mm3_per_mm = $flow->mm3_per_mm;
my @extruders_e_per_mm = ();
my $extruder_idx = 0;
my $skirts = $self->config->skirts;
$skirts ||= 1 if $self->has_infinite_skirt;
# draw outlines from outside to inside
# loop while we have less skirts than required or any extruder hasn't reached the min length if any
my $distance = scale max($self->config->skirt_distance, $self->config->brim_width);
for (my $i = $skirts; $i > 0; $i--) {
$distance += scale $spacing;
my $loop = offset([$convex_hull], $distance, 1, JT_ROUND, scale(0.1))->[0];
my $eloop = Slic3r::ExtrusionLoop->new_from_paths(
Slic3r::ExtrusionPath->new(
polyline => Slic3r::Polygon->new(@$loop)->split_at_first_point,
role => EXTR_ROLE_SKIRT,
mm3_per_mm => $mm3_per_mm, # this will be overridden at G-code export time
width => $flow->width,
height => $first_layer_height, # this will be overridden at G-code export time
),
);
$eloop->role(EXTRL_ROLE_SKIRT);
$self->skirt->append($eloop);
if ($self->config->min_skirt_length > 0) {
$extruded_length[$extruder_idx] ||= 0;
if (!$extruders_e_per_mm[$extruder_idx]) {
my $config = Slic3r::Config::GCode->new;
$config->apply_static($self->config);
my $extruder = Slic3r::Extruder->new($extruder_idx, $config);
$extruders_e_per_mm[$extruder_idx] = $extruder->e_per_mm($mm3_per_mm);
}
$extruded_length[$extruder_idx] += unscale $loop->length * $extruders_e_per_mm[$extruder_idx];
$i++ if defined first { ($extruded_length[$_] // 0) < $self->config->min_skirt_length } 0 .. $#{$self->extruders};
if ($extruded_length[$extruder_idx] >= $self->config->min_skirt_length) {
if ($extruder_idx < $#{$self->extruders}) {
$extruder_idx++;
next;
}
}
}
}
$self->skirt->reverse;
$self->set_step_done(STEP_SKIRT);
}
sub make_brim { sub make_brim {
my $self = shift; my $self = shift;

View File

@ -34,175 +34,6 @@ sub support_layers {
return [ map $self->get_support_layer($_), 0..($self->support_layer_count - 1) ]; return [ map $self->get_support_layer($_), 0..($self->support_layer_count - 1) ];
} }
# 1) Decides Z positions of the layers,
# 2) Initializes layers and their regions
# 3) Slices the object meshes
# 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
# 5) Applies size compensation (offsets the slices in XY plane)
# 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
# Resulting expolygons of layer regions are marked as Internal.
#
# this should be idempotent
sub slice {
my $self = shift;
return if $self->step_done(STEP_SLICE);
$self->set_step_started(STEP_SLICE);
$self->print->status_cb->(10, "Processing triangulated mesh");
$self->_slice;
# detect slicing errors
my $warning_thrown = 0;
for my $i (0 .. ($self->layer_count - 1)) {
my $layer = $self->get_layer($i);
next unless $layer->slicing_errors;
if (!$warning_thrown) {
warn "The model has overlapping or self-intersecting facets. I tried to repair it, "
. "however you might want to check the results or repair the input file and retry.\n";
$warning_thrown = 1;
}
# try to repair the layer surfaces by merging all contours and all holes from
# neighbor layers
Slic3r::debugf "Attempting to repair layer %d\n", $i;
foreach my $region_id (0 .. ($layer->region_count - 1)) {
my $layerm = $layer->region($region_id);
my (@upper_surfaces, @lower_surfaces);
for (my $j = $i+1; $j < $self->layer_count; $j++) {
if (!$self->get_layer($j)->slicing_errors) {
@upper_surfaces = @{$self->get_layer($j)->region($region_id)->slices};
last;
}
}
for (my $j = $i-1; $j >= 0; $j--) {
if (!$self->get_layer($j)->slicing_errors) {
@lower_surfaces = @{$self->get_layer($j)->region($region_id)->slices};
last;
}
}
my $union = union_ex([
map $_->expolygon->contour, @upper_surfaces, @lower_surfaces,
]);
my $diff = diff_ex(
[ map @$_, @$union ],
[ map @{$_->expolygon->holes}, @upper_surfaces, @lower_surfaces, ],
);
$layerm->slices->clear;
$layerm->slices->append($_)
for map Slic3r::Surface->new
(expolygon => $_, surface_type => S_TYPE_INTERNAL),
@$diff;
}
# update layer slices after repairing the single regions
$layer->make_slices;
}
# remove empty layers from bottom
while (@{$self->layers} && !@{$self->get_layer(0)->slices}) {
$self->delete_layer(0);
for (my $i = 0; $i <= $#{$self->layers}; $i++) {
$self->get_layer($i)->set_id( $self->get_layer($i)->id-1 );
}
}
# simplify slices if required
if ($self->print->config->resolution) {
$self->_simplify_slices(scale($self->print->config->resolution));
}
die "No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n"
if !@{$self->layers};
$self->set_typed_slices(0);
$self->set_step_done(STEP_SLICE);
}
sub make_perimeters {
my ($self) = @_;
return if $self->step_done(STEP_PERIMETERS);
# Temporary workaround for detect_surfaces_type() not being idempotent (see #3764).
# We can remove this when idempotence is restored. This make_perimeters() method
# will just call merge_slices() to undo the typed slices and invalidate posDetectSurfaces.
if ($self->typed_slices) {
$self->invalidate_step(STEP_SLICE);
}
# prerequisites
$self->slice;
$self->_make_perimeters;
}
# This will assign a type (top/bottom/internal) to $layerm->slices
# and transform $layerm->fill_surfaces from expolygon
# to typed top/bottom/internal surfaces;
sub detect_surfaces_type {
my ($self) = @_;
# prerequisites
$self->slice;
$self->_detect_surfaces_type;
}
sub prepare_infill {
my ($self) = @_;
return if $self->step_done(STEP_PREPARE_INFILL);
# This prepare_infill() is not really idempotent.
# TODO: It should clear and regenerate fill_surfaces at every run
# instead of modifying it in place.
$self->invalidate_step(STEP_PERIMETERS);
$self->make_perimeters;
# Do this after invalidating STEP_PERIMETERS because that would re-invalidate STEP_PREPARE_INFILL
$self->set_step_started(STEP_PREPARE_INFILL);
# prerequisites
$self->detect_surfaces_type;
$self->print->status_cb->(30, "Preparing infill");
# decide what surfaces are to be filled
$_->prepare_fill_surfaces for map @{$_->regions}, @{$self->layers};
# this will detect bridges and reverse bridges
# and rearrange top/bottom/internal surfaces
$self->process_external_surfaces;
# detect which fill surfaces are near external layers
# they will be split in internal and internal-solid surfaces
$self->discover_horizontal_shells;
$self->clip_fill_surfaces;
# the following step needs to be done before combination because it may need
# to remove only half of the combined infill
$self->bridge_over_infill;
# combine fill surfaces to honor the "infill every N layers" option
$self->combine_infill;
$self->set_step_done(STEP_PREPARE_INFILL);
}
sub infill {
my ($self) = @_;
# prerequisites
$self->prepare_infill;
$self->_infill;
}
sub generate_support_material { sub generate_support_material {
my $self = shift; my $self = shift;
@ -252,135 +83,4 @@ sub _support_material {
); );
} }
# combine fill surfaces across layers
# Idempotence of this method is guaranteed by the fact that we don't remove things from
# fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
sub combine_infill {
my $self = shift;
# define the type used for voids
my %voidtype = (
&S_TYPE_INTERNAL() => S_TYPE_INTERNALVOID,
);
# work on each region separately
for my $region_id (0 .. ($self->print->region_count-1)) {
my $region = $self->print->get_region($region_id);
my $every = $region->config->infill_every_layers;
next unless $every > 1 && $region->config->fill_density > 0;
# limit the number of combined layers to the maximum height allowed by this regions' nozzle
my $nozzle_diameter = min(
$self->print->config->get_at('nozzle_diameter', $region->config->infill_extruder-1),
$self->print->config->get_at('nozzle_diameter', $region->config->solid_infill_extruder-1),
);
# define the combinations
my %combine = (); # layer_idx => number of additional combined lower layers
{
my $current_height = my $layers = 0;
for my $layer_idx (0 .. ($self->layer_count-1)) {
my $layer = $self->get_layer($layer_idx);
next if $layer->id == 0; # skip first print layer (which may not be first layer in array because of raft)
my $height = $layer->height;
# check whether the combination of this layer with the lower layers' buffer
# would exceed max layer height or max combined layer count
if ($current_height + $height >= $nozzle_diameter + epsilon || $layers >= $every) {
# append combination to lower layer
$combine{$layer_idx-1} = $layers;
$current_height = $layers = 0;
}
$current_height += $height;
$layers++;
}
# append lower layers (if any) to uppermost layer
$combine{$self->layer_count-1} = $layers;
}
# loop through layers to which we have assigned layers to combine
for my $layer_idx (sort keys %combine) {
next unless $combine{$layer_idx} > 1;
# get all the LayerRegion objects to be combined
my @layerms = map $self->get_layer($_)->get_region($region_id),
($layer_idx - ($combine{$layer_idx}-1) .. $layer_idx);
# only combine internal infill
for my $type (S_TYPE_INTERNAL) {
# we need to perform a multi-layer intersection, so let's split it in pairs
# initialize the intersection with the candidates of the lowest layer
my $intersection = [ map $_->expolygon, @{$layerms[0]->fill_surfaces->filter_by_type($type)} ];
# start looping from the second layer and intersect the current intersection with it
for my $layerm (@layerms[1 .. $#layerms]) {
$intersection = intersection_ex(
[ map @$_, @$intersection ],
[ map @{$_->expolygon}, @{$layerm->fill_surfaces->filter_by_type($type)} ],
);
}
my $area_threshold = $layerms[0]->infill_area_threshold;
@$intersection = grep $_->area > $area_threshold, @$intersection;
next if !@$intersection;
Slic3r::debugf " combining %d %s regions from layers %d-%d\n",
scalar(@$intersection),
($type == S_TYPE_INTERNAL ? 'internal' : 'internal-solid'),
$layer_idx-($every-1), $layer_idx;
# $intersection now contains the regions that can be combined across the full amount of layers
# so let's remove those areas from all layers
my @intersection_with_clearance = map @{$_->offset(
$layerms[-1]->flow(FLOW_ROLE_SOLID_INFILL)->scaled_width / 2
+ $layerms[-1]->flow(FLOW_ROLE_PERIMETER)->scaled_width / 2
# Because fill areas for rectilinear and honeycomb are grown
# later to overlap perimeters, we need to counteract that too.
+ (($type == S_TYPE_INTERNALSOLID || $region->config->fill_pattern =~ /(rectilinear|grid|line|honeycomb)/)
? $layerms[-1]->flow(FLOW_ROLE_SOLID_INFILL)->scaled_width
: 0)
)}, @$intersection;
foreach my $layerm (@layerms) {
my @this_type = @{$layerm->fill_surfaces->filter_by_type($type)};
my @other_types = map $_->clone, grep $_->surface_type != $type, @{$layerm->fill_surfaces};
my @new_this_type = map Slic3r::Surface->new(expolygon => $_, surface_type => $type),
@{diff_ex(
[ map $_->p, @this_type ],
[ @intersection_with_clearance ],
)};
# apply surfaces back with adjusted depth to the uppermost layer
if ($layerm->layer->id == $self->get_layer($layer_idx)->id) {
push @new_this_type,
map Slic3r::Surface->new(
expolygon => $_,
surface_type => $type,
thickness => sum(map $_->layer->height, @layerms),
thickness_layers => scalar(@layerms),
),
@$intersection;
} else {
# save void surfaces
push @new_this_type,
map Slic3r::Surface->new(expolygon => $_, surface_type => $voidtype{$type}),
@{intersection_ex(
[ map @{$_->expolygon}, @this_type ],
[ @intersection_with_clearance ],
)};
}
$layerm->fill_surfaces->clear;
$layerm->fill_surfaces->append($_) for (@new_this_type, @other_types);
}
}
}
}
}
1; 1;

View File

@ -282,7 +282,7 @@ bool test_6_checks(Print &print)
// Pre-Processing. // Pre-Processing.
PrintObject *print_object = print.objects.front(); PrintObject *print_object = print.objects.front();
print_object->_infill(); print_object->infill();
SupportMaterial *support_material = print.objects.front()->_support_material(); SupportMaterial *support_material = print.objects.front()->_support_material();
support_material->generate(print_object); support_material->generate(print_object);
// TODO but not needed in test 6 (make brims and make skirts). // TODO but not needed in test 6 (make brims and make skirts).

View File

@ -41,9 +41,12 @@ class ExPolygonCollection
/// ExPolygons and check if at least one contains the point. /// ExPolygons and check if at least one contains the point.
bool contains(const Point &point) const; bool contains(const Point &point) const;
bool empty() const { return expolygons.empty(); }
size_t size() const { return expolygons.size(); } size_t size() const { return expolygons.size(); }
ExPolygons::iterator begin() { return expolygons.begin(); } ExPolygons::iterator begin() { return expolygons.begin(); }
ExPolygons::iterator end() { return expolygons.end(); } ExPolygons::iterator end() { return expolygons.end(); }
const ExPolygons::const_iterator begin() const { return expolygons.cbegin(); }
const ExPolygons::const_iterator end() const { return expolygons.cend(); }
ExPolygons::const_iterator cbegin() const { return expolygons.cbegin();} ExPolygons::const_iterator cbegin() const { return expolygons.cbegin();}
ExPolygons::const_iterator cend() const { return expolygons.cend();} ExPolygons::const_iterator cend() const { return expolygons.cend();}
ExPolygon& at(size_t i) { return expolygons.at(i); } ExPolygon& at(size_t i) { return expolygons.at(i); }

View File

@ -74,6 +74,8 @@ class ExtrusionEntityCollection : public ExtrusionEntity
ExtrusionEntitiesPtr::iterator begin() { return entities.begin(); } ExtrusionEntitiesPtr::iterator begin() { return entities.begin(); }
ExtrusionEntitiesPtr::iterator end() { return entities.end(); } ExtrusionEntitiesPtr::iterator end() { return entities.end(); }
ExtrusionEntitiesPtr::const_iterator begin() const { return entities.cbegin(); }
ExtrusionEntitiesPtr::const_iterator end() const { return entities.cend(); }
ExtrusionEntitiesPtr::const_iterator cbegin() const { return entities.cbegin(); } ExtrusionEntitiesPtr::const_iterator cbegin() const { return entities.cbegin(); }
ExtrusionEntitiesPtr::const_iterator cend() const { return entities.cend(); } ExtrusionEntitiesPtr::const_iterator cend() const { return entities.cend(); }

View File

@ -34,6 +34,7 @@ Pointf circle_taubin_newton(const Pointfs& input, size_t cycles = 20);
Pointf circle_taubin_newton(const Pointfs::const_iterator& input_start, const Pointfs::const_iterator& input_end, size_t cycles = 20); Pointf circle_taubin_newton(const Pointfs::const_iterator& input_start, const Pointfs::const_iterator& input_end, size_t cycles = 20);
/// Epsilon value /// Epsilon value
// FIXME: this is a duplicate from libslic3r.h
constexpr double epsilon { 1e-4 }; constexpr double epsilon { 1e-4 };
constexpr coord_t scaled_epsilon { static_cast<coord_t>(epsilon / SCALING_FACTOR) }; constexpr coord_t scaled_epsilon { static_cast<coord_t>(epsilon / SCALING_FACTOR) };

View File

@ -140,16 +140,16 @@ Print::make_brim()
void void
Print::make_skirt() Print::make_skirt()
{ {
if (this->state.is_done(psSkirt)) return;
this->state.set_started(psSkirt);
// prereqs // prereqs
for(auto& obj: this->objects) { for (auto* obj: this->objects) {
obj->make_perimeters(); obj->make_perimeters();
obj->infill(); obj->infill();
obj->generate_support_material(); obj->generate_support_material();
} }
if (this->state.is_done(psSkirt)) return;
this->state.set_started(psSkirt);
// since this method must be idempotent, we clear skirt paths *before* // since this method must be idempotent, we clear skirt paths *before*
// checking whether we need to generate them // checking whether we need to generate them
this->skirt.clear(); this->skirt.clear();
@ -173,10 +173,11 @@ Print::make_skirt()
// prepended to the first 'n' layers (with 'n' = skirt_height). // prepended to the first 'n' layers (with 'n' = skirt_height).
// $skirt_height_z in this case is the highest possible skirt height for safety. // $skirt_height_z in this case is the highest possible skirt height for safety.
double skirt_height_z {-1.0}; double skirt_height_z {-1.0};
for (const auto& object : this->objects) { for (const auto* object : this->objects) {
const size_t skirt_height { const size_t skirt_height {
this->has_infinite_skirt() ? object->layer_count() : this->has_infinite_skirt()
std::min(size_t(this->config.skirt_height()), object->layer_count()) ? object->layer_count()
: std::min(size_t(this->config.skirt_height()), object->layer_count())
}; };
const Layer* highest_layer { object->get_layer(skirt_height - 1) }; const Layer* highest_layer { object->get_layer(skirt_height - 1) };
skirt_height_z = std::max(skirt_height_z, highest_layer->print_z); skirt_height_z = std::max(skirt_height_z, highest_layer->print_z);
@ -184,116 +185,83 @@ Print::make_skirt()
// collect points from all layers contained in skirt height // collect points from all layers contained in skirt height
Points points; Points points;
for(auto* object : this->objects) { for (auto* object : this->objects) {
Points object_points; Points object_points;
// get object layers up to skirt_height_z // get object layers up to skirt_height_z
for(auto* layer : object->layers) { for (const auto* layer : object->layers) {
if(layer->print_z > skirt_height_z)break; if (layer->print_z > skirt_height_z) break;
for(ExPolygon poly : layer->slices){ for (const ExPolygon ex : layer->slices)
for(Point point : static_cast<Points>(poly)){ append_to(object_points, static_cast<Points>(ex));
object_points.push_back(point);
}
}
} }
// get support layers up to $skirt_height_z // get support layers up to skirt_height_z
for(auto* layer : object->support_layers) { for (const auto* layer : object->support_layers) {
if(layer->print_z > skirt_height_z)break; if (layer->print_z > skirt_height_z) break;
for(auto* ee : layer->support_fills){ for (auto* ee : layer->support_fills)
for(Point point : ee->as_polyline().points){ append_to(object_points, ee->as_polyline().points);
object_points.push_back(point); for (auto* ee : layer->support_interface_fills)
} append_to(object_points, ee->as_polyline().points);
}
for(auto* ee : layer->support_interface_fills){
for(Point point : ee->as_polyline().points){
object_points.push_back(point);
}
}
} }
// repeat points for each object copy // repeat points for each object copy
for(auto copy : object->_shifted_copies) { for (const auto& copy : object->_shifted_copies) {
for(Point point : object_points){ for (Point p : object_points) {
point.translate(copy); p.translate(copy);
points.push_back(point); points.push_back(p);
} }
} }
} }
if (points.size() < 3) return; // at least three points required for a convex hull if (points.size() < 3) return; // at least three points required for a convex hull
// find out convex hull // find out convex hull
auto convex = Geometry::convex_hull(points); const Polygon convex = Geometry::convex_hull(points);
// skirt may be printed on several layers, having distinct layer heights, // skirt may be printed on several layers, having distinct layer heights,
// but loops must be aligned so can't vary width/spacing // but loops must be aligned so can't vary width/spacing
// TODO: use each extruder's own flow // TODO: use each extruder's own flow
auto first_layer_height = this->skirt_first_layer_height(); const auto first_layer_height = this->skirt_first_layer_height();
auto flow = this->skirt_flow(); const auto flow = this->skirt_flow();
auto spacing = flow.spacing(); const auto spacing = flow.scaled_spacing();
auto mm3_per_mm = flow.mm3_per_mm(); const auto mm3_per_mm = flow.mm3_per_mm();
int skirts = this->config.skirts();
auto skirts = this->config.skirts; if (skirts == 0 && this->has_infinite_skirt())
if(this->has_infinite_skirt() && skirts == 0){
skirts = 1; skirts = 1;
}
//my @extruded_length = (); # for each extruder const std::set<size_t> extruders{ this->extruders() };
//extruders_e_per_mm = (); auto extruder_it { extruders.begin() };
//size_t extruder_idx = 0; std::vector<float> e_per_mm{0}, extruded_length{0};
if (this->config.min_skirt_length() > 0)
// new to the cpp implementation for (auto i : extruders)
float e_per_mm {0.0}, extruded_length = 0; e_per_mm[i] = Extruder(i, &this->config).e_per_mm(mm3_per_mm);
size_t extruders_warm = 0;
if (this->config.min_skirt_length.getFloat() > 0) {
//my $config = Config::GCode();
//$config->apply_static($self->config);
auto extruder = Extruder(0, &this->config);
e_per_mm = extruder.e_per_mm(mm3_per_mm);
}
// draw outlines from outside to inside // draw outlines from outside to inside
// loop while we have less skirts than required or any extruder hasn't reached the min length if any // loop while we have less skirts than required or any extruder hasn't reached the min length if any
float distance = scale_(std::max(this->config.skirt_distance.getFloat(), this->config.brim_width.getFloat())); float distance = scale_(std::max(this->config.skirt_distance(), this->config.brim_width()));
for (int i = skirts; i > 0; i--) { for (int i = skirts; i > 0; i--) {
distance += scale_(spacing); distance += spacing;
auto loop = offset(Polygons{convex}, distance, 1, jtRound, scale_(0.1)).at(0); const Polygon loop = offset(Polygons{convex}, distance, 1, jtRound, scale_(0.1)).at(0);
auto epath = ExtrusionPath(erSkirt, auto epath = ExtrusionPath(
erSkirt,
mm3_per_mm, // this will be overridden at G-code export time mm3_per_mm, // this will be overridden at G-code export time
flow.width, flow.width,
first_layer_height // this will be overridden at G-code export time first_layer_height // this will be overridden at G-code export time
); );
epath.polyline = loop.split_at_first_point(); epath.polyline = loop.split_at_first_point();
auto eloop = ExtrusionLoop(epath,elrSkirt); auto eloop = ExtrusionLoop(epath, elrSkirt);
this->skirt.append(eloop); this->skirt.append(eloop);
if (this->config.min_skirt_length.getFloat() > 0) { if (this->config.min_skirt_length() > 0) {
// Alternative simpler method extruded_length[*extruder_it] += unscale(loop.length()) * e_per_mm[*extruder_it];
extruded_length += unscale(loop.length()) * e_per_mm; for (auto j : extruders) {
if(extruded_length >= this->config.min_skirt_length.getFloat()){ if (extruded_length[j] < this->config.min_skirt_length()) {
extruders_warm++; ++i;
extruded_length = 0; break;
} }
if (extruders_warm < this->extruders().size()){
i++;
} }
if (extruded_length[*extruder_it] >= this->config.min_skirt_length() && extruder_it != extruders.end())
/*$extruded_length[$extruder_idx] ||= 0; ++extruder_it;
if (!$extruders_e_per_mm[$extruder_idx]) {
my $config = Slic3r::Config::GCode->new;
$config->apply_static($self->config);
my $extruder = Slic3r::Extruder->new($extruder_idx, $config);
$extruders_e_per_mm[$extruder_idx] = $extruder->e_per_mm($mm3_per_mm);
}
$extruded_length[$extruder_idx] += unscale $loop->length * $extruders_e_per_mm[$extruder_idx];
$i++ if defined first { ($extruded_length[$_] // 0) < $self->config->min_skirt_length } 0 .. $#{$self->extruders};
if ($extruded_length[$extruder_idx] >= $self->config->min_skirt_length) {
if ($extruder_idx < $#{$self->extruders}) {
$extruder_idx++;
next;
}
}*/
} }
} }

View File

@ -164,7 +164,6 @@ class PrintObject
void _slice(); void _slice();
std::vector<ExPolygons> _slice_region(size_t region_id, std::vector<float> z, bool modifier); std::vector<ExPolygons> _slice_region(size_t region_id, std::vector<float> z, bool modifier);
void _make_perimeters();
void _infill(); void _infill();
/// Initialize and generate support material. /// Initialize and generate support material.

View File

@ -329,15 +329,18 @@ PrintObject::has_support_material() const
|| this->config.support_material_enforce_layers > 0; || this->config.support_material_enforce_layers > 0;
} }
// This will assign a type (top/bottom/internal) to layerm->slices
// and transform layerm->fill_surfaces from expolygon
// to typed top/bottom/internal surfaces;
void void
PrintObject::detect_surfaces_type() PrintObject::detect_surfaces_type()
{ {
// prerequisites
// this->slice();
if (this->state.is_done(posDetectSurfaces)) return; if (this->state.is_done(posDetectSurfaces)) return;
this->state.set_started(posDetectSurfaces); this->state.set_started(posDetectSurfaces);
// prerequisites
this->slice();
parallelize<Layer*>( parallelize<Layer*>(
std::queue<Layer*>(std::deque<Layer*>(this->layers.begin(), this->layers.end())), // cast LayerPtrs to std::queue<Layer*> std::queue<Layer*>(std::deque<Layer*>(this->layers.begin(), this->layers.end())), // cast LayerPtrs to std::queue<Layer*>
boost::bind(&Slic3r::Layer::detect_surfaces_type, _1), boost::bind(&Slic3r::Layer::detect_surfaces_type, _1),
@ -946,16 +949,17 @@ PrintObject::_slice_region(size_t region_id, std::vector<float> z, bool modifier
return layers; return layers;
} }
void /*
PrintObject::make_perimeters() 1) Decides Z positions of the layers,
{ 2) Initializes layers and their regions
if (this->state.is_done(posPerimeters)) return; 3) Slices the object meshes
if (this->typed_slices) 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
this->state.invalidate(posSlice); 5) Applies size compensation (offsets the slices in XY plane)
this->slice(); // take care of prereqs 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
this->_make_perimeters(); Resulting expolygons of layer regions are marked as Internal.
}
This should be idempotent.
*/
void void
PrintObject::slice() PrintObject::slice()
{ {
@ -965,7 +969,6 @@ PrintObject::slice()
_print->status_cb(10, "Processing triangulated mesh"); _print->status_cb(10, "Processing triangulated mesh");
} }
this->_slice(); this->_slice();
// detect slicing errors // detect slicing errors
@ -975,22 +978,94 @@ PrintObject::slice()
<< "I tried to repair it, however you might want to check " << "I tried to repair it, however you might want to check "
<< "the results or repair the input file and retry.\n"; << "the results or repair the input file and retry.\n";
if (this->layers.size() == 0) { bool warning_thrown = false;
for (size_t i = 0; i < this->layer_count(); ++i) {
Layer* layer{ this->get_layer(i) };
if (!layer->slicing_errors) continue;
if (!warning_thrown) {
Slic3r::Log::warn("PrintObject") << "The model has overlapping or self-intersecting facets. "
<< "I tried to repair it, however you might want to check "
<< "the results or repair the input file and retry.\n";
warning_thrown = true;
}
// try to repair the layer surfaces by merging all contours and all holes from
// neighbor layers
#ifdef SLIC3R_DEBUG
std::cout << "Attempting to repair layer " << i << std::endl;
#endif
for (size_t region_id = 0; region_id < layer->region_count(); ++region_id) {
LayerRegion* layerm{ layer->get_region(region_id) };
ExPolygons slices;
for (size_t j = i+1; j < this->layer_count(); ++j) {
const Layer* upper = this->get_layer(j);
if (!upper->slicing_errors) {
append_to(slices, (ExPolygons)upper->get_region(region_id)->slices);
break;
}
}
for (int j = i-1; j >= 0; --j) {
const Layer* lower = this->get_layer(j);
if (!lower->slicing_errors) {
append_to(slices, (ExPolygons)lower->get_region(region_id)->slices);
break;
}
}
// TODO: do we actually need to split contours and holes before performing the diff?
Polygons contours, holes;
for (ExPolygon ex : slices)
contours.push_back(ex.contour);
for (ExPolygon ex : slices)
append_to(holes, ex.holes);
const ExPolygons diff = diff_ex(contours, holes);
layerm->slices.clear();
layerm->slices.append(diff, stInternal);
}
// update layer slices after repairing the single regions
layer->make_slices();
}
// remove empty layers from bottom
while (!this->layers.empty() && this->get_layer(0)->slices.empty()) {
this->delete_layer(0);
for (Layer* layer : this->layers)
layer->set_id(layer->id()-1);
}
// simplify slices if required
if (this->_print->config.resolution() > 0)
this->_simplify_slices(scale_(this->_print->config.resolution()));
if (this->layers.empty()) {
Slic3r::Log::error("PrintObject") << "slice(): " << "No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n"; Slic3r::Log::error("PrintObject") << "slice(): " << "No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n";
return; // make this throw an exception instead? return; // make this throw an exception instead?
} }
this->typed_slices = false; this->typed_slices = false;
this->state.set_done(posSlice); this->state.set_done(posSlice);
} }
void void
PrintObject::_make_perimeters() PrintObject::make_perimeters()
{ {
if (this->state.is_done(posPerimeters)) return; if (this->state.is_done(posPerimeters)) return;
this->state.set_started(posPerimeters); this->state.set_started(posPerimeters);
// Temporary workaround for detect_surfaces_type() not being idempotent (see #3764).
// We can remove this when idempotence is restored. This make_perimeters() method
// will just call merge_slices() to undo the typed slices and invalidate posDetectSurfaces.
if (this->typed_slices)
this->state.invalidate(posSlice);
// prerequisites
this->slice();
// merge slices if they were split into types // merge slices if they were split into types
// This is not currently taking place because since merge_slices + detect_surfaces_type // This is not currently taking place because since merge_slices + detect_surfaces_type
// are not truly idempotent we are invalidating posSlice here (see the Perl part of // are not truly idempotent we are invalidating posSlice here (see the Perl part of
@ -1110,11 +1185,14 @@ PrintObject::_make_perimeters()
} }
void void
PrintObject::_infill() PrintObject::infill()
{ {
if (this->state.is_done(posInfill)) return; if (this->state.is_done(posInfill)) return;
this->state.set_started(posInfill); this->state.set_started(posInfill);
// prerequisites
this->prepare_infill();
parallelize<Layer*>( parallelize<Layer*>(
std::queue<Layer*>(std::deque<Layer*>(this->layers.begin(), this->layers.end())), // cast LayerPtrs to std::queue<Layer*> std::queue<Layer*>(std::deque<Layer*>(this->layers.begin(), this->layers.end())), // cast LayerPtrs to std::queue<Layer*>
boost::bind(&Slic3r::Layer::make_fills, _1), boost::bind(&Slic3r::Layer::make_fills, _1),
@ -1131,7 +1209,8 @@ PrintObject::_infill()
void void
PrintObject::prepare_infill() PrintObject::prepare_infill()
{ {
if (this->state.is_done(posInfill)) return; if (this->state.is_done(posPrepareInfill)) return;
// This prepare_infill() is not really idempotent. // This prepare_infill() is not really idempotent.
// TODO: It should clear and regenerate fill_surfaces at every run // TODO: It should clear and regenerate fill_surfaces at every run
// instead of modifying it in place. // instead of modifying it in place.
@ -1144,16 +1223,13 @@ PrintObject::prepare_infill()
// prerequisites // prerequisites
this->detect_surfaces_type(); this->detect_surfaces_type();
if (this->print()->status_cb != nullptr) if (this->_print->status_cb != nullptr)
this->print()->status_cb(30, "Preparing infill"); this->_print->status_cb(30, "Preparing infill");
// decide what surfaces are to be filled // decide what surfaces are to be filled
for (auto& layer : this->layers) { for (auto& layer : this->layers)
for (auto& region : layer->regions) { for (auto& layerm : layer->regions)
region->prepare_fill_surfaces(); layerm->prepare_fill_surfaces();
}
}
// this will detect bridges and reverse bridges // this will detect bridges and reverse bridges
// and rearrange top/bottom/internal surfaces // and rearrange top/bottom/internal surfaces
@ -1175,40 +1251,48 @@ PrintObject::prepare_infill()
} }
// combine fill surfaces across layers
// Idempotence of this method is guaranteed by the fact that we don't remove things from
// fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
void void
PrintObject::combine_infill() PrintObject::combine_infill()
{ {
// Work on each region separately. // Work on each region separately.
for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id) { for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id) {
const PrintRegion *region = this->print()->regions[region_id]; const PrintRegion *region = this->print()->regions[region_id];
const int every = region->config.infill_every_layers.value; const int every = region->config.infill_every_layers();
if (every < 2 || region->config.fill_density == 0.) if (every < 2 || region->config.fill_density == 0.)
continue; continue;
// Limit the number of combined layers to the maximum height allowed by this regions' nozzle. // Limit the number of combined layers to the maximum height allowed by this regions' nozzle.
//FIXME limit the layer height to max_layer_height // FIXME: limit the layer height to max_layer_height
double nozzle_diameter = std::min( const double nozzle_diameter = std::min(
this->print()->config.nozzle_diameter.get_at(region->config.infill_extruder.value - 1), this->_print->config.nozzle_diameter.get_at(region->config.infill_extruder.value - 1),
this->print()->config.nozzle_diameter.get_at(region->config.solid_infill_extruder.value - 1)); this->_print->config.nozzle_diameter.get_at(region->config.solid_infill_extruder.value - 1)
);
// define the combinations // define the combinations
std::vector<size_t> combine(this->layers.size(), 0); std::vector<size_t> combine(this->layers.size(), 0); // layer_idx => number of additional combined lower layers
{ {
double current_height = 0.; double current_height = 0.;
size_t num_layers = 0; size_t num_layers = 0;
for (size_t layer_idx = 0; layer_idx < this->layers.size(); ++ layer_idx) { for (size_t layer_idx = 0; layer_idx < this->layers.size(); ++layer_idx) {
const Layer *layer = this->layers[layer_idx]; const Layer *layer = this->layers[layer_idx];
if (layer->id() == 0)
// Skip first print layer (which may not be first layer in array because of raft). // Skip first print layer (which may not be first layer in array because of raft).
if (layer->id() == 0)
continue; continue;
// Check whether the combination of this layer with the lower layers' buffer // Check whether the combination of this layer with the lower layers' buffer
// would exceed max layer height or max combined layer count. // would exceed max layer height or max combined layer count.
if (current_height + layer->height >= nozzle_diameter + EPSILON || (every < 0 || num_layers >= static_cast<size_t>(every)) ) { if (current_height + layer->height >= nozzle_diameter + EPSILON || num_layers >= static_cast<size_t>(every) ) {
// Append combination to lower layer. // Append combination to lower layer.
combine[layer_idx - 1] = num_layers; combine[layer_idx - 1] = num_layers;
current_height = 0.; current_height = 0.;
num_layers = 0; num_layers = 0;
} }
current_height += layer->height; current_height += layer->height;
++ num_layers; ++num_layers;
} }
// Append lower layers (if any) to uppermost layer. // Append lower layers (if any) to uppermost layer.
@ -1216,65 +1300,82 @@ PrintObject::combine_infill()
} }
// loop through layers to which we have assigned layers to combine // loop through layers to which we have assigned layers to combine
for (size_t layer_idx = 0; layer_idx < this->layers.size(); ++ layer_idx) { for (size_t layer_idx = 0; layer_idx < combine.size(); ++layer_idx) {
size_t num_layers = combine[layer_idx]; const size_t& num_layers = combine[layer_idx];
if (num_layers <= 1) if (num_layers <= 1)
continue; continue;
// Get all the LayerRegion objects to be combined. // Get all the LayerRegion objects to be combined.
std::vector<LayerRegion*> layerms; std::vector<LayerRegion*> layerms;
layerms.reserve(num_layers); layerms.reserve(num_layers);
for (size_t i = layer_idx + 1 - num_layers; i <= layer_idx; ++ i) for (size_t i = layer_idx + 1 - num_layers; i <= layer_idx; ++i)
layerms.emplace_back(this->layers[i]->regions[region_id]); layerms.push_back(this->layers[i]->regions[region_id]);
// We need to perform a multi-layer intersection, so let's split it in pairs. // We need to perform a multi-layer intersection, so let's split it in pairs.
// Initialize the intersection with the candidates of the lowest layer. // Initialize the intersection with the candidates of the lowest layer.
ExPolygons intersection = to_expolygons(layerms.front()->fill_surfaces.filter_by_type(stInternal)); ExPolygons intersection = to_expolygons(layerms.front()->fill_surfaces.filter_by_type(stInternal));
// Start looping from the second layer and intersect the current intersection with it. // Start looping from the second layer and intersect the current intersection with it.
for (size_t i = 1; i < layerms.size(); ++ i) for (size_t i = 1; i < layerms.size(); ++i)
intersection = intersection_ex( intersection = intersection_ex(
to_polygons(intersection), to_polygons(intersection),
to_polygons(layerms[i]->fill_surfaces.filter_by_type(stInternal)), to_polygons(layerms[i]->fill_surfaces.filter_by_type(stInternal))
false); );
double area_threshold = layerms.front()->infill_area_threshold();
if (! intersection.empty() && area_threshold > 0.) // Remove ExPolygons whose area is <= infill_area_threshold()
const double area_threshold = layerms.front()->infill_area_threshold();
intersection.erase(std::remove_if(intersection.begin(), intersection.end(), intersection.erase(std::remove_if(intersection.begin(), intersection.end(),
[area_threshold](const ExPolygon &expoly) { return expoly.area() <= area_threshold; }), [area_threshold](const ExPolygon &expoly) { return expoly.area() <= area_threshold; }),
intersection.end()); intersection.end());
if (intersection.empty()) if (intersection.empty())
continue; continue;
// Slic3r::debugf " combining %d %s regions from layers %d-%d\n",
// scalar(@$intersection), #ifdef SLIC3R_DEBUG
// ($type == S_TYPE_INTERNAL ? 'internal' : 'internal-solid'), std::cout << " combining " << intersection.size()
// $layer_idx-($every-1), $layer_idx; << " internal regions from layers " << (layer_idx-(every-1))
<< "-" << layer_idx << std::endl;
#endif
// intersection now contains the regions that can be combined across the full amount of layers, // intersection now contains the regions that can be combined across the full amount of layers,
// so let's remove those areas from all layers. // so let's remove those areas from all layers.
Polygons intersection_with_clearance;
intersection_with_clearance.reserve(intersection.size()); const float clearance_offset =
float clearance_offset =
0.5f * layerms.back()->flow(frPerimeter).scaled_width() + 0.5f * layerms.back()->flow(frPerimeter).scaled_width() +
// Because fill areas for rectilinear and honeycomb are grown // Because fill areas for rectilinear and honeycomb are grown
// later to overlap perimeters, we need to counteract that too. // later to overlap perimeters, we need to counteract that too.
((region->config.fill_pattern == ipRectilinear || ((region->config.fill_pattern == ipRectilinear ||
region->config.fill_pattern == ipGrid || region->config.fill_pattern == ipGrid ||
region->config.fill_pattern == ipHoneycomb) ? 1.5f : 0.5f) * region->config.fill_pattern == ipHoneycomb) ? 1.5f : 0.5f)
layerms.back()->flow(frSolidInfill).scaled_width(); * layerms.back()->flow(frSolidInfill).scaled_width();
for (ExPolygon &expoly : intersection)
Polygons intersection_with_clearance;
intersection_with_clearance.reserve(intersection.size());
for (const ExPolygon &expoly : intersection)
polygons_append(intersection_with_clearance, offset(expoly, clearance_offset)); polygons_append(intersection_with_clearance, offset(expoly, clearance_offset));
for (LayerRegion *layerm : layerms) { for (LayerRegion *layerm : layerms) {
Polygons internal = to_polygons(layerm->fill_surfaces.filter_by_type(stInternal)); const Polygons internal = to_polygons(layerm->fill_surfaces.filter_by_type(stInternal));
layerm->fill_surfaces.remove_type(stInternal); layerm->fill_surfaces.remove_type(stInternal);
layerm->fill_surfaces.append(diff_ex(internal, intersection_with_clearance, false), stInternal);
layerm->fill_surfaces.append(
diff_ex(internal, intersection_with_clearance),
stInternal
);
if (layerm == layerms.back()) { if (layerm == layerms.back()) {
// Apply surfaces back with adjusted depth to the uppermost layer. // Apply surfaces back with adjusted depth to the uppermost layer.
Surface templ(stInternal, ExPolygon()); Surface templ(stInternal, ExPolygon());
templ.thickness = 0.; templ.thickness = 0.;
for (LayerRegion *layerm2 : layerms) for (const LayerRegion *layerm2 : layerms)
templ.thickness += layerm2->layer()->height; templ.thickness += layerm2->layer()->height;
templ.thickness_layers = (unsigned short)layerms.size(); templ.thickness_layers = (unsigned short)layerms.size();
layerm->fill_surfaces.append(intersection, templ); layerm->fill_surfaces.append(intersection, templ);
} else { } else {
// Save void surfaces. // Save void surfaces.
layerm->fill_surfaces.append( layerm->fill_surfaces.append(
intersection_ex(internal, intersection_with_clearance, false), intersection_ex(internal, intersection_with_clearance),
stInternal | stVoid); stInternal | stVoid);
} }
} }
@ -1282,13 +1383,6 @@ PrintObject::combine_infill()
} }
} }
void
PrintObject::infill()
{
this->prepare_infill();
this->_infill();
}
SupportMaterial * SupportMaterial *
PrintObject::_support_material() PrintObject::_support_material()
{ {
@ -1624,8 +1718,9 @@ PrintObject::clip_fill_surfaces()
// get our current internal fill boundaries // get our current internal fill boundaries
Polygons lower_layer_internal_surfaces; Polygons lower_layer_internal_surfaces;
for (const auto* layerm : lower_layer->regions) for (const auto* layerm : lower_layer->regions)
for (const auto* s : layerm->fill_surfaces.filter_by_type({ stInternal, stInternal | stVoid })) polygons_append(lower_layer_internal_surfaces, to_polygons(
polygons_append(lower_layer_internal_surfaces, *s); layerm->fill_surfaces.filter_by_type({ stInternal, stInternal | stVoid })
));
upper_internal = intersection(overhangs, lower_layer_internal_surfaces); upper_internal = intersection(overhangs, lower_layer_internal_surfaces);
} }
@ -1634,10 +1729,7 @@ PrintObject::clip_fill_surfaces()
if (layerm->region()->config.fill_density.value == 0) if (layerm->region()->config.fill_density.value == 0)
continue; continue;
Polygons internal; Polygons internal{ to_polygons(layerm->fill_surfaces.filter_by_type({ stInternal, stInternal | stVoid })) };
for (const auto* s : layerm->fill_surfaces.filter_by_type({ stInternal, stInternal | stVoid }))
polygons_append(internal, *s);
layerm->fill_surfaces.remove_types({ stInternal, stInternal | stVoid }); layerm->fill_surfaces.remove_types({ stInternal, stInternal | stVoid });
layerm->fill_surfaces.append(intersection_ex(internal, upper_internal, true), stInternal); layerm->fill_surfaces.append(intersection_ex(internal, upper_internal, true), stInternal);
layerm->fill_surfaces.append(diff_ex (internal, upper_internal, true), stInternal | stVoid); layerm->fill_surfaces.append(diff_ex (internal, upper_internal, true), stInternal | stVoid);

View File

@ -126,11 +126,13 @@ _constant()
void set_step_started(PrintObjectStep step) void set_step_started(PrintObjectStep step)
%code%{ THIS->state.set_started(step); %}; %code%{ THIS->state.set_started(step); %};
%name{_detect_surfaces_type} void detect_surfaces_type(); void detect_surfaces_type();
void process_external_surfaces(); void process_external_surfaces();
void bridge_over_infill(); void bridge_over_infill();
void combine_infill();
void discover_horizontal_shells(); void discover_horizontal_shells();
void clip_fill_surfaces(); void clip_fill_surfaces();
void slice();
void _slice(); void _slice();
SV* _slice_region(size_t region_id, std::vector<double> z, bool modifier) SV* _slice_region(size_t region_id, std::vector<double> z, bool modifier)
%code%{ %code%{
@ -151,8 +153,9 @@ _constant()
} }
RETVAL = (SV*)newRV_noinc((SV*)layers_av); RETVAL = (SV*)newRV_noinc((SV*)layers_av);
%}; %};
void _make_perimeters(); void make_perimeters();
void _infill(); void prepare_infill();
void infill();
void _simplify_slices(double distance); void _simplify_slices(double distance);
int ptr() int ptr()
@ -284,6 +287,7 @@ _constant()
double skirt_first_layer_height(); double skirt_first_layer_height();
Clone<Flow> brim_flow(); Clone<Flow> brim_flow();
Clone<Flow> skirt_flow(); Clone<Flow> skirt_flow();
void make_skirt();
void _make_brim(); void _make_brim();
%{ %{