Extrusion entity visitor & 3D extrusion path

* Add a visitor class for extrusion entity
 * replace most of extrusionEntity* cast by a visitor
 * create a ExtrusionPath3D, subclass of ExtrusionPath
 * create a ExtrusionMultiPath3D, with a generic ExtrusionMultiEntity for the two one (note: need some more work to make it more generic)
 * modify gcode to allow the export of 3D path (minimum modification/effort: no validity check).
This commit is contained in:
supermerill 2019-02-20 17:20:03 +01:00
parent 9219781ce0
commit edad0da724
8 changed files with 301 additions and 140 deletions

View File

@ -63,62 +63,6 @@ void ExtrusionPath::polygons_covered_by_spacing(Polygons &out, const float scale
polygons_append(out, offset(this->polyline, 0.5f * float(flow.scaled_spacing()) + scaled_epsilon)); polygons_append(out, offset(this->polyline, 0.5f * float(flow.scaled_spacing()) + scaled_epsilon));
} }
void ExtrusionMultiPath::reverse()
{
for (ExtrusionPaths::iterator path = this->paths.begin(); path != this->paths.end(); ++path)
path->reverse();
std::reverse(this->paths.begin(), this->paths.end());
}
double ExtrusionMultiPath::length() const
{
double len = 0;
for (ExtrusionPaths::const_iterator path = this->paths.begin(); path != this->paths.end(); ++path)
len += path->polyline.length();
return len;
}
void ExtrusionMultiPath::polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const
{
for (ExtrusionPaths::const_iterator path = this->paths.begin(); path != this->paths.end(); ++path)
path->polygons_covered_by_width(out, scaled_epsilon);
}
void ExtrusionMultiPath::polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const
{
for (ExtrusionPaths::const_iterator path = this->paths.begin(); path != this->paths.end(); ++path)
path->polygons_covered_by_spacing(out, scaled_epsilon);
}
double ExtrusionMultiPath::min_mm3_per_mm() const
{
double min_mm3_per_mm = std::numeric_limits<double>::max();
for (ExtrusionPaths::const_iterator path = this->paths.begin(); path != this->paths.end(); ++path)
min_mm3_per_mm = std::min(min_mm3_per_mm, path->mm3_per_mm);
return min_mm3_per_mm;
}
Polyline ExtrusionMultiPath::as_polyline() const
{
Polyline out;
if (! paths.empty()) {
size_t len = 0;
for (size_t i_path = 0; i_path < paths.size(); ++ i_path) {
assert(! paths[i_path].polyline.points.empty());
assert(i_path == 0 || paths[i_path - 1].polyline.points.back() == paths[i_path].polyline.points.front());
len += paths[i_path].polyline.points.size();
}
// The connecting points between the segments are equal.
len -= paths.size() - 1;
assert(len > 0);
out.points.reserve(len);
out.points.push_back(paths.front().polyline.points.front());
for (size_t i_path = 0; i_path < paths.size(); ++ i_path)
out.points.insert(out.points.end(), paths[i_path].polyline.points.begin() + 1, paths[i_path].polyline.points.end());
}
return out;
}
bool bool
ExtrusionLoop::make_clockwise() ExtrusionLoop::make_clockwise()
{ {
@ -318,4 +262,61 @@ ExtrusionLoop::min_mm3_per_mm() const
return min_mm3_per_mm; return min_mm3_per_mm;
} }
void ExtrusionPrinter::use(const ExtrusionPath &path) {
ss << "Path_" << path.polyline.size();
for (const Point &p : path.polyline.points)
ss << "->" << (int)(100 * unscale_(p.x())) << ":" << (int)(100 * unscale_(p.y()));
}
void ExtrusionPrinter::use(const ExtrusionPath3D &path3D) {
ss << "Path3D_" << path3D.polyline.size();
for (int i = 0; i < path3D.polyline.points.size();i++)
ss << "->" << (int)(100 * unscale_(path3D.polyline.points[i].x())) << ":" << (int)(100 * unscale_(path3D.polyline.points[i].y())) << ":" << (path3D.z_offsets.size()>i ? unscale_(path3D.z_offsets[i]) : -1);
}
void ExtrusionPrinter::use(const ExtrusionMultiPath &multipath) {
ss << "multipath:{";
for (int i = 0; i < multipath.paths.size(); i++) {
if (i != 0) ss << ",";
multipath.paths[i].visit(*this);
}
ss << "}";
}
void ExtrusionPrinter::use(const ExtrusionMultiPath3D &multipath3D) {
ss << "multipath3D:{";
for (int i = 0; i < multipath3D.paths.size(); i++) {
if (i != 0) ss << ",";
multipath3D.paths[i].visit(*this);
}
ss << "}";
}
void ExtrusionPrinter::use(const ExtrusionLoop &loop) { ss << "loop_" << loop.paths.size(); }
void ExtrusionPrinter::use(const ExtrusionEntityCollection &collection) {
ss << "collection:{";
for (int i = 0; i < collection.entities.size(); i++) {
if (i != 0) ss << ",";
collection.entities[i]->visit(*this);
}
ss << "}";
}
class ExtrusionTreeVisitor : ExtrusionVisitor {
public:
//virtual void use(ExtrusionEntity &entity) { assert(false); };
virtual void use(ExtrusionPath &path) override { const ExtrusionPath &constpath = path; use(constpath); };
virtual void use(ExtrusionPath3D &path3D) override { const ExtrusionPath3D &constpath3D = path3D; use(constpath3D); };
virtual void use(ExtrusionMultiPath &multipath) override { const ExtrusionMultiPath &constmultipath = multipath; use(constmultipath); };
virtual void use(ExtrusionMultiPath3D &multipath3D) override { const ExtrusionMultiPath3D &constmultipath3D = multipath3D; use(constmultipath3D); };
virtual void use(ExtrusionLoop &loop) override { const ExtrusionLoop &constloop = loop; use(constloop); };
virtual void use(ExtrusionEntityCollection &collection) { const ExtrusionEntityCollection &constcollection = collection; use(constcollection); };
virtual void use(const ExtrusionPath &path) override { assert(false); };
virtual void use(const ExtrusionPath3D &path3D) override { assert(false); };
virtual void use(const ExtrusionMultiPath &multipath) override { assert(false); };
virtual void use(const ExtrusionMultiPath3D &multipath3D) { assert(false); };
virtual void use(const ExtrusionLoop &loop) override { assert(false); };
virtual void use(const ExtrusionEntityCollection &collection) { assert(false); };
virtual void use_default(ExtrusionEntity &entity) { const ExtrusionEntity &constentity = entity; use_default(constentity); };
virtual void use_default(const ExtrusionEntity &entity) {};
};
} }

View File

@ -65,6 +65,30 @@ enum ExtrusionLoopRole {
elrSkirt, elrSkirt,
}; };
class ExtrusionPath;
class ExtrusionPath3D;
class ExtrusionMultiPath;
class ExtrusionMultiPath3D;
class ExtrusionLoop;
class ExtrusionVisitor {
public:
//virtual void use(ExtrusionEntity &entity) { assert(false); };
virtual void use(ExtrusionPath &path) { const ExtrusionPath &constpath = path; use(constpath); };
virtual void use(ExtrusionPath3D &path3D) { const ExtrusionPath3D &constpath3D = path3D; use(constpath3D); };
virtual void use(ExtrusionMultiPath &multipath) { const ExtrusionMultiPath &constmultipath = multipath; use(constmultipath); };
virtual void use(ExtrusionMultiPath3D &multipath3D) { const ExtrusionMultiPath3D &constmultipath3D = multipath3D; use(constmultipath3D); };
virtual void use(ExtrusionLoop &loop) { const ExtrusionLoop &constloop = loop; use(constloop); };
virtual void use(ExtrusionEntityCollection &collection) { const ExtrusionEntityCollection &constcollection = collection; use(constcollection); };
virtual void use(const ExtrusionPath &path) { assert(false); };
virtual void use(const ExtrusionPath3D &path3D) { assert(false); };
virtual void use(const ExtrusionMultiPath &multipath) { assert(false); };
virtual void use(const ExtrusionMultiPath3D &multipath3D) { assert(false); };
virtual void use(const ExtrusionLoop &loop) { assert(false); };
virtual void use(const ExtrusionEntityCollection &collection) { assert(false); };
};
class ExtrusionEntity class ExtrusionEntity
{ {
public: public:
@ -84,9 +108,9 @@ public:
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill. // Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
virtual void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const = 0; virtual void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const = 0;
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const virtual Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; } { Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const virtual Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; } { Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm. // Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
virtual double min_mm3_per_mm() const = 0; virtual double min_mm3_per_mm() const = 0;
@ -95,6 +119,8 @@ public:
virtual Polylines as_polylines() const { Polylines dst; this->collect_polylines(dst); return dst; } virtual Polylines as_polylines() const { Polylines dst; this->collect_polylines(dst); return dst; }
virtual double length() const = 0; virtual double length() const = 0;
virtual double total_volume() const = 0; virtual double total_volume() const = 0;
virtual void visit(ExtrusionVisitor &visitor) = 0;
virtual void visit(ExtrusionVisitor &visitor) const = 0;
}; };
typedef std::vector<ExtrusionEntity*> ExtrusionEntitiesPtr; typedef std::vector<ExtrusionEntity*> ExtrusionEntitiesPtr;
@ -125,8 +151,8 @@ public:
ExtrusionPath& operator=(const ExtrusionPath &rhs) { m_role = rhs.m_role; this->mm3_per_mm = rhs.mm3_per_mm; this->width = rhs.width; this->height = rhs.height; this->feedrate = rhs.feedrate, this->extruder_id = rhs.extruder_id, this->cp_color_id = rhs.cp_color_id, this->polyline = rhs.polyline; return *this; } ExtrusionPath& operator=(const ExtrusionPath &rhs) { m_role = rhs.m_role; this->mm3_per_mm = rhs.mm3_per_mm; this->width = rhs.width; this->height = rhs.height; this->feedrate = rhs.feedrate, this->extruder_id = rhs.extruder_id, this->cp_color_id = rhs.cp_color_id, this->polyline = rhs.polyline; return *this; }
ExtrusionPath& operator=(ExtrusionPath &&rhs) { m_role = rhs.m_role; this->mm3_per_mm = rhs.mm3_per_mm; this->width = rhs.width; this->height = rhs.height; this->feedrate = rhs.feedrate, this->extruder_id = rhs.extruder_id, this->cp_color_id = rhs.cp_color_id, this->polyline = std::move(rhs.polyline); return *this; } ExtrusionPath& operator=(ExtrusionPath &&rhs) { m_role = rhs.m_role; this->mm3_per_mm = rhs.mm3_per_mm; this->width = rhs.width; this->height = rhs.height; this->feedrate = rhs.feedrate, this->extruder_id = rhs.extruder_id, this->cp_color_id = rhs.cp_color_id, this->polyline = std::move(rhs.polyline); return *this; }
ExtrusionPath* clone() const { return new ExtrusionPath (*this); } virtual ExtrusionPath* clone() const override { return new ExtrusionPath(*this); }
void reverse() { this->polyline.reverse(); } void reverse() override { this->polyline.reverse(); }
Point first_point() const override { return this->polyline.points.front(); } Point first_point() const override { return this->polyline.points.front(); }
Point last_point() const override { return this->polyline.points.back(); } Point last_point() const override { return this->polyline.points.back(); }
size_t size() const { return this->polyline.size(); } size_t size() const { return this->polyline.size(); }
@ -139,75 +165,177 @@ public:
// Currently not used. // Currently not used.
void subtract_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const; void subtract_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const;
void clip_end(double distance); void clip_end(double distance);
void simplify(double tolerance); virtual void simplify(double tolerance);
double length() const override; double length() const override;
ExtrusionRole role() const override { return m_role; } ExtrusionRole role() const override { return m_role; }
void set_role(ExtrusionRole new_role) { m_role = new_role; }
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width. // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const; void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override;
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing. // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill. // Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const; void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const override;
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm. // Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
double min_mm3_per_mm() const { return this->mm3_per_mm; } double min_mm3_per_mm() const override { return this->mm3_per_mm; }
Polyline as_polyline() const { return this->polyline; } Polyline as_polyline() const override { return this->polyline; }
void collect_polylines(Polylines &dst) const override { if (! this->polyline.empty()) dst.emplace_back(this->polyline); } void collect_polylines(Polylines &dst) const override { if (! this->polyline.empty()) dst.emplace_back(this->polyline); }
double total_volume() const override { return mm3_per_mm * unscale<double>(length()); } double total_volume() const override { return mm3_per_mm * unscale<double>(length()); }
virtual void visit(ExtrusionVisitor &visitor) override { visitor.use(*this); };
virtual void visit(ExtrusionVisitor &visitor) const override { visitor.use(*this); };
private: protected:
void _inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const; void _inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const;
ExtrusionRole m_role; ExtrusionRole m_role;
}; };
typedef std::vector<ExtrusionPath> ExtrusionPaths; typedef std::vector<ExtrusionPath> ExtrusionPaths;
// Single continuous extrusion path, possibly with varying extrusion thickness, extrusion height or bridging / non bridging. class ExtrusionPath3D : public ExtrusionPath {
class ExtrusionMultiPath : public ExtrusionEntity
{
public: public:
ExtrusionPaths paths; std::vector<coord_t> z_offsets;
ExtrusionMultiPath() {};
ExtrusionMultiPath(const ExtrusionMultiPath &rhs) : paths(rhs.paths) {}
ExtrusionMultiPath(ExtrusionMultiPath &&rhs) : paths(std::move(rhs.paths)) {}
ExtrusionMultiPath(const ExtrusionPaths &paths) : paths(paths) {};
ExtrusionMultiPath(const ExtrusionPath &path) { this->paths.push_back(path); }
ExtrusionMultiPath& operator=(const ExtrusionMultiPath &rhs) { this->paths = rhs.paths; return *this; } ExtrusionPath3D(ExtrusionRole role) : ExtrusionPath(role) { /*std::cout << "new path3D\n"; */};
ExtrusionMultiPath& operator=(ExtrusionMultiPath &&rhs) { this->paths = std::move(rhs.paths); return *this; } ExtrusionPath3D(ExtrusionRole role, double mm3_per_mm, float width, float height) : ExtrusionPath(role, mm3_per_mm, width, height) { /*std::cout << "new path3D++\n";*/ };
ExtrusionPath3D(const ExtrusionPath &rhs) : ExtrusionPath(rhs) { /*std::cout << "new path3D from path "<<size()<<"?"<<z_offsets.size()<<"\n";*/ }
ExtrusionPath3D(ExtrusionPath &&rhs) : ExtrusionPath(rhs) { /*std::cout << "new path3D from path " << size() << "?" << z_offsets.size()<<"\n";*/ }
ExtrusionPath3D(const ExtrusionPath3D &rhs) : ExtrusionPath(rhs), z_offsets(rhs.z_offsets) { /*std::cout << "new path3D from path3D " << size() << "?" << z_offsets.size()<<"\n";*/ }
ExtrusionPath3D(ExtrusionPath3D &&rhs) : ExtrusionPath(rhs), z_offsets(std::move(rhs.z_offsets)) { /*std::cout << "new2 path3D from path3D " << size() << "?" << z_offsets.size()<<"\n";*/ }
// ExtrusionPath(ExtrusionRole role, const Flow &flow) : m_role(role), mm3_per_mm(flow.mm3_per_mm()), width(flow.width), height(flow.height), feedrate(0.0f), extruder_id(0) {};
bool is_loop() const { return false; } ExtrusionPath3D& operator=(const ExtrusionPath3D &rhs) { m_role = rhs.m_role; this->mm3_per_mm = rhs.mm3_per_mm; this->width = rhs.width; this->height = rhs.height;
bool can_reverse() const { return true; } this->feedrate = rhs.feedrate, this->extruder_id = rhs.extruder_id, this->cp_color_id = rhs.cp_color_id, this->polyline = rhs.polyline; z_offsets = rhs.z_offsets; return *this;
ExtrusionMultiPath* clone() const { return new ExtrusionMultiPath(*this); } }
void reverse(); ExtrusionPath3D& operator=(ExtrusionPath3D &&rhs) { m_role = rhs.m_role; this->mm3_per_mm = rhs.mm3_per_mm; this->width = rhs.width; this->height = rhs.height;
Point first_point() const override { return this->paths.front().polyline.points.front(); } this->feedrate = rhs.feedrate, this->extruder_id = rhs.extruder_id, this->cp_color_id = rhs.cp_color_id, this->polyline = std::move(rhs.polyline); z_offsets = std::move(rhs.z_offsets); return *this;
Point last_point() const override { return this->paths.back().polyline.points.back(); } }
double length() const override; ExtrusionPath3D* clone() const { return new ExtrusionPath3D(*this); }
virtual void visit(ExtrusionVisitor &visitor) override { visitor.use(*this); };
virtual void visit(ExtrusionVisitor &visitor) const override { visitor.use(*this); };
void push_back(Point p, coord_t z_offset) { polyline.points.push_back(p); z_offsets.push_back(z_offset); }
//TODO: simplify only for points that have the same z-offset
void simplify(double tolerance) override {}
};
typedef std::vector<ExtrusionPath3D> ExtrusionPaths3D;
// Single continuous extrusion path, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
template <typename THING = ExtrusionEntity>
class ExtrusionMultiEntity : public ExtrusionEntity {
public:
std::vector<THING> paths;
ExtrusionMultiEntity() {};
ExtrusionMultiEntity(const ExtrusionMultiEntity &rhs) : paths(rhs.paths) {}
ExtrusionMultiEntity(ExtrusionMultiEntity &&rhs) : paths(std::move(rhs.paths)) {}
ExtrusionMultiEntity(const std::vector<THING> &paths) : paths(paths) {};
ExtrusionMultiEntity(const THING &path) { this->paths.push_back(path); }
ExtrusionMultiEntity& operator=(const ExtrusionMultiEntity &rhs) { this->paths = rhs.paths; return *this; }
ExtrusionMultiEntity& operator=(ExtrusionMultiEntity &&rhs) { this->paths = std::move(rhs.paths); return *this; }
bool is_loop() const override { return false; }
ExtrusionRole role() const override { return this->paths.empty() ? erNone : this->paths.front().role(); } ExtrusionRole role() const override { return this->paths.empty() ? erNone : this->paths.front().role(); }
virtual Point first_point() const override { return this->paths.back().as_polyline().points.back(); }
virtual Point last_point() const override { return this->paths.back().as_polyline().points.back(); }
virtual void reverse() override {
for (THING &entity : this->paths)
entity.reverse();
std::reverse(this->paths.begin(), this->paths.end());
}
double length() const override {
double len = 0;
for (const THING &entity : this->paths)
len += entity.length();
return len;
}
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width. // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const; void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override {
for (const THING &entity : this->paths)
entity.polygons_covered_by_width(out, scaled_epsilon);
}
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing. // Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps. // Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill. // Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const; void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const override {
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const for (const THING &entity : this->paths)
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; } entity.polygons_covered_by_spacing(out, scaled_epsilon);
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const }
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm. // Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
double min_mm3_per_mm() const; double min_mm3_per_mm() const override {
Polyline as_polyline() const; double min_mm3_per_mm = std::numeric_limits<double>::max();
void collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (! pl.empty()) dst.emplace_back(std::move(pl)); } for (const THING &entity : this->paths)
double total_volume() const override { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; } min_mm3_per_mm = std::min(min_mm3_per_mm, entity.min_mm3_per_mm());
return min_mm3_per_mm;
}
Polyline as_polyline() const override {
Polyline out;
if (!paths.empty()) {
size_t len = 0;
for (size_t i_path = 0; i_path < paths.size(); ++i_path) {
assert(!paths[i_path].as_polyline().points.empty());
assert(i_path == 0 || paths[i_path - 1].polyline.points.back() == paths[i_path].as_polyline().points.front());
len += paths[i_path].as_polyline().points.size();
}
// The connecting points between the segments are equal.
len -= paths.size() - 1;
assert(len > 0);
out.points.reserve(len);
out.points.push_back(paths.front().as_polyline().points.front());
for (size_t i_path = 0; i_path < paths.size(); ++i_path)
out.points.insert(out.points.end(), paths[i_path].as_polyline().points.begin() + 1, paths[i_path].as_polyline().points.end());
}
return out;
}
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const override{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const override { Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
void collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (!pl.empty()) dst.emplace_back(std::move(pl)); }
double total_volume() const override { double volume = 0.; for (const auto& path : paths) volume += path.total_volume(); return volume; }
}; };
// Single continuous extrusion path, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
class ExtrusionMultiPath : public ExtrusionMultiEntity<ExtrusionPath> {
public:
ExtrusionMultiPath() {};
ExtrusionMultiPath(const ExtrusionMultiPath &rhs) : ExtrusionMultiEntity(rhs) {}
ExtrusionMultiPath(ExtrusionMultiPath &&rhs) : ExtrusionMultiEntity(rhs) {}
ExtrusionMultiPath(const ExtrusionPaths &paths) : ExtrusionMultiEntity(paths) {};
ExtrusionMultiPath(const ExtrusionPath &path) :ExtrusionMultiEntity(path) {}
virtual ExtrusionMultiPath* clone() const override { return new ExtrusionMultiPath(*this); }
virtual void visit(ExtrusionVisitor &visitor) override { visitor.use(*this); };
virtual void visit(ExtrusionVisitor &visitor) const override { visitor.use(*this); };
};
// Single continuous extrusion path, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
class ExtrusionMultiPath3D : public ExtrusionMultiEntity<ExtrusionPath3D> {
public:
ExtrusionMultiPath3D() {};
ExtrusionMultiPath3D(const ExtrusionMultiPath3D &rhs) : ExtrusionMultiEntity(rhs) {}
ExtrusionMultiPath3D(ExtrusionMultiPath3D &&rhs) : ExtrusionMultiEntity(rhs) {}
ExtrusionMultiPath3D(const ExtrusionPaths3D &paths) : ExtrusionMultiEntity(paths) {};
ExtrusionMultiPath3D(const ExtrusionPath3D &path) :ExtrusionMultiEntity(path) {}
virtual ExtrusionMultiPath3D* clone() const override { return new ExtrusionMultiPath3D(*this); }
virtual void visit(ExtrusionVisitor &visitor) override { visitor.use(*this); };
virtual void visit(ExtrusionVisitor &visitor) const override { visitor.use(*this); };
virtual bool can_reverse() const override { return false; }
virtual void reverse() override {
std::cout << "I SAID NO REVERSE§§§FFFS\n";
}
};
// Single continuous extrusion loop, possibly with varying extrusion thickness, extrusion height or bridging / non bridging. // Single continuous extrusion loop, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
class ExtrusionLoop : public ExtrusionEntity class ExtrusionLoop : public ExtrusionEntity
@ -255,7 +383,9 @@ public:
double min_mm3_per_mm() const; double min_mm3_per_mm() const;
Polyline as_polyline() const { return this->polygon().split_at_first_point(); } Polyline as_polyline() const { return this->polygon().split_at_first_point(); }
void collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (! pl.empty()) dst.emplace_back(std::move(pl)); } void collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (! pl.empty()) dst.emplace_back(std::move(pl)); }
double total_volume() const override { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; } double total_volume() const override { double volume = 0.; for (const auto& path : paths) volume += path.total_volume(); return volume; }
virtual void visit(ExtrusionVisitor &visitor) override { visitor.use(*this); };
virtual void visit(ExtrusionVisitor &visitor) const override { visitor.use(*this); };
private: private:
ExtrusionLoopRole m_loop_role; ExtrusionLoopRole m_loop_role;
@ -343,6 +473,19 @@ inline void extrusion_entities_append_loops(ExtrusionEntitiesPtr &dst, Polygons
loops.clear(); loops.clear();
} }
class ExtrusionPrinter : public ExtrusionVisitor {
std::stringstream ss;
public:
virtual void use(const ExtrusionPath &path);
virtual void use(const ExtrusionPath3D &path3D);
virtual void use(const ExtrusionMultiPath &multipath);
virtual void use(const ExtrusionMultiPath3D &multipath);
virtual void use(const ExtrusionLoop &loop);
virtual void use(const ExtrusionEntityCollection &collection);
std::string str() { return ss.str(); }
// void clear() { return ss.clear(); }
};
} }
#endif #endif

View File

@ -61,7 +61,7 @@ ExtrusionEntityCollection::reverse()
for (ExtrusionEntitiesPtr::iterator it = this->entities.begin(); it != this->entities.end(); ++it) { for (ExtrusionEntitiesPtr::iterator it = this->entities.begin(); it != this->entities.end(); ++it) {
// Don't reverse it if it's a loop, as it doesn't change anything in terms of elements ordering // Don't reverse it if it's a loop, as it doesn't change anything in terms of elements ordering
// and caller might rely on winding order // and caller might rely on winding order
if (!(*it)->is_loop()) (*it)->reverse(); if (!(*it)->can_reverse()) (*it)->reverse();
} }
std::reverse(this->entities.begin(), this->entities.end()); std::reverse(this->entities.begin(), this->entities.end());
} }

View File

@ -103,6 +103,8 @@ public:
throw std::runtime_error("Calling length() on a ExtrusionEntityCollection"); throw std::runtime_error("Calling length() on a ExtrusionEntityCollection");
return 0.; return 0.;
} }
virtual void visit(ExtrusionVisitor &visitor) { visitor.use(*this); };
virtual void visit(ExtrusionVisitor &visitor) const { visitor.use(*this); };
}; };
} }

View File

@ -375,14 +375,15 @@ std::string GCodeWriter::extrude_to_xy(const Vec2d &point, double dE, const std:
std::string GCodeWriter::extrude_to_xyz(const Vec3d &point, double dE, const std::string &comment) std::string GCodeWriter::extrude_to_xyz(const Vec3d &point, double dE, const std::string &comment)
{ {
m_pos = point; m_pos(0) = point(0);
m_pos(1) = point(1);
m_lifted = 0; m_lifted = 0;
m_extruder->extrude(dE); m_extruder->extrude(dE);
std::ostringstream gcode; std::ostringstream gcode;
gcode << "G1 X" << XYZF_NUM(point(0)) gcode << "G1 X" << XYZF_NUM(point.x())
<< " Y" << XYZF_NUM(point(1)) << " Y" << XYZF_NUM(point.y())
<< " Z" << XYZF_NUM(point(2)) << " Z" << XYZF_NUM(point.z() + m_pos.z())
<< " " << m_extrusion_axis << E_NUM(m_extruder->E()); << " " << m_extrusion_axis << E_NUM(m_extruder->E());
COMMENT(comment); COMMENT(comment);
gcode << "\n"; gcode << "\n";

View File

@ -1604,8 +1604,7 @@ void _3DScene::extrusionentity_to_verts(const ExtrusionLoop &extrusion_loop, flo
} }
// Fill in the qverts and tverts with quads and triangles for the extrusion_multi_path. // Fill in the qverts and tverts with quads and triangles for the extrusion_multi_path.
void _3DScene::extrusionentity_to_verts(const ExtrusionMultiPath &extrusion_multi_path, float print_z, const Point &copy, GLVolume &volume) void _3DScene::extrusionentity_to_verts(const ExtrusionMultiPath &extrusion_multi_path, float print_z, const Point &copy, GLVolume &volume) {
{
Lines lines; Lines lines;
std::vector<double> widths; std::vector<double> widths;
std::vector<double> heights; std::vector<double> heights;
@ -1621,37 +1620,34 @@ void _3DScene::extrusionentity_to_verts(const ExtrusionMultiPath &extrusion_mult
thick_lines_to_verts(lines, widths, heights, false, print_z, volume); thick_lines_to_verts(lines, widths, heights, false, print_z, volume);
} }
void _3DScene::extrusionentity_to_verts(const ExtrusionEntityCollection &extrusion_entity_collection, float print_z, const Point &copy, GLVolume &volume) // Fill in the qverts and tverts with quads and triangles for the extrusion_multi_path.
{ void _3DScene::extrusionentity_to_verts(const ExtrusionMultiPath3D &extrusion_multi_path, float print_z, const Point &copy, GLVolume &volume) {
for (const ExtrusionEntity *extrusion_entity : extrusion_entity_collection.entities) Lines lines;
extrusionentity_to_verts(extrusion_entity, print_z, copy, volume); std::vector<double> widths;
std::vector<double> heights;
for (const ExtrusionPath3D &extrusion_path : extrusion_multi_path.paths) {
Polyline polyline = extrusion_path.polyline;
polyline.remove_duplicate_points();
polyline.translate(copy);
Lines lines_this = polyline.lines();
append(lines, lines_this);
widths.insert(widths.end(), lines_this.size(), extrusion_path.width);
heights.insert(heights.end(), lines_this.size(), extrusion_path.height);
}
thick_lines_to_verts(lines, widths, heights, false, print_z, volume);
} }
void _3DScene::extrusionentity_to_verts(const ExtrusionEntity *extrusion_entity, float print_z, const Point &copy, GLVolume &volume) void ExtrusionToVert::use(const ExtrusionPath &path) { _3DScene::extrusionentity_to_verts(path, print_z, copy, volume); }
void ExtrusionToVert::use(const ExtrusionPath3D &path3D) { _3DScene::extrusionentity_to_verts(path3D, print_z, copy, volume); }
void ExtrusionToVert::use(const ExtrusionMultiPath &multipath) { _3DScene::extrusionentity_to_verts(multipath, print_z, copy, volume); }
void ExtrusionToVert::use(const ExtrusionMultiPath3D &multipath3D) { _3DScene::extrusionentity_to_verts(multipath3D, print_z, copy, volume); }
void ExtrusionToVert::use(const ExtrusionLoop &loop) { _3DScene::extrusionentity_to_verts(loop, print_z, copy, volume); }
void ExtrusionToVert::use(const ExtrusionEntityCollection &collection) { for (const ExtrusionEntity *extrusion_entity : collection.entities) extrusion_entity->visit(*this); }
void _3DScene::extrusionentity_to_verts(const ExtrusionEntity &extrusion_entity, float print_z, const Point &copy, GLVolume &volume)
{ {
if (extrusion_entity != nullptr) { ExtrusionToVert visitor(print_z, copy, volume);
auto *extrusion_path = dynamic_cast<const ExtrusionPath*>(extrusion_entity); extrusion_entity.visit(visitor);
if (extrusion_path != nullptr)
extrusionentity_to_verts(*extrusion_path, print_z, copy, volume);
else {
auto *extrusion_loop = dynamic_cast<const ExtrusionLoop*>(extrusion_entity);
if (extrusion_loop != nullptr)
extrusionentity_to_verts(*extrusion_loop, print_z, copy, volume);
else {
auto *extrusion_multi_path = dynamic_cast<const ExtrusionMultiPath*>(extrusion_entity);
if (extrusion_multi_path != nullptr)
extrusionentity_to_verts(*extrusion_multi_path, print_z, copy, volume);
else {
auto *extrusion_entity_collection = dynamic_cast<const ExtrusionEntityCollection*>(extrusion_entity);
if (extrusion_entity_collection != nullptr)
extrusionentity_to_verts(*extrusion_entity_collection, print_z, copy, volume);
else {
throw std::runtime_error("Unexpected extrusion_entity type in to_verts()");
}
}
}
}
}
} }
void _3DScene::polyline3_to_verts(const Polyline3& polyline, double width, double height, GLVolume& volume) void _3DScene::polyline3_to_verts(const Polyline3& polyline, double width, double height, GLVolume& volume)

View File

@ -36,6 +36,7 @@ class ModelObject;
class DynamicPrintConfig; class DynamicPrintConfig;
class ExtrusionPath; class ExtrusionPath;
class ExtrusionMultiPath; class ExtrusionMultiPath;
class ExtrusionMultiPath3D;
class ExtrusionLoop; class ExtrusionLoop;
class ExtrusionEntity; class ExtrusionEntity;
class ExtrusionEntityCollection; class ExtrusionEntityCollection;
@ -589,12 +590,27 @@ public:
static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, const Point& copy, GLVolume& volume); static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, const Point& copy, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionLoop& extrusion_loop, float print_z, const Point& copy, GLVolume& volume); static void extrusionentity_to_verts(const ExtrusionLoop& extrusion_loop, float print_z, const Point& copy, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionMultiPath& extrusion_multi_path, float print_z, const Point& copy, GLVolume& volume); static void extrusionentity_to_verts(const ExtrusionMultiPath& extrusion_multi_path, float print_z, const Point& copy, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionEntityCollection& extrusion_entity_collection, float print_z, const Point& copy, GLVolume& volume); static void extrusionentity_to_verts(const ExtrusionMultiPath3D& extrusion_multi_path, float print_z, const Point& copy, GLVolume& volume);
static void extrusionentity_to_verts(const ExtrusionEntity* extrusion_entity, float print_z, const Point& copy, GLVolume& volume); static void extrusionentity_to_verts(const ExtrusionEntity &extrusion_entity, float print_z, const Point& copy, GLVolume& volume);
static void polyline3_to_verts(const Polyline3& polyline, double width, double height, GLVolume& volume); static void polyline3_to_verts(const Polyline3& polyline, double width, double height, GLVolume& volume);
static void point3_to_verts(const Vec3crd& point, double width, double height, GLVolume& volume); static void point3_to_verts(const Vec3crd& point, double width, double height, GLVolume& volume);
}; };
class ExtrusionToVert : public ExtrusionVisitor {
float print_z;
const Point &copy;
GLVolume &volume;
public:
ExtrusionToVert(float print_z, const Point &copy, GLVolume &volume) : print_z(print_z), copy(copy), volume(volume) {}
virtual void use(const ExtrusionPath &path) override;
virtual void use(const ExtrusionPath3D &path3D) override;
virtual void use(const ExtrusionMultiPath &multipath) override;
virtual void use(const ExtrusionMultiPath3D &multipath) override;
virtual void use(const ExtrusionLoop &loop) override;
virtual void use(const ExtrusionEntityCollection &collection) override;
};
} }
#endif #endif

View File

@ -7317,7 +7317,8 @@ void GLCanvas3D::_load_print_object_toolpaths(const PrintObject& print_object, c
// fill represents infill extrusions of a single island. // fill represents infill extrusions of a single island.
const auto *fill = dynamic_cast<const ExtrusionEntityCollection*>(ee); const auto *fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
if (!fill->entities.empty()) if (!fill->entities.empty())
_3DScene::extrusionentity_to_verts(*fill, float(layer->print_z), copy, if (fill != nullptr)
_3DScene::extrusionentity_to_verts(*fill, float(layer->print_z), copy,
*vols[ctxt.volume_idx( *vols[ctxt.volume_idx(
is_solid_infill(fill->entities.front()->role()) ? is_solid_infill(fill->entities.front()->role()) ?
layerm->region()->config().solid_infill_extruder : layerm->region()->config().solid_infill_extruder :
@ -7330,7 +7331,8 @@ void GLCanvas3D::_load_print_object_toolpaths(const PrintObject& print_object, c
const SupportLayer *support_layer = dynamic_cast<const SupportLayer*>(layer); const SupportLayer *support_layer = dynamic_cast<const SupportLayer*>(layer);
if (support_layer) { if (support_layer) {
for (const ExtrusionEntity *extrusion_entity : support_layer->support_fills.entities) for (const ExtrusionEntity *extrusion_entity : support_layer->support_fills.entities)
_3DScene::extrusionentity_to_verts(extrusion_entity, float(layer->print_z), copy, if (extrusion_entity != nullptr)
_3DScene::extrusionentity_to_verts(*extrusion_entity, float(layer->print_z), copy,
*vols[ctxt.volume_idx( *vols[ctxt.volume_idx(
(extrusion_entity->role() == erSupportMaterial) ? (extrusion_entity->role() == erSupportMaterial) ?
support_layer->object()->config().support_material_extruder : support_layer->object()->config().support_material_extruder :