#include #include #include "../ClipperUtils.hpp" #include "../EdgeGrid.hpp" #include "../Geometry.hpp" #include "../Point.hpp" #include "../PrintConfig.hpp" #include "../Surface.hpp" #include "../ExtrusionEntityCollection.hpp" #include "../libslic3r.h" #include "FillBase.hpp" #include "FillConcentric.hpp" #include "FillHoneycomb.hpp" #include "Fill3DHoneycomb.hpp" #include "FillGyroid.hpp" #include "FillPlanePath.hpp" #include "FillLine.hpp" #include "FillRectilinear.hpp" #include "FillAdaptive.hpp" #include "FillSmooth.hpp" #include "../MedialAxis.hpp" namespace Slic3r { Fill* Fill::new_from_type(const InfillPattern type) { switch (type) { case ipConcentric: return new FillConcentric(); case ipConcentricGapFill: return new FillConcentricWGapFill(); case ipHoneycomb: return new FillHoneycomb(); case ip3DHoneycomb: return new Fill3DHoneycomb(); case ipGyroid: return new FillGyroid(); case ipRectilinear: return new FillRectilinear(); case ipRectilinearWGapFill: return new FillRectilinearWGapFill(); case ipMonotonic: return new FillMonotonic(); case ipMonotonicWGapFill: return new FillMonotonicWGapFill(); case ipScatteredRectilinear:return new FillScatteredRectilinear(); case ipLine: return new FillLine(); case ipGrid: return new FillGrid(); case ipTriangles: return new FillTriangles(); case ipStars: return new FillStars(); case ipCubic: return new FillCubic(); case ipArchimedeanChords: return new FillArchimedeanChords(); case ipHilbertCurve: return new FillHilbertCurve(); case ipOctagramSpiral: return new FillOctagramSpiral(); case ipSmooth: return new FillSmooth(); case ipSmoothTriple: return new FillSmoothTriple(); case ipSmoothHilbert: return new FillSmoothHilbert(); case ipRectiWithPerimeter: return new FillRectilinearPeri(); case ipSawtooth: return new FillRectilinearSawtooth(); case ipAdaptiveCubic: return new FillAdaptive::Filler(); case ipSupportCubic: return new FillAdaptive::Filler(); default: throw std::invalid_argument("unknown type : "+type); } } Fill* Fill::new_from_type(const std::string &type) { const t_config_enum_values &enum_keys_map = ConfigOptionEnum::get_enum_values(); t_config_enum_values::const_iterator it = enum_keys_map.find(type); return (it == enum_keys_map.end()) ? nullptr : new_from_type(InfillPattern(it->second)); } Polylines Fill::fill_surface(const Surface *surface, const FillParams ¶ms) const { // Perform offset. Slic3r::ExPolygons expp = offset_ex(surface->expolygon, double(scale_(0 - 0.5 * this->get_spacing()))); // Create the infills for each of the regions. Polylines polylines_out; for (size_t i = 0; i < expp.size(); ++ i) _fill_surface_single( params, surface->thickness_layers, _infill_direction(surface), std::move(expp[i]), polylines_out); return polylines_out; } // Calculate a new spacing to fill width with possibly integer number of lines, // the first and last line being centered at the interval ends. // This function possibly increases the spacing, never decreases, // and for a narrow width the increase in spacing may become severe, // therefore the adjustment is limited to 20% increase. coord_t Fill::_adjust_solid_spacing(const coord_t width, const coord_t distance, const double factor_max) { assert(width >= 0); assert(distance > 0); // floor(width / distance) coord_t number_of_intervals = (coord_t)((width - EPSILON) / distance); coord_t distance_new = (number_of_intervals == 0) ? distance : (coord_t)(((width - EPSILON) / number_of_intervals)); const double factor = coordf_t(distance_new) / coordf_t(distance); assert(factor > 1. - 1e-5); // How much could the extrusion width be increased? By 20%. if (factor > factor_max) distance_new = coord_t(floor((coordf_t(distance) * factor_max + 0.5))); return distance_new; } // Returns orientation of the infill and the reference point of the infill pattern. // For a normal print, the reference point is the center of a bounding box of the STL. std::pair Fill::_infill_direction(const Surface *surface) const { // set infill angle float out_angle = this->angle; if (out_angle == FLT_MAX) { //FIXME Vojtech: Add a warning? printf("Using undefined infill angle\n"); out_angle = 0.f; } // Bounding box is the bounding box of a perl object Slic3r::Print::Object (c++ object Slic3r::PrintObject) // The bounding box is only undefined in unit tests. Point out_shift = empty(this->bounding_box) ? surface->expolygon.contour.bounding_box().center() : this->bounding_box.center(); #if 0 if (empty(this->bounding_box)) { printf("Fill::_infill_direction: empty bounding box!"); } else { printf("Fill::_infill_direction: reference point %d, %d\n", out_shift.x, out_shift.y); } #endif if (surface->bridge_angle >= 0) { // use bridge angle //FIXME Vojtech: Add a debugf? // Slic3r::debugf "Filling bridge with angle %d\n", rad2deg($surface->bridge_angle); #ifdef SLIC3R_DEBUG printf("Filling bridge with angle %f\n", surface->bridge_angle); #endif /* SLIC3R_DEBUG */ out_angle = float(surface->bridge_angle); } else if (this->layer_id != size_t(-1)) { // alternate fill direction out_angle += this->_layer_angle(this->layer_id / surface->thickness_layers); } else { // printf("Layer_ID undefined!\n"); } out_angle += float(M_PI/2.); return std::pair(out_angle, out_shift); } double Fill::compute_unscaled_volume_to_fill(const Surface* surface, const FillParams& params) const { double polyline_volume = 0; for (const ExPolygon& poly : this->no_overlap_expolygons) { polyline_volume += params.flow.height * unscaled(unscaled(poly.area())); double perimeter_gap_usage = params.config->perimeter_overlap.get_abs_value(1); // add external "perimeter gap" double perimeter_round_gap = unscaled(poly.contour.length()) * params.flow.height * (1 - 0.25 * PI) * 0.5; // add holes "perimeter gaps" double holes_gaps = 0; for (auto hole = poly.holes.begin(); hole != poly.holes.end(); ++hole) { holes_gaps += unscaled(hole->length()) * params.flow.height * (1 - 0.25 * PI) * 0.5; } polyline_volume += (perimeter_round_gap + holes_gaps) * perimeter_gap_usage; } if (this->no_overlap_expolygons.empty()) { polyline_volume = unscaled(unscaled(surface->area())) * params.flow.height; } return polyline_volume; } void Fill::fill_surface_extrusion(const Surface *surface, const FillParams ¶ms, ExtrusionEntitiesPtr &out) const { //add overlap & call fill_surface Polylines polylines; try { polylines = this->fill_surface(surface, params); } catch (InfillFailedException&) { } if (polylines.empty()) return; // ensure it doesn't over or under-extrude double mult_flow = 1; if (!params.dont_adjust && params.full_infill() && !params.flow.bridge && params.fill_exactly){ // compute the path of the nozzle -> extruded volume double length_tot = 0; for (auto pline = polylines.begin(); pline != polylines.end(); ++pline){ Lines lines = pline->lines(); for (auto line = lines.begin(); line != lines.end(); ++line){ length_tot += unscaled(line->length()); } } //compute flow to remove spacing_ratio from the equation double extruded_volume = 0; if (params.flow.spacing_ratio < 1.f && !params.flow.bridge) { // the spacing is larger than usual. get the flow from the current spacing Flow test_flow = Flow::new_from_spacing(params.flow.spacing(), params.flow.nozzle_diameter, params.flow.height, 1, params.flow.bridge); extruded_volume = test_flow.mm3_per_mm() * length_tot; }else extruded_volume = params.flow.mm3_per_mm() * length_tot; // compute real volume double polyline_volume = compute_unscaled_volume_to_fill(surface, params); if (extruded_volume != 0 && polyline_volume != 0) mult_flow *= polyline_volume / extruded_volume; //failsafe, it can happen if (mult_flow > 1.3) mult_flow = 1.3; if (mult_flow < 0.8) mult_flow = 0.8; BOOST_LOG_TRIVIAL(info) << "Infill process extrude " << extruded_volume << " mm3 for a volume of " << polyline_volume << " mm3 : we mult the flow by " << mult_flow; } // Save into layer. auto *eec = new ExtrusionEntityCollection(); /// pass the no_sort attribute to the extrusion path eec->no_sort = this->no_sort(); /// add it into the collection out.push_back(eec); //get the role ExtrusionRole good_role = getRoleFromSurfaceType(params, surface); /// push the path extrusion_entities_append_paths( eec->entities, std::move(polylines), good_role, params.flow.mm3_per_mm() * params.flow_mult * mult_flow, (float)(params.flow.width * params.flow_mult * mult_flow), (float)params.flow.height); } coord_t Fill::_line_spacing_for_density(float density) const { return scale_t(this->get_spacing() / density); } //FIXME: add recent improvmeent from perimetergenerator: avoid thick gapfill void Fill::do_gap_fill(const ExPolygons& gapfill_areas, const FillParams& params, ExtrusionEntitiesPtr& coll_out) const { ThickPolylines polylines_gapfill; double min = 0.4 * scale_(params.flow.nozzle_diameter) * (1 - INSET_OVERLAP_TOLERANCE); double max = 2. * params.flow.scaled_width(); // collapse //be sure we don't gapfill where the perimeters are already touching each other (negative spacing). min = std::max(min, double(Flow::new_from_spacing((float)EPSILON, (float)params.flow.nozzle_diameter, (float)params.flow.height, 1, false).scaled_width())); //ExPolygons gapfill_areas_collapsed = diff_ex( // offset2_ex(gapfill_areas, double(-min / 2), double(+min / 2)), // offset2_ex(gapfill_areas, double(-max / 2), double(+max / 2)), // true); ExPolygons gapfill_areas_collapsed = offset2_ex(gapfill_areas, double(-min / 2), double(+min / 2)); double minarea = double(params.flow.scaled_width()) * double(params.flow.scaled_width()); if (params.config != nullptr) minarea = scale_d(params.config->gap_fill_min_area.get_abs_value(params.flow.width)) * double(params.flow.scaled_width()); for (const ExPolygon& ex : gapfill_areas_collapsed) { //remove too small gaps that are too hard to fill. //ie one that are smaller than an extrusion with width of min and a length of max. if (ex.area() > minarea) { MedialAxis{ ex, params.flow.scaled_width() * 2, params.flow.scaled_width() / 5, coord_t(params.flow.height) }.build(polylines_gapfill); } } if (!polylines_gapfill.empty() && !is_bridge(params.role)) { //test #ifdef _DEBUG for (ThickPolyline poly : polylines_gapfill) { for (coordf_t width : poly.width) { if (width > params.flow.scaled_width() * 2.2) { std::cerr << "ERRROR!!!! gapfill width = " << unscaled(width) << " > max_width = " << (params.flow.width * 2) << "\n"; } } } #endif ExtrusionEntityCollection gap_fill = thin_variable_width(polylines_gapfill, erGapFill, params.flow); //set role if needed /*if (params.role != erSolidInfill) { ExtrusionSetRole set_good_role(params.role); gap_fill.visit(set_good_role); }*/ //move them into the collection if (!gap_fill.entities.empty()) { ExtrusionEntityCollection* coll_gapfill = new ExtrusionEntityCollection(); coll_gapfill->no_sort = this->no_sort(); coll_gapfill->append(std::move(gap_fill.entities)); coll_out.push_back(coll_gapfill); } } } namespace NaiveConnect { /// cut poly between poly.point[idx_1] & poly.point[idx_1+1] /// add p1+-width to one part and p2+-width to the other one. /// add the "new" polyline to polylines (to part cut from poly) /// p1 & p2 have to be between poly.point[idx_1] & poly.point[idx_1+1] /// if idx_1 is ==0 or == size-1, then we don't need to create a new polyline. void cut_polyline(Polyline& poly, Polylines& polylines, size_t idx_1, Point p1, Point p2) { //reorder points if (p1.distance_to_square(poly.points[idx_1]) > p2.distance_to_square(poly.points[idx_1])) { Point temp = p2; p2 = p1; p1 = temp; } if (idx_1 == poly.points.size() - 1) { //shouldn't be possible. poly.points.erase(poly.points.end() - 1); } else { // create new polyline Polyline new_poly; //put points in new_poly new_poly.points.push_back(p2); new_poly.points.insert(new_poly.points.end(), poly.points.begin() + idx_1 + 1, poly.points.end()); //erase&put points in poly poly.points.erase(poly.points.begin() + idx_1 + 1, poly.points.end()); poly.points.push_back(p1); //safe test if (poly.length() == 0) poly.points = new_poly.points; else polylines.emplace_back(new_poly); } } /// the poly is like a polygon but with first_point != last_point (already removed) void cut_polygon(Polyline& poly, size_t idx_1, Point p1, Point p2) { //reorder points if (p1.distance_to_square(poly.points[idx_1]) > p2.distance_to_square(poly.points[idx_1])) { Point temp = p2; p2 = p1; p1 = temp; } //check if we need to rotate before cutting if (idx_1 != poly.size() - 1) { //put points in new_poly poly.points.insert(poly.points.end(), poly.points.begin(), poly.points.begin() + idx_1 + 1); poly.points.erase(poly.points.begin(), poly.points.begin() + idx_1 + 1); } //put points in poly poly.points.push_back(p1); poly.points.insert(poly.points.begin(), p2); } /// check if the polyline from pts_to_check may be at 'width' distance of a point in polylines_blocker /// it use equally_spaced_points with width/2 precision, so don't worry with pts_to_check number of points. /// it use the given polylines_blocker points, be sure to put enough of them to be reliable. /// complexity : N(pts_to_check.equally_spaced_points(width / 2)) x N(polylines_blocker.points) bool collision(const Points& pts_to_check, const Polylines& polylines_blocker, const coord_t width) { //check if it's not too close to a polyline //convert to double to allow ² operation double min_dist_square = (double)width * (double)width * 0.9 - SCALED_EPSILON; Polyline better_polylines(pts_to_check); Points better_pts = better_polylines.equally_spaced_points(double(width / 2)); for (const Point& p : better_pts) { for (const Polyline& poly2 : polylines_blocker) { for (const Point& p2 : poly2.points) { if (p.distance_to_square(p2) < min_dist_square) { return true; } } } } return false; } /// Try to find a path inside polylines that allow to go from p1 to p2. /// width if the width of the extrusion /// polylines_blockers are the array of polylines to check if the path isn't blocked by something. /// complexity: N(polylines.points) + a collision check after that if we finded a path: N(2(p2-p1)/width) x N(polylines_blocker.points) /// @param width is scaled /// @param max_size is scaled Points getFrontier(Polylines& polylines, const Point& p1, const Point& p2, const coord_t width, const Polylines& polylines_blockers, coord_t max_size = -1) { for (size_t idx_poly = 0; idx_poly < polylines.size(); ++idx_poly) { Polyline& poly = polylines[idx_poly]; if (poly.size() <= 1) continue; //loop? if (poly.first_point() == poly.last_point()) { //polygon : try to find a line for p1 & p2. size_t idx_11, idx_12, idx_21, idx_22; idx_11 = poly.closest_point_index(p1); idx_12 = idx_11; if (Line(poly.points[idx_11], poly.points[(idx_11 + 1) % (poly.points.size() - 1)]).distance_to(p1) < SCALED_EPSILON) { idx_12 = (idx_11 + 1) % (poly.points.size() - 1); } else if (Line(poly.points[(idx_11 > 0) ? (idx_11 - 1) : (poly.points.size() - 2)], poly.points[idx_11]).distance_to(p1) < SCALED_EPSILON) { idx_11 = (idx_11 > 0) ? (idx_11 - 1) : (poly.points.size() - 2); } else { continue; } idx_21 = poly.closest_point_index(p2); idx_22 = idx_21; if (Line(poly.points[idx_21], poly.points[(idx_21 + 1) % (poly.points.size() - 1)]).distance_to(p2) < SCALED_EPSILON) { idx_22 = (idx_21 + 1) % (poly.points.size() - 1); } else if (Line(poly.points[(idx_21 > 0) ? (idx_21 - 1) : (poly.points.size() - 2)], poly.points[idx_21]).distance_to(p2) < SCALED_EPSILON) { idx_21 = (idx_21 > 0) ? (idx_21 - 1) : (poly.points.size() - 2); } else { continue; } //edge case: on the same line if (idx_11 == idx_21 && idx_12 == idx_22) { if (collision(Points() = { p1, p2 }, polylines_blockers, width)) return Points(); //break loop poly.points.erase(poly.points.end() - 1); cut_polygon(poly, idx_11, p1, p2); return Points() = { Line(p1, p2).midpoint() }; } //compute distance & array for the ++ path Points ret_1_to_2; double dist_1_to_2 = p1.distance_to(poly.points[idx_12]); ret_1_to_2.push_back(poly.points[idx_12]); size_t max = idx_12 <= idx_21 ? idx_21 + 1 : poly.points.size(); for (size_t i = idx_12 + 1; i < max; i++) { dist_1_to_2 += poly.points[i - 1].distance_to(poly.points[i]); ret_1_to_2.push_back(poly.points[i]); } if (idx_12 > idx_21) { dist_1_to_2 += poly.points.back().distance_to(poly.points.front()); ret_1_to_2.push_back(poly.points[0]); for (size_t i = 1; i <= idx_21; i++) { dist_1_to_2 += poly.points[i - 1].distance_to(poly.points[i]); ret_1_to_2.push_back(poly.points[i]); } } dist_1_to_2 += p2.distance_to(poly.points[idx_21]); //compute distance & array for the -- path Points ret_2_to_1; double dist_2_to_1 = p1.distance_to(poly.points[idx_11]); ret_2_to_1.push_back(poly.points[idx_11]); size_t min = idx_22 <= idx_11 ? idx_22 : 0; for (size_t i = idx_11; i > min; i--) { dist_2_to_1 += poly.points[i - 1].distance_to(poly.points[i]); ret_2_to_1.push_back(poly.points[i - 1]); } if (idx_22 > idx_11) { dist_2_to_1 += poly.points.back().distance_to(poly.points.front()); ret_2_to_1.push_back(poly.points[poly.points.size() - 1]); for (size_t i = poly.points.size() - 1; i > idx_22; i--) { dist_2_to_1 += poly.points[i - 1].distance_to(poly.points[i]); ret_2_to_1.push_back(poly.points[i - 1]); } } dist_2_to_1 += p2.distance_to(poly.points[idx_22]); if (max_size < dist_2_to_1 && max_size < dist_1_to_2) { return Points(); } //choose between the two direction (keep the short one) if (dist_1_to_2 < dist_2_to_1) { if (collision(ret_1_to_2, polylines_blockers, width)) return Points(); //break loop poly.points.erase(poly.points.end() - 1); //remove points if (idx_12 <= idx_21) { poly.points.erase(poly.points.begin() + idx_12, poly.points.begin() + idx_21 + 1); if (idx_12 != 0) { cut_polygon(poly, idx_11, p1, p2); } //else : already cut at the good place } else { poly.points.erase(poly.points.begin() + idx_12, poly.points.end()); poly.points.erase(poly.points.begin(), poly.points.begin() + idx_21); cut_polygon(poly, poly.points.size() - 1, p1, p2); } return ret_1_to_2; } else { if (collision(ret_2_to_1, polylines_blockers, width)) return Points(); //break loop poly.points.erase(poly.points.end() - 1); //remove points if (idx_22 <= idx_11) { poly.points.erase(poly.points.begin() + idx_22, poly.points.begin() + idx_11 + 1); if (idx_22 != 0) { cut_polygon(poly, idx_21, p1, p2); } //else : already cut at the good place } else { poly.points.erase(poly.points.begin() + idx_22, poly.points.end()); poly.points.erase(poly.points.begin(), poly.points.begin() + idx_11); cut_polygon(poly, poly.points.size() - 1, p1, p2); } return ret_2_to_1; } } else { //polyline : try to find a line for p1 & p2. size_t idx_1, idx_2; idx_1 = poly.closest_point_index(p1); if (idx_1 < poly.points.size() - 1 && Line(poly.points[idx_1], poly.points[idx_1 + 1]).distance_to(p1) < SCALED_EPSILON) { } else if (idx_1 > 0 && Line(poly.points[idx_1 - 1], poly.points[idx_1]).distance_to(p1) < SCALED_EPSILON) { idx_1 = idx_1 - 1; } else { continue; } idx_2 = poly.closest_point_index(p2); if (idx_2 < poly.points.size() - 1 && Line(poly.points[idx_2], poly.points[idx_2 + 1]).distance_to(p2) < SCALED_EPSILON) { } else if (idx_2 > 0 && Line(poly.points[idx_2 - 1], poly.points[idx_2]).distance_to(p2) < SCALED_EPSILON) { idx_2 = idx_2 - 1; } else { continue; } //edge case: on the same line if (idx_1 == idx_2) { if (collision(Points() = { p1, p2 }, polylines_blockers, width)) return Points(); cut_polyline(poly, polylines, idx_1, p1, p2); return Points() = { Line(p1, p2).midpoint() }; } //create ret array size_t first_idx = idx_1; size_t last_idx = idx_2 + 1; if (idx_1 > idx_2) { first_idx = idx_2; last_idx = idx_1 + 1; } Points p_ret; p_ret.insert(p_ret.end(), poly.points.begin() + first_idx + 1, poly.points.begin() + last_idx); coordf_t length = 0; for (size_t i = 1; i < p_ret.size(); i++) length += p_ret[i - 1].distance_to(p_ret[i]); if (max_size < length) { return Points(); } if (collision(p_ret, polylines_blockers, width)) return Points(); //cut polyline poly.points.erase(poly.points.begin() + first_idx + 1, poly.points.begin() + last_idx); cut_polyline(poly, polylines, first_idx, p1, p2); //order the returned array to be p1->p2 if (idx_1 > idx_2) { std::reverse(p_ret.begin(), p_ret.end()); } return p_ret; } } return Points(); } /// Connect the infill_ordered polylines, in this order, from the back point to the next front point. /// It uses only the boundary polygons to do so, and can't pass two times at the same place. /// It avoid passing over the infill_ordered's polylines (preventing local over-extrusion). /// return the connected polylines in polylines_out. Can output polygons (stored as polylines with first_point = last_point). /// complexity: worst: N(infill_ordered.points) x N(boundary.points) /// typical: N(infill_ordered) x ( N(boundary.points) + N(infill_ordered.points) ) void connect_infill(const Polylines& infill_ordered, const ExPolygon& boundary, Polylines& polylines_out, const double spacing, const FillParams& params) { //TODO: fallback to the quick & dirty old algorithm when n(points) is too high. Polylines polylines_frontier = to_polylines(((Polygons)boundary)); Polylines polylines_blocker; coord_t clip_size = scale_(spacing) * 2; for (const Polyline& polyline : infill_ordered) { if (polyline.length() > 2.01 * clip_size) { polylines_blocker.push_back(polyline); polylines_blocker.back().clip_end((double)clip_size); polylines_blocker.back().clip_start((double)clip_size); } } //length between two lines coordf_t ideal_length = (1 / params.density) * spacing; Polylines polylines_connected_first; bool first = true; for (const Polyline& polyline : infill_ordered) { if (!first) { // Try to connect the lines. Points& pts_end = polylines_connected_first.back().points; const Point& last_point = pts_end.back(); const Point& first_point = polyline.points.front(); if (last_point.distance_to(first_point) < scale_(spacing) * 10) { Points pts_frontier = getFrontier(polylines_frontier, last_point, first_point, scale_(spacing), polylines_blocker, scale_(ideal_length) * 2); if (!pts_frontier.empty()) { // The lines can be connected. pts_end.insert(pts_end.end(), pts_frontier.begin(), pts_frontier.end()); pts_end.insert(pts_end.end(), polyline.points.begin(), polyline.points.end()); continue; } } } // The lines cannot be connected. polylines_connected_first.emplace_back(std::move(polyline)); first = false; } Polylines polylines_connected; first = true; for (const Polyline& polyline : polylines_connected_first) { if (!first) { // Try to connect the lines. Points& pts_end = polylines_connected.back().points; const Point& last_point = pts_end.back(); const Point& first_point = polyline.points.front(); Polylines before = polylines_frontier; Points pts_frontier = getFrontier(polylines_frontier, last_point, first_point, scale_(spacing), polylines_blocker); if (!pts_frontier.empty()) { // The lines can be connected. pts_end.insert(pts_end.end(), pts_frontier.begin(), pts_frontier.end()); pts_end.insert(pts_end.end(), polyline.points.begin(), polyline.points.end()); continue; } } // The lines cannot be connected. polylines_connected.emplace_back(std::move(polyline)); first = false; } //try to link to nearest point if possible for (size_t idx1 = 0; idx1 < polylines_connected.size(); idx1++) { size_t min_idx = 0; coordf_t min_length = 0; bool switch_id1 = false; bool switch_id2 = false; for (size_t idx2 = idx1 + 1; idx2 < polylines_connected.size(); idx2++) { double last_first = polylines_connected[idx1].last_point().distance_to_square(polylines_connected[idx2].first_point()); double first_first = polylines_connected[idx1].first_point().distance_to_square(polylines_connected[idx2].first_point()); double first_last = polylines_connected[idx1].first_point().distance_to_square(polylines_connected[idx2].last_point()); double last_last = polylines_connected[idx1].last_point().distance_to_square(polylines_connected[idx2].last_point()); double min = std::min(std::min(last_first, last_last), std::min(first_first, first_last)); if (min < min_length || min_length == 0) { min_idx = idx2; switch_id1 = (std::min(last_first, last_last) > std::min(first_first, first_last)); switch_id2 = (std::min(last_first, first_first) > std::min(last_last, first_last)); min_length = min; } } if (min_idx > idx1&& min_idx < polylines_connected.size()) { Points pts_frontier = getFrontier(polylines_frontier, switch_id1 ? polylines_connected[idx1].first_point() : polylines_connected[idx1].last_point(), switch_id2 ? polylines_connected[min_idx].last_point() : polylines_connected[min_idx].first_point(), scale_(spacing), polylines_blocker); if (!pts_frontier.empty()) { if (switch_id1) polylines_connected[idx1].reverse(); if (switch_id2) polylines_connected[min_idx].reverse(); Points& pts_end = polylines_connected[idx1].points; pts_end.insert(pts_end.end(), pts_frontier.begin(), pts_frontier.end()); pts_end.insert(pts_end.end(), polylines_connected[min_idx].points.begin(), polylines_connected[min_idx].points.end()); polylines_connected.erase(polylines_connected.begin() + min_idx); } } } //try to create some loops if possible for (Polyline& polyline : polylines_connected) { Points pts_frontier = getFrontier(polylines_frontier, polyline.last_point(), polyline.first_point(), scale_(spacing), polylines_blocker); if (!pts_frontier.empty()) { polyline.points.insert(polyline.points.end(), pts_frontier.begin(), pts_frontier.end()); polyline.points.insert(polyline.points.begin(), polyline.points.back()); } polylines_out.emplace_back(polyline); } } } namespace PrusaSimpleConnect { struct ContourPointData { ContourPointData(float param) : param(param) {} // Eucleidean position of the contour point along the contour. float param = 0.f; // Was the segment starting with this contour point extruded? bool segment_consumed = false; // Was this point extruded over? bool point_consumed = false; }; // Verify whether the contour from point idx_start to point idx_end could be taken (whether all segments along the contour were not yet extruded). static bool could_take(const std::vector& contour_data, size_t idx_start, size_t idx_end) { assert(idx_start != idx_end); for (size_t i = idx_start; i != idx_end; ) { if (contour_data[i].segment_consumed || contour_data[i].point_consumed) return false; if (++i == contour_data.size()) i = 0; } return !contour_data[idx_end].point_consumed; } // Connect end of pl1 to the start of pl2 using the perimeter contour. // The idx_start and idx_end are ordered so that the connecting polyline points will be taken with increasing indices. static void take(Polyline& pl1, Polyline&& pl2, const Points& contour, std::vector& contour_data, size_t idx_start, size_t idx_end, bool reversed) { #ifndef NDEBUG size_t num_points_initial = pl1.points.size(); assert(idx_start != idx_end); #endif /* NDEBUG */ { // Reserve memory at pl1 for the connecting contour and pl2. int new_points = int(idx_end) - int(idx_start) - 1; if (new_points < 0) new_points += int(contour.size()); pl1.points.reserve(pl1.points.size() + size_t(new_points) + pl2.points.size()); } contour_data[idx_start].point_consumed = true; contour_data[idx_start].segment_consumed = true; contour_data[idx_end].point_consumed = true; if (reversed) { size_t i = (idx_end == 0) ? contour_data.size() - 1 : idx_end - 1; while (i != idx_start) { contour_data[i].point_consumed = true; contour_data[i].segment_consumed = true; pl1.points.emplace_back(contour[i]); if (i == 0) i = contour_data.size(); --i; } } else { size_t i = idx_start; if (++i == contour_data.size()) i = 0; while (i != idx_end) { contour_data[i].point_consumed = true; contour_data[i].segment_consumed = true; pl1.points.emplace_back(contour[i]); if (++i == contour_data.size()) i = 0; } } append(pl1.points, std::move(pl2.points)); } // Return an index of start of a segment and a point of the clipping point at distance from the end of polyline. struct SegmentPoint { // Segment index, defining a line ::max(); // Parameter of point in <0, 1) along the line ::max(); } }; static inline SegmentPoint clip_start_segment_and_point(const Points& polyline, double distance) { assert(polyline.size() >= 2); assert(distance > 0.); // Initialized to "invalid". SegmentPoint out; if (polyline.size() >= 2) { Vec2d pt_prev = polyline.front().cast(); for (size_t i = 1; i < polyline.size(); ++i) { Vec2d pt = polyline[i].cast(); Vec2d v = pt - pt_prev; double l2 = v.squaredNorm(); if (l2 > distance* distance) { out.idx_segment = i; out.t = distance / sqrt(l2); out.point = pt_prev + out.t * v; break; } distance -= sqrt(l2); pt_prev = pt; } } return out; } static inline SegmentPoint clip_end_segment_and_point(const Points& polyline, double distance) { assert(polyline.size() >= 2); assert(distance > 0.); // Initialized to "invalid". SegmentPoint out; if (polyline.size() >= 2) { Vec2d pt_next = polyline.back().cast(); for (int i = int(polyline.size()) - 2; i >= 0; --i) { Vec2d pt = polyline[i].cast(); Vec2d v = pt - pt_next; double l2 = v.squaredNorm(); if (l2 > distance* distance) { out.idx_segment = i; out.t = distance / sqrt(l2); out.point = pt_next + out.t * v; // Store the parameter referenced to the starting point of a segment. out.t = 1. - out.t; break; } distance -= sqrt(l2); pt_next = pt; } } return out; } // Optimized version with the precalculated v1 = p1b - p1a and l1_2 = v1.squaredNorm(). // Assumption: l1_2 < EPSILON. static inline double segment_point_distance_squared(const Vec2d& p1a, const Vec2d& p1b, const Vec2d& v1, const double l1_2, const Vec2d& p2) { assert(l1_2 > EPSILON); Vec2d v12 = p2 - p1a; double t = v12.dot(v1); return (t <= 0.) ? v12.squaredNorm() : (t >= l1_2) ? (p2 - p1a).squaredNorm() : ((t / l1_2) * v1 - v12).squaredNorm(); } static inline double segment_point_distance_squared(const Vec2d& p1a, const Vec2d& p1b, const Vec2d& p2) { const Vec2d v = p1b - p1a; const double l2 = v.squaredNorm(); if (l2 < EPSILON) // p1a == p1b return (p2 - p1a).squaredNorm(); return segment_point_distance_squared(p1a, p1b, v, v.squaredNorm(), p2); } // Distance to the closest point of line. static inline double min_distance_of_segments(const Vec2d& p1a, const Vec2d& p1b, const Vec2d& p2a, const Vec2d& p2b) { Vec2d v1 = p1b - p1a; double l1_2 = v1.squaredNorm(); if (l1_2 < EPSILON) // p1a == p1b: Return distance of p1a from the (p2a, p2b) segment. return segment_point_distance_squared(p2a, p2b, p1a); Vec2d v2 = p2b - p2a; double l2_2 = v2.squaredNorm(); if (l2_2 < EPSILON) // p2a == p2b: Return distance of p2a from the (p1a, p1b) segment. return segment_point_distance_squared(p1a, p1b, v1, l1_2, p2a); return std::min( std::min(segment_point_distance_squared(p1a, p1b, v1, l1_2, p2a), segment_point_distance_squared(p1a, p1b, v1, l1_2, p2b)), std::min(segment_point_distance_squared(p2a, p2b, v2, l2_2, p1a), segment_point_distance_squared(p2a, p2b, v2, l2_2, p1b))); } // Mark the segments of split boundary as consumed if they are very close to some of the infill line. void mark_boundary_segments_touching_infill( const std::vector& boundary, std::vector>& boundary_data, const BoundingBox& boundary_bbox, const Polylines& infill, const double clip_distance, const double distance_colliding) { EdgeGrid::Grid grid; grid.set_bbox(boundary_bbox.inflated(distance_colliding * 1.43)); // Inflate the bounding box by a thick line width. grid.create(boundary, coord_t(clip_distance + scale_(10.))); struct Visitor { Visitor(const EdgeGrid::Grid& grid, const std::vector& boundary, std::vector>& boundary_data, const double dist2_max) : grid(grid), boundary(boundary), boundary_data(boundary_data), dist2_max(dist2_max) {} void init(const Vec2d& pt1, const Vec2d& pt2) { this->pt1 = &pt1; this->pt2 = &pt2; } bool operator()(coord_t iy, coord_t ix) { // Called with a row and colum of the grid cell, which is intersected by a line. auto cell_data_range = this->grid.cell_data_range(iy, ix); for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++it_contour_and_segment) { // End points of the line segment and their vector. auto segment = this->grid.segment(*it_contour_and_segment); const Vec2d seg_pt1 = segment.first.cast(); const Vec2d seg_pt2 = segment.second.cast(); if (min_distance_of_segments(seg_pt1, seg_pt2, *this->pt1, *this->pt2) < this->dist2_max) { // Mark this boundary segment as touching the infill line. ContourPointData& bdp = boundary_data[it_contour_and_segment->first][it_contour_and_segment->second]; bdp.segment_consumed = true; // There is no need for checking seg_pt2 as it will be checked the next time. bool point_touching = false; if (segment_point_distance_squared(*this->pt1, *this->pt2, seg_pt1) < this->dist2_max) { point_touching = true; bdp.point_consumed = true; } #if 0 { static size_t iRun = 0; ExPolygon expoly(Polygon(*grid.contours().front())); for (size_t i = 1; i < grid.contours().size(); ++i) expoly.holes.emplace_back(Polygon(*grid.contours()[i])); SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill", iRun++).c_str(), get_extents(expoly)); svg.draw(expoly, "green"); svg.draw(Line(segment.first, segment.second), "red"); svg.draw(Line(this->pt1->cast(), this->pt2->cast()), "magenta"); } #endif } } // Continue traversing the grid along the edge. return true; } const EdgeGrid::Grid& grid; const std::vector& boundary; std::vector>& boundary_data; // Maximum distance between the boundary and the infill line allowed to consider the boundary not touching the infill line. const double dist2_max; const Vec2d* pt1; const Vec2d* pt2; } visitor(grid, boundary, boundary_data, distance_colliding * distance_colliding); BoundingBoxf bboxf(boundary_bbox.min.cast(), boundary_bbox.max.cast()); bboxf.offset(coordf_t(-SCALED_EPSILON)); for (const Polyline& polyline : infill) { // Clip the infill polyline by the Eucledian distance along the polyline. SegmentPoint start_point = clip_start_segment_and_point(polyline.points, clip_distance); SegmentPoint end_point = clip_end_segment_and_point(polyline.points, clip_distance); if (start_point.valid() && end_point.valid() && (start_point.idx_segment < end_point.idx_segment || (start_point.idx_segment == end_point.idx_segment && start_point.t < end_point.t))) { // The clipped polyline is non-empty. for (size_t point_idx = start_point.idx_segment; point_idx <= end_point.idx_segment; ++point_idx) { //FIXME extend the EdgeGrid to suport tracing a thick line. #if 0 Point pt1, pt2; Vec2d pt1d, pt2d; if (point_idx == start_point.idx_segment) { pt1d = start_point.point; pt1 = pt1d.cast(); } else { pt1 = polyline.points[point_idx]; pt1d = pt1.cast(); } if (point_idx == start_point.idx_segment) { pt2d = end_point.point; pt2 = pt1d.cast(); } else { pt2 = polyline.points[point_idx]; pt2d = pt2.cast(); } visitor.init(pt1d, pt2d); grid.visit_cells_intersecting_thick_line(pt1, pt2, distance_colliding, visitor); #else Vec2d pt1 = (point_idx == start_point.idx_segment) ? start_point.point : polyline.points[point_idx].cast(); Vec2d pt2 = (point_idx == end_point.idx_segment) ? end_point.point : polyline.points[point_idx + 1].cast(); #if 0 { static size_t iRun = 0; ExPolygon expoly(Polygon(*grid.contours().front())); for (size_t i = 1; i < grid.contours().size(); ++i) expoly.holes.emplace_back(Polygon(*grid.contours()[i])); SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill0", iRun++).c_str(), get_extents(expoly)); svg.draw(expoly, "green"); svg.draw(polyline, "blue"); svg.draw(Line(pt1.cast(), pt2.cast()), "magenta", scale_(0.1)); } #endif visitor.init(pt1, pt2); // Simulate tracing of a thick line. This only works reliably if distance_colliding <= grid cell size. Vec2d v = (pt2 - pt1).normalized() * distance_colliding; Vec2d vperp(-v.y(), v.x()); Vec2d a = pt1 - v - vperp; Vec2d b = pt1 + v - vperp; if (Geometry::liang_barsky_line_clipping(a, b, bboxf)) grid.visit_cells_intersecting_line(a.cast(), b.cast(), visitor); a = pt1 - v + vperp; b = pt1 + v + vperp; if (Geometry::liang_barsky_line_clipping(a, b, bboxf)) grid.visit_cells_intersecting_line(a.cast(), b.cast(), visitor); #endif } } } } void connect_infill(Polylines &&infill_ordered, const ExPolygon &boundary_src, Polylines &polylines_out, const double spacing, const FillParams ¶ms) { assert(!infill_ordered.empty()); assert(!boundary_src.contour.points.empty()); BoundingBox bbox = get_extents(boundary_src.contour); bbox.offset(coordf_t(SCALED_EPSILON)); // 1) Add the end points of infill_ordered to boundary_src. std::vector boundary; std::vector> boundary_data; boundary.assign(boundary_src.holes.size() + 1, Points()); boundary_data.assign(boundary_src.holes.size() + 1, std::vector()); // Mapping the infill_ordered end point to a (contour, point) of boundary. std::vector> map_infill_end_point_to_boundary; static constexpr auto boundary_idx_unconnected = std::numeric_limits::max(); map_infill_end_point_to_boundary.assign(infill_ordered.size() * 2, std::pair(boundary_idx_unconnected, boundary_idx_unconnected)); { // Project the infill_ordered end points onto boundary_src. std::vector> intersection_points; { EdgeGrid::Grid grid; grid.set_bbox(bbox); grid.create(boundary_src, scale_(10.)); intersection_points.reserve(infill_ordered.size() * 2); for (const Polyline& pl : infill_ordered) for (const Point* pt : { &pl.points.front(), &pl.points.back() }) { EdgeGrid::Grid::ClosestPointResult cp = grid.closest_point(*pt, SCALED_EPSILON); if (cp.valid()) { // The infill end point shall lie on the contour. //assert(cp.distance < 2.); //triggered with simple cube with gyroid. Is it dangerous? intersection_points.emplace_back(cp, (&pl - infill_ordered.data()) * 2 + (pt == &pl.points.front() ? 0 : 1)); } } std::sort(intersection_points.begin(), intersection_points.end(), [](const std::pair& cp1, const std::pair& cp2) { return cp1.first.contour_idx < cp2.first.contour_idx || (cp1.first.contour_idx == cp2.first.contour_idx && (cp1.first.start_point_idx < cp2.first.start_point_idx || (cp1.first.start_point_idx == cp2.first.start_point_idx && cp1.first.t < cp2.first.t))); }); } auto it = intersection_points.begin(); auto it_end = intersection_points.end(); for (size_t idx_contour = 0; idx_contour <= boundary_src.holes.size(); ++idx_contour) { const Polygon& contour_src = (idx_contour == 0) ? boundary_src.contour : boundary_src.holes[idx_contour - 1]; Points& contour_dst = boundary[idx_contour]; for (size_t idx_point = 0; idx_point < contour_src.points.size(); ++idx_point) { contour_dst.emplace_back(contour_src.points[idx_point]); for (; it != it_end && it->first.contour_idx == idx_contour && it->first.start_point_idx == idx_point; ++it) { // Add these points to the destination contour. const Vec2d pt1 = contour_src[idx_point].cast(); const Vec2d pt2 = (idx_point + 1 == contour_src.size() ? contour_src.points.front() : contour_src.points[idx_point + 1]).cast(); const Vec2d pt = lerp(pt1, pt2, it->first.t); map_infill_end_point_to_boundary[it->second] = std::make_pair(idx_contour, contour_dst.size()); contour_dst.emplace_back(pt.cast()); } } // Parametrize the curve. std::vector& contour_data = boundary_data[idx_contour]; contour_data.reserve(contour_dst.size()); contour_data.emplace_back(ContourPointData(0.f)); for (size_t i = 1; i < contour_dst.size(); ++i) contour_data.emplace_back(contour_data.back().param + (contour_dst[i].cast() - contour_dst[i - 1].cast()).norm()); contour_data.front().param = contour_data.back().param + (contour_dst.back().cast() - contour_dst.front().cast()).norm(); } assert(boundary.size() == boundary_src.num_contours()); #if 0 // Adaptive Cubic Infill produces infill lines, which not always end at the outer boundary. assert(std::all_of(map_infill_end_point_to_boundary.begin(), map_infill_end_point_to_boundary.end(), [&boundary](const std::pair& contour_point) { return contour_point.first < boundary.size() && contour_point.second < boundary[contour_point.first].size(); })); assert(boundary_data.size() == boundary_src.holes.size() + 1); #endif } // Mark the points and segments of split boundary as consumed if they are very close to some of the infill line. { // @supermerill used 2. * scale_(spacing) const double clip_distance = 3. * scale_(spacing); const double distance_colliding = 1.1 * scale_(spacing); mark_boundary_segments_touching_infill(boundary, boundary_data, bbox, infill_ordered, clip_distance, distance_colliding); } // Connection from end of one infill line to the start of another infill line. //const float length_max = scale_(spacing); // const float length_max = scale_((2. / params.density) * spacing); const coord_t length_max = scale_((1000. / params.density) * spacing); std::vector merged_with(infill_ordered.size()); for (size_t i = 0; i < merged_with.size(); ++i) merged_with[i] = i; struct ConnectionCost { ConnectionCost(size_t idx_first, double cost, bool reversed) : idx_first(idx_first), cost(cost), reversed(reversed) {} size_t idx_first; double cost; bool reversed; }; std::vector connections_sorted; connections_sorted.reserve(infill_ordered.size() * 2 - 2); for (size_t idx_chain = 1; idx_chain < infill_ordered.size(); ++idx_chain) { const Polyline& pl1 = infill_ordered[idx_chain - 1]; const Polyline& pl2 = infill_ordered[idx_chain]; const std::pair* cp1 = &map_infill_end_point_to_boundary[(idx_chain - 1) * 2 + 1]; const std::pair* cp2 = &map_infill_end_point_to_boundary[idx_chain * 2]; if (cp1->first != boundary_idx_unconnected && cp1->first == cp2->first) { // End points on the same contour. Try to connect them. const std::vector& contour_data = boundary_data[cp1->first]; float param_lo = (cp1->second == 0) ? 0.f : contour_data[cp1->second].param; float param_hi = (cp2->second == 0) ? 0.f : contour_data[cp2->second].param; float param_end = contour_data.front().param; bool reversed = false; if (param_lo > param_hi) { std::swap(param_lo, param_hi); reversed = true; } assert(param_lo >= 0.f && param_lo <= param_end); assert(param_hi >= 0.f && param_hi <= param_end); coord_t len = coord_t(param_hi - param_lo); if (len < length_max) connections_sorted.emplace_back(idx_chain - 1, len, reversed); len = coord_t(param_lo + param_end - param_hi); if (len < length_max) connections_sorted.emplace_back(idx_chain - 1, len, !reversed); } } std::sort(connections_sorted.begin(), connections_sorted.end(), [](const ConnectionCost& l, const ConnectionCost& r) { return l.cost < r.cost; }); //mark point as used depends of connection parameter if (params.connection == icOuterShell) { for (auto it = boundary_data.begin() + 1; it != boundary_data.end(); ++it) { for (ContourPointData& pt : *it) { pt.point_consumed = true; } } } else if (params.connection == icHoles) { for (ContourPointData& pt : boundary_data[0]) { pt.point_consumed = true; } } assert(boundary_data.size() == boundary_src.holes.size() + 1); size_t idx_chain_last = 0; for (ConnectionCost& connection_cost : connections_sorted) { const std::pair* cp1 = &map_infill_end_point_to_boundary[connection_cost.idx_first * 2 + 1]; const std::pair* cp1prev = cp1 - 1; const std::pair* cp2 = &map_infill_end_point_to_boundary[(connection_cost.idx_first + 1) * 2]; const std::pair* cp2next = cp2 + 1; assert(cp1->first == cp2->first && cp1->first != boundary_idx_unconnected); std::vector& contour_data = boundary_data[cp1->first]; if (connection_cost.reversed) std::swap(cp1, cp2); // Mark the the other end points of the segments to be taken as consumed temporarily, so they will not be crossed // by the new connection line. bool prev_marked = false; bool next_marked = false; if (cp1prev->first == cp1->first && !contour_data[cp1prev->second].point_consumed) { contour_data[cp1prev->second].point_consumed = true; prev_marked = true; } if (cp2next->first == cp1->first && !contour_data[cp2next->second].point_consumed) { contour_data[cp2next->second].point_consumed = true; next_marked = true; } if (could_take(contour_data, cp1->second, cp2->second)) { // Indices of the polygons to be connected. size_t idx_first = connection_cost.idx_first; size_t idx_second = idx_first + 1; for (size_t last = idx_first;;) { size_t lower = merged_with[last]; if (lower == last) { merged_with[idx_first] = lower; idx_first = lower; break; } last = lower; } // Connect the two polygons using the boundary contour. take(infill_ordered[idx_first], std::move(infill_ordered[idx_second]), boundary[cp1->first], contour_data, cp1->second, cp2->second, connection_cost.reversed); // Mark the second polygon as merged with the first one. merged_with[idx_second] = merged_with[idx_first]; } if (prev_marked) contour_data[cp1prev->second].point_consumed = false; if (next_marked) contour_data[cp2next->second].point_consumed = false; } polylines_out.reserve(polylines_out.size() + std::count_if(infill_ordered.begin(), infill_ordered.end(), [](const Polyline& pl) { return !pl.empty(); })); for (Polyline& pl : infill_ordered) if (!pl.empty()) polylines_out.emplace_back(std::move(pl)); } } namespace FakePerimeterConnect { // A single T joint of an infill line to a closed contour or one of its holes. struct ContourIntersectionPoint { // Contour and point on a contour where an infill line is connected to. size_t contour_idx; size_t point_idx; // Eucleidean parameter of point_idx along its contour. double param; // Other intersection points along the same contour. If there is only a single T-joint on a contour // with an intersection line, then the prev_on_contour and next_on_contour remain nulls. ContourIntersectionPoint* prev_on_contour{ nullptr }; ContourIntersectionPoint* next_on_contour{ nullptr }; // Length of the contour not yet allocated to some extrusion path going back (clockwise), or masked out by some overlapping infill line. double contour_not_taken_length_prev { std::numeric_limits::max() }; // Length of the contour not yet allocated to some extrusion path going forward (counter-clockwise), or masked out by some overlapping infill line. double contour_not_taken_length_next { std::numeric_limits::max() }; // End point is consumed if an infill line connected to this T-joint was already connected left or right along the contour, // or if the infill line was processed, but it was not possible to connect it left or right along the contour. bool consumed{ false }; // Whether the contour was trimmed by an overlapping infill line, or whether part of this contour was connected to some infill line. bool prev_trimmed{ false }; bool next_trimmed{ false }; void consume_prev() { this->contour_not_taken_length_prev = 0.; this->prev_trimmed = true; this->consumed = true; } void consume_next() { this->contour_not_taken_length_next = 0.; this->next_trimmed = true; this->consumed = true; } void trim_prev(const double new_len) { if (new_len < this->contour_not_taken_length_prev) { this->contour_not_taken_length_prev = new_len; this->prev_trimmed = true; } } void trim_next(const double new_len) { if (new_len < this->contour_not_taken_length_next) { this->contour_not_taken_length_next = new_len; this->next_trimmed = true; } } // The end point of an infill line connected to this T-joint was not processed yet and a piece of the contour could be extruded going backwards. bool could_take_prev() const throw() { return !this->consumed && this->contour_not_taken_length_prev > SCALED_EPSILON; } // The end point of an infill line connected to this T-joint was not processed yet and a piece of the contour could be extruded going forward. bool could_take_next() const throw() { return !this->consumed && this->contour_not_taken_length_next > SCALED_EPSILON; } // Could extrude a complete segment from this to this->prev_on_contour. bool could_connect_prev() const throw() { return ! this->consumed && this->prev_on_contour != this && ! this->prev_on_contour->consumed && ! this->prev_trimmed && ! this->prev_on_contour->next_trimmed; } // Could extrude a complete segment from this to this->next_on_contour. bool could_connect_next() const throw() { return ! this->consumed && this->next_on_contour != this && ! this->next_on_contour->consumed && ! this->next_trimmed && ! this->next_on_contour->prev_trimmed; } }; // Distance from param1 to param2 when going counter-clockwise. static inline double closed_contour_distance_ccw(double param1, double param2, double contour_length) { assert(param1 >= 0. && param1 <= contour_length); assert(param2 >= 0. && param2 <= contour_length); double d = param2 - param1; if (d < 0.) d += contour_length; return d; } // Distance from param1 to param2 when going clockwise. static inline double closed_contour_distance_cw(double param1, double param2, double contour_length) { return closed_contour_distance_ccw(param2, param1, contour_length); } // Length along the contour from cp1 to cp2 going counter-clockwise. double path_length_along_contour_ccw(const ContourIntersectionPoint *cp1, const ContourIntersectionPoint *cp2, double contour_length) { assert(cp1 != nullptr); assert(cp2 != nullptr); assert(cp1->contour_idx == cp2->contour_idx); assert(cp1 != cp2); return closed_contour_distance_ccw(cp1->param, cp2->param, contour_length); } // Lengths along the contour from cp1 to cp2 going CCW and going CW. std::pair path_lengths_along_contour(const ContourIntersectionPoint *cp1, const ContourIntersectionPoint *cp2, double contour_length) { // Zero'th param is the length of the contour. double param_lo = cp1->param; double param_hi = cp2->param; assert(param_lo >= 0. && param_lo <= contour_length); assert(param_hi >= 0. && param_hi <= contour_length); bool reversed = false; if (param_lo > param_hi) { std::swap(param_lo, param_hi); reversed = true; } auto out = std::make_pair(param_hi - param_lo, param_lo + contour_length - param_hi); if (reversed) std::swap(out.first, out.second); return out; } // Add contour points from interval (idx_start, idx_end> to polyline. static inline void take_cw_full(Polyline& pl, const Points& contour, size_t idx_start, size_t idx_end) { assert(!pl.empty() && pl.points.back() == contour[idx_start]); size_t i = (idx_end == 0) ? contour.size() - 1 : idx_start - 1; while (i != idx_end) { pl.points.emplace_back(contour[i]); if (i == 0) i = contour.size(); --i; } pl.points.emplace_back(contour[i]); } // Add contour points from interval (idx_start, idx_end> to polyline, limited by the Eucleidean length taken. static inline double take_cw_limited(Polyline &pl, const Points &contour, const std::vector ¶ms, size_t idx_start, size_t idx_end, double length_to_take) { // If appending to an infill line, then the start point of a perimeter line shall match the end point of an infill line. assert(pl.empty() || pl.points.back() == contour[idx_start]); assert(contour.size() + 1 == params.size()); assert(length_to_take > SCALED_EPSILON); // Length of the contour. double length = params.back(); // Parameter (length from contour.front()) for the first point. double p0 = params[idx_start]; // Current (2nd) point of the contour. size_t i = (idx_start == 0) ? contour.size() - 1 : idx_start - 1; // Previous point of the contour. size_t iprev = idx_start; // Length of the contour curve taken for iprev. double lprev = 0.; for (;;) { double l = closed_contour_distance_cw(p0, params[i], length); if (l >= length_to_take) { // Trim the last segment. double t = double(length_to_take - lprev) / (l - lprev); pl.points.emplace_back(lerp(contour[iprev], contour[i], t)); return length_to_take; } // Continue with the other segments. pl.points.emplace_back(contour[i]); if (i == idx_end) return l; iprev = i; lprev = l; if (i == 0) i = contour.size(); --i; } assert(false); return 0; } // Add contour points from interval (idx_start, idx_end> to polyline. static inline void take_ccw_full(Polyline& pl, const Points& contour, size_t idx_start, size_t idx_end) { assert(!pl.empty() && pl.points.back() == contour[idx_start]); size_t i = idx_start; if (++i == contour.size()) i = 0; while (i != idx_end) { pl.points.emplace_back(contour[i]); if (++i == contour.size()) i = 0; } pl.points.emplace_back(contour[i]); } // Add contour points from interval (idx_start, idx_end> to polyline, limited by the Eucleidean length taken. // Returns length of the contour taken. static inline double take_ccw_limited(Polyline &pl, const Points &contour, const std::vector ¶ms, size_t idx_start, size_t idx_end, double length_to_take) { // If appending to an infill line, then the start point of a perimeter line shall match the end point of an infill line. assert(pl.empty() || pl.points.back() == contour[idx_start]); assert(contour.size() + 1 == params.size()); assert(length_to_take > SCALED_EPSILON); // Length of the contour. double length = params.back(); // Parameter (length from contour.front()) for the first point. double p0 = params[idx_start]; // Current (2nd) point of the contour. size_t i = idx_start; if (++i == contour.size()) i = 0; // Previous point of the contour. size_t iprev = idx_start; // Length of the contour curve taken at iprev. double lprev = 0; for (;;) { double l = closed_contour_distance_ccw(p0, params[i], length); if (l >= length_to_take) { // Trim the last segment. double t = double(length_to_take - lprev) / (l - lprev); pl.points.emplace_back(lerp(contour[iprev], contour[i], t)); return length_to_take; } // Continue with the other segments. pl.points.emplace_back(contour[i]); if (i == idx_end) return l; iprev = i; lprev = l; if (++i == contour.size()) i = 0; } assert(false); return 0; } // Connect end of pl1 to the start of pl2 using the perimeter contour. // If clockwise, then a clockwise segment from idx_start to idx_end is taken, otherwise a counter-clockwise segment is being taken. static void take(Polyline& pl1, const Polyline& pl2, const Points& contour, size_t idx_start, size_t idx_end, bool clockwise) { #ifndef NDEBUG assert(idx_start != idx_end); assert(pl1.size() >= 2); assert(pl2.size() >= 2); #endif /* NDEBUG */ { // Reserve memory at pl1 for the connecting contour and pl2. int new_points = int(idx_end) - int(idx_start) - 1; if (new_points < 0) new_points += int(contour.size()); pl1.points.reserve(pl1.points.size() + size_t(new_points) + pl2.points.size()); } if (clockwise) take_cw_full(pl1, contour, idx_start, idx_end); else take_ccw_full(pl1, contour, idx_start, idx_end); pl1.points.insert(pl1.points.end(), pl2.points.begin() + 1, pl2.points.end()); } static void take(Polyline& pl1, const Polyline& pl2, const Points& contour, ContourIntersectionPoint* cp_start, ContourIntersectionPoint* cp_end, bool clockwise) { assert(cp_start->prev_on_contour != nullptr); assert(cp_start->next_on_contour != nullptr); assert(cp_end ->prev_on_contour != nullptr); assert(cp_end ->next_on_contour != nullptr); assert(cp_start != cp_end); take(pl1, pl2, contour, cp_start->point_idx, cp_end->point_idx, clockwise); // Mark the contour segments in between cp_start and cp_end as consumed. if (clockwise) std::swap(cp_start, cp_end); if (cp_start->next_on_contour != cp_end) for (auto* cp = cp_start->next_on_contour; cp->next_on_contour != cp_end; cp = cp->next_on_contour) { cp->consume_prev(); cp->consume_next(); } cp_start->consume_next(); cp_end->consume_prev(); } static void take_limited( Polyline &pl1, const Points &contour, const std::vector ¶ms, ContourIntersectionPoint *cp_start, ContourIntersectionPoint *cp_end, bool clockwise, double take_max_length, double line_half_width) { #ifndef NDEBUG // This is a valid case, where a single infill line connect to two different contours (outer contour + hole or two holes). // assert(cp_start != cp_end); assert(cp_start->prev_on_contour != nullptr); assert(cp_start->next_on_contour != nullptr); assert(cp_end ->prev_on_contour != nullptr); assert(cp_end ->next_on_contour != nullptr); assert(pl1.size() >= 2); assert(contour.size() + 1 == params.size()); #endif /* NDEBUG */ if (!(clockwise ? cp_start->could_take_prev() : cp_start->could_take_next())) return; assert(pl1.points.front() == contour[cp_start->point_idx] || pl1.points.back() == contour[cp_start->point_idx]); bool add_at_start = pl1.points.front() == contour[cp_start->point_idx]; Points pl_tmp; if (add_at_start) { pl_tmp = std::move(pl1.points); pl1.points.clear(); } { // Reserve memory at pl1 for the perimeter segment. // Pessimizing - take the complete segment. int new_points = int(cp_end->point_idx) - int(cp_start->point_idx) - 1; if (new_points < 0) new_points += int(contour.size()); pl1.points.reserve(pl1.points.size() + pl_tmp.size() + size_t(new_points)); } double length = params.back(); double length_to_go = take_max_length; cp_start->consumed = true; if (cp_start == cp_end) { length_to_go = std::max(0., std::min(length_to_go, length - line_half_width)); length_to_go = std::min(length_to_go, clockwise ? cp_start->contour_not_taken_length_prev : cp_start->contour_not_taken_length_next); cp_start->consume_prev(); cp_start->consume_next(); if (length_to_go > SCALED_EPSILON) clockwise ? take_cw_limited (pl1, contour, params, cp_start->point_idx, cp_start->point_idx, length_to_go) : take_ccw_limited(pl1, contour, params, cp_start->point_idx, cp_start->point_idx, length_to_go); } else if (clockwise) { // Going clockwise from cp_start to cp_end. assert(cp_start != cp_end); for (ContourIntersectionPoint* cp = cp_start; cp != cp_end; cp = cp->prev_on_contour) { // Length of the segment from cp to cp->prev_on_contour. double l = closed_contour_distance_cw(cp->param, cp->prev_on_contour->param, length); length_to_go = std::min(length_to_go, cp->contour_not_taken_length_prev); //if (cp->prev_on_contour->consumed) // Don't overlap with an already extruded infill line. length_to_go = std::max(0., std::min(length_to_go, l - line_half_width)); cp->consume_prev(); if (l >= length_to_go) { if (length_to_go > SCALED_EPSILON) { cp->prev_on_contour->trim_next(l - length_to_go); take_cw_limited(pl1, contour, params, cp->point_idx, cp->prev_on_contour->point_idx, length_to_go); } break; } else { cp->prev_on_contour->trim_next(0.); take_cw_full(pl1, contour, cp->point_idx, cp->prev_on_contour->point_idx); length_to_go -= l; } } } else { assert(cp_start != cp_end); for (ContourIntersectionPoint* cp = cp_start; cp != cp_end; cp = cp->next_on_contour) { double l = closed_contour_distance_ccw(cp->param, cp->next_on_contour->param, length); length_to_go = std::min(length_to_go, cp->contour_not_taken_length_next); //if (cp->next_on_contour->consumed) // Don't overlap with an already extruded infill line. length_to_go = std::max(0., std::min(length_to_go, l - line_half_width)); cp->consume_next(); if (l >= length_to_go) { if (length_to_go > SCALED_EPSILON) { cp->next_on_contour->trim_prev(l - length_to_go); take_ccw_limited(pl1, contour, params, cp->point_idx, cp->next_on_contour->point_idx, length_to_go); } break; } else { cp->next_on_contour->trim_prev(0.); take_ccw_full(pl1, contour, cp->point_idx, cp->next_on_contour->point_idx); length_to_go -= l; } } } if (add_at_start) { pl1.reverse(); append(pl1.points, pl_tmp); } } // Return an index of start of a segment and a point of the clipping point at distance from the end of polyline. struct SegmentPoint { // Segment index, defining a line ::max(); // Parameter of point in <0, 1) along the line ::max(); } }; static inline SegmentPoint clip_start_segment_and_point(const Points& polyline, double distance) { assert(polyline.size() >= 2); assert(distance > 0.); // Initialized to "invalid". SegmentPoint out; if (polyline.size() >= 2) { Vec2d pt_prev = polyline.front().cast(); for (size_t i = 1; i < polyline.size(); ++i) { Vec2d pt = polyline[i].cast(); Vec2d v = pt - pt_prev; double l = v.norm(); if (l > distance) { out.idx_segment = i - 1; out.t = distance / l; out.point = pt_prev + out.t * v; break; } distance -= l; pt_prev = pt; } } return out; } static inline SegmentPoint clip_end_segment_and_point(const Points& polyline, double distance) { assert(polyline.size() >= 2); assert(distance > 0.); // Initialized to "invalid". SegmentPoint out; if (polyline.size() >= 2) { Vec2d pt_next = polyline.back().cast(); for (int i = int(polyline.size()) - 2; i >= 0; --i) { Vec2d pt = polyline[i].cast(); Vec2d v = pt - pt_next; double l = v.norm(); if (l > distance) { out.idx_segment = i; out.t = distance / l; out.point = pt_next + out.t * v; // Store the parameter referenced to the starting point of a segment. out.t = 1. - out.t; break; } distance -= l; pt_next = pt; } } return out; } // Calculate intersection of a line with a thick segment. // Returns Eucledian parameters of the line / thick segment overlap. static inline bool line_rounded_thick_segment_collision( const Vec2d& line_a, const Vec2d& line_b, const Vec2d& segment_a, const Vec2d& segment_b, const double offset, std::pair& out_interval) { const Vec2d line_v0 = line_b - line_a; double lv = line_v0.squaredNorm(); const Vec2d segment_v = segment_b - segment_a; const double segment_l = segment_v.norm(); const double offset2 = offset * offset; bool intersects = false; if (lv < SCALED_EPSILON * SCALED_EPSILON) { // Very short line vector. Just test whether the center point is inside the offset line. Vec2d lpt = 0.5 * (line_a + line_b); if (segment_l > SCALED_EPSILON) { struct Linef { Vec2d a, b; }; intersects = line_alg::distance_to_squared(Linef{ segment_a, segment_b }, lpt) < offset2; } else intersects = (0.5 * (segment_a + segment_b) - lpt).squaredNorm() < offset2; if (intersects) { out_interval.first = 0.; out_interval.second = sqrt(lv); } } else { // Output interval. double tmin = std::numeric_limits::max(); double tmax = -tmin; auto extend_interval = [&tmin, &tmax](double atmin, double atmax) { tmin = std::min(tmin, atmin); tmax = std::max(tmax, atmax); }; // Intersections with the inflated segment end points. auto ray_circle_intersection_interval_extend = [&extend_interval, &line_v0](const Vec2d& segment_pt, const double offset2, const Vec2d& line_pt, const Vec2d& line_vec) { std::pair pts; Vec2d p0 = line_pt - segment_pt; double c = -line_pt.dot(p0); if (Geometry::ray_circle_intersections_r2_lv2_c(offset2, line_vec.x(), line_vec.y(), line_vec.squaredNorm(), c, pts)) { double tmin = (pts.first - p0).dot(line_v0); double tmax = (pts.second - p0).dot(line_v0); if (tmin > tmax) std::swap(tmin, tmax); tmin = std::max(tmin, 0.); tmax = std::min(tmax, 1.); if (tmin <= tmax) extend_interval(tmin, tmax); } }; // Intersections with the inflated segment. if (segment_l > SCALED_EPSILON) { ray_circle_intersection_interval_extend(segment_a, offset2, line_a, line_v0); ray_circle_intersection_interval_extend(segment_b, offset2, line_a, line_v0); // Clip the line segment transformed into a coordinate space of the segment, // where the segment spans (0, 0) to (segment_l, 0). const Vec2d dir_x = segment_v / segment_l; const Vec2d dir_y(-dir_x.y(), dir_x.x()); const Vec2d line_p0(line_a - segment_a); std::pair interval; if (Geometry::liang_barsky_line_clipping_interval( Vec2d(line_p0.dot(dir_x), line_p0.dot(dir_y)), Vec2d(line_v0.dot(dir_x), line_v0.dot(dir_y)), BoundingBoxf(Vec2d(0., -offset), Vec2d(segment_l, offset)), interval)) extend_interval(interval.first, interval.second); } else ray_circle_intersection_interval_extend(0.5 * (segment_a + segment_b), offset, line_a, line_v0); intersects = tmin <= tmax; if (intersects) { lv = sqrt(lv); out_interval.first = tmin * lv; out_interval.second = tmax * lv; } } #if 0 { BoundingBox bbox; bbox.merge(line_a.cast()); bbox.merge(line_a.cast()); bbox.merge(segment_a.cast()); bbox.merge(segment_b.cast()); static int iRun = 0; ::Slic3r::SVG svg(debug_out_path("%s-%03d.svg", "line-thick-segment-intersect", iRun++), bbox); svg.draw(Line(line_a.cast(), line_b.cast()), "black"); svg.draw(Line(segment_a.cast(), segment_b.cast()), "blue", offset * 2.); svg.draw(segment_a.cast(), "blue", offset); svg.draw(segment_b.cast(), "blue", offset); svg.draw(Line(segment_a.cast(), segment_b.cast()), "black"); if (intersects) svg.draw(Line((line_a + (line_b - line_a).normalized() * out_interval.first).cast(), (line_a + (line_b - line_a).normalized() * out_interval.second).cast()), "red"); } #endif return intersects; } static inline bool inside_interval(double low, double high, double p) { return p >= low && p <= high; } static inline bool interval_inside_interval(double outer_low, double outer_high, double inner_low, double inner_high, double epsilon) { outer_low -= epsilon; outer_high += epsilon; return inside_interval(outer_low, outer_high, inner_low) && inside_interval(outer_low, outer_high, inner_high); } static inline bool cyclic_interval_inside_interval(double outer_low, double outer_high, double inner_low, double inner_high, double length) { if (outer_low > outer_high) outer_high += length; if (inner_low > inner_high) inner_high += length; else if (inner_high < outer_low) { inner_low += length; inner_high += length; } return interval_inside_interval(outer_low, outer_high, inner_low, inner_high, double(SCALED_EPSILON)); } // #define INFILL_DEBUG_OUTPUT #ifdef INFILL_DEBUG_OUTPUT static void export_infill_to_svg( // Boundary contour, along which the perimeter extrusions will be drawn. const std::vector& boundary, // Parametrization of boundary with Euclidian length. const std::vector> &boundary_parameters, // Intersections (T-joints) of the infill lines with the boundary. std::vector>& boundary_intersections, // Infill lines, either completely inside the boundary, or touching the boundary. const Polylines& infill, const coord_t scaled_spacing, const std::string& path, const Polylines& overlap_lines = Polylines(), const Polylines& polylines = Polylines(), const Points& pts = Points()) { Polygons polygons; std::transform(boundary.begin(), boundary.end(), std::back_inserter(polygons), [](auto& pts) { return Polygon(pts); }); ExPolygons expolygons = union_ex(polygons); BoundingBox bbox = get_extents(polygons); bbox.offset(scale_(3.)); ::Slic3r::SVG svg(path, bbox); // Draw the filled infill polygons. svg.draw(expolygons); // Draw the pieces of boundary allowed to be used as anchors of infill lines, not yet consumed. const std::string color_boundary_trimmed = "blue"; const std::string color_boundary_not_trimmed = "yellow"; const coordf_t boundary_line_width = scaled_spacing; svg.draw_outline(polygons, "red", boundary_line_width); for (const std::vector &intersections : boundary_intersections) { const size_t boundary_idx = &intersections - boundary_intersections.data(); const Points &contour = boundary[boundary_idx]; const std::vector &contour_param = boundary_parameters[boundary_idx]; for (const ContourIntersectionPoint *ip : intersections) { assert(ip->next_trimmed == ip->next_on_contour->prev_trimmed); assert(ip->prev_trimmed == ip->prev_on_contour->next_trimmed); { Polyline pl{ contour[ip->point_idx] }; if (ip->next_trimmed) { if (ip->contour_not_taken_length_next > SCALED_EPSILON) { take_ccw_limited(pl, contour, contour_param, ip->point_idx, ip->next_on_contour->point_idx, ip->contour_not_taken_length_next); svg.draw(pl, color_boundary_trimmed, boundary_line_width); } } else { take_ccw_full(pl, contour, ip->point_idx, ip->next_on_contour->point_idx); svg.draw(pl, color_boundary_not_trimmed, boundary_line_width); } } { Polyline pl{ contour[ip->point_idx] }; if (ip->prev_trimmed) { if (ip->contour_not_taken_length_prev > SCALED_EPSILON) { take_cw_limited(pl, contour, contour_param, ip->point_idx, ip->prev_on_contour->point_idx, ip->contour_not_taken_length_prev); svg.draw(pl, color_boundary_trimmed, boundary_line_width); } } else { take_cw_full(pl, contour, ip->point_idx, ip->prev_on_contour->point_idx); svg.draw(pl, color_boundary_not_trimmed, boundary_line_width); } } } } // Draw the full infill polygon boundary. svg.draw_outline(polygons, "green"); // Draw the infill lines, first the full length with red color, then a slightly shortened length with black color. svg.draw(infill, "brown"); static constexpr double trim_length = scale_(0.15); for (Polyline polyline : infill) if (!polyline.empty()) { Vec2d a = polyline.points.front().cast(); Vec2d d = polyline.points.back().cast(); if (polyline.size() == 2) { Vec2d v = d - a; double l = v.norm(); if (l > 2. * trim_length) { a += v * trim_length / l; d -= v * trim_length / l; polyline.points.front() = a.cast(); polyline.points.back() = d.cast(); } else polyline.points.clear(); } else if (polyline.size() > 2) { Vec2d b = polyline.points[1].cast(); Vec2d c = polyline.points[polyline.points.size() - 2].cast(); Vec2d v = b - a; double l = v.norm(); if (l > trim_length) { a += v * trim_length / l; polyline.points.front() = a.cast(); } else polyline.points.erase(polyline.points.begin()); v = d - c; l = v.norm(); if (l > trim_length) polyline.points.back() = (d - v * trim_length / l).cast(); else polyline.points.pop_back(); } svg.draw(polyline, "black"); } svg.draw(overlap_lines, "red", scale_(0.05)); svg.draw(polylines, "magenta", scale_(0.05)); svg.draw(pts, "magenta"); } #endif // INFILL_DEBUG_OUTPUT #ifndef NDEBUG bool validate_boundary_intersections(const std::vector>& boundary_intersections) { for (const std::vector& contour : boundary_intersections) { for (ContourIntersectionPoint* ip : contour) { assert(ip->next_trimmed == ip->next_on_contour->prev_trimmed); assert(ip->prev_trimmed == ip->prev_on_contour->next_trimmed); } } return true; } #endif // NDEBUG // Mark the segments of split boundary as consumed if they are very close to some of the infill line. void mark_boundary_segments_touching_infill( // Boundary contour, along which the perimeter extrusions will be drawn. const std::vector& boundary, // Parametrization of boundary with Euclidian length. const std::vector> &boundary_parameters, // Intersections (T-joints) of the infill lines with the boundary. std::vector>& boundary_intersections, // Bounding box around the boundary. const BoundingBox& boundary_bbox, // Infill lines, either completely inside the boundary, or touching the boundary. const Polylines& infill, // How much of the infill ends should be ignored when marking the boundary segments? const double clip_distance, // Roughly width of the infill line. const double distance_colliding) { assert(boundary.size() == boundary_parameters.size()); #ifndef NDEBUG for (size_t i = 0; i < boundary.size(); ++i) assert(boundary[i].size() + 1 == boundary_parameters[i].size()); assert(validate_boundary_intersections(boundary_intersections)); #endif #ifdef INFILL_DEBUG_OUTPUT static int iRun = 0; ++iRun; int iStep = 0; export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-start", iRun)); Polylines perimeter_overlaps; #endif // INFILL_DEBUG_OUTPUT EdgeGrid::Grid grid; // Make sure that the the grid is big enough for queries against the thick segment. grid.set_bbox(boundary_bbox.inflated(distance_colliding * 1.43)); // Inflate the bounding box by a thick line width. grid.create(boundary, coord_t(std::max(clip_distance, distance_colliding) + scale_(10.))); // Visitor for the EdgeGrid to trim boundary_intersections with existing infill lines. struct Visitor { Visitor(const EdgeGrid::Grid &grid, const std::vector &boundary, const std::vector> &boundary_parameters, std::vector> &boundary_intersections, const double radius) : grid(grid), boundary(boundary), boundary_parameters(boundary_parameters), boundary_intersections(boundary_intersections), radius(radius), trim_l_threshold(0.5 * radius) {} // Init with a segment of an infill line. void init(const Vec2d& infill_pt1, const Vec2d& infill_pt2) { this->infill_pt1 = &infill_pt1; this->infill_pt2 = &infill_pt2; this->infill_bbox.reset(); this->infill_bbox.merge(infill_pt1); this->infill_bbox.merge(infill_pt2); this->infill_bbox.offset(this->radius + SCALED_EPSILON); } bool operator()(coord_t iy, coord_t ix) { // Called with a row and colum of the grid cell, which is intersected by a line. auto cell_data_range = this->grid.cell_data_range(iy, ix); for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++it_contour_and_segment) { // End points of the line segment and their vector. auto segment = this->grid.segment(*it_contour_and_segment); std::vector &intersections = boundary_intersections[it_contour_and_segment->first]; if (intersections.empty()) // There is no infil line touching this contour, thus effort will be saved to calculate overlap with other infill lines. continue; const Vec2d seg_pt1 = segment.first.cast(); const Vec2d seg_pt2 = segment.second.cast(); std::pair interval; BoundingBoxf bbox_seg; bbox_seg.merge(seg_pt1); bbox_seg.merge(seg_pt2); #ifdef INFILL_DEBUG_OUTPUT //if (this->infill_bbox.overlap(bbox_seg)) this->perimeter_overlaps.push_back({ segment.first, segment.second }); #endif // INFILL_DEBUG_OUTPUT if (this->infill_bbox.overlap(bbox_seg) && line_rounded_thick_segment_collision(seg_pt1, seg_pt2, *this->infill_pt1, *this->infill_pt2, this->radius, interval)) { // The boundary segment intersects with the infill segment thickened by radius. // Interval is specified in Euclidian length from seg_pt1 to seg_pt2. // 1) Find the Euclidian parameters of seg_pt1 and seg_pt2 on its boundary contour. const std::vector &contour_parameters = boundary_parameters[it_contour_and_segment->first]; const double contour_length = contour_parameters.back(); const double param_seg_pt1 = contour_parameters[it_contour_and_segment->second]; const double param_seg_pt2 = contour_parameters[it_contour_and_segment->second + 1]; #ifdef INFILL_DEBUG_OUTPUT this->perimeter_overlaps.push_back({ Point((seg_pt1 + (seg_pt2 - seg_pt1).normalized() * interval.first).cast()), Point((seg_pt1 + (seg_pt2 - seg_pt1).normalized() * interval.second).cast()) }); #endif // INFILL_DEBUG_OUTPUT assert(interval.first >= 0.); assert(interval.second >= 0.); assert(interval.first <= interval.second); const auto param_overlap1 = std::min(param_seg_pt2, param_seg_pt1 + interval.first); const auto param_overlap2 = std::min(param_seg_pt2, param_seg_pt1 + interval.second); // 2) Find the ContourIntersectionPoints before param_overlap1 and after param_overlap2. // Find the span of ContourIntersectionPoints, that is trimmed by the interval (param_overlap1, param_overlap2). ContourIntersectionPoint* ip_low, * ip_high; if (intersections.size() == 1) { // Only a single infill line touches this contour. ip_low = ip_high = intersections.front(); } else { assert(intersections.size() > 1); auto it_low = Slic3r::lower_bound_by_predicate(intersections.begin(), intersections.end(), [param_overlap1](const ContourIntersectionPoint* l) { return l->param < param_overlap1; }); auto it_high = Slic3r::lower_bound_by_predicate(intersections.begin(), intersections.end(), [param_overlap2](const ContourIntersectionPoint* l) { return l->param < param_overlap2; }); ip_low = it_low == intersections.end() ? intersections.front() : *it_low; ip_high = it_high == intersections.end() ? intersections.front() : *it_high; if (ip_low->param != param_overlap1) ip_low = ip_low->prev_on_contour; assert(ip_low != ip_high); // Verify that the interval (param_overlap1, param_overlap2) is inside the interval (ip_low->param, ip_high->param). assert(cyclic_interval_inside_interval(ip_low->param, ip_high->param, param_overlap1, param_overlap2, contour_length)); } assert(validate_boundary_intersections(boundary_intersections)); // Mark all ContourIntersectionPoints between ip_low and ip_high as consumed. if (ip_low->next_on_contour != ip_high) for (ContourIntersectionPoint* ip = ip_low->next_on_contour; ip != ip_high; ip = ip->next_on_contour) { ip->consume_prev(); ip->consume_next(); } // Subtract the interval from the first and last segments. double trim_l = closed_contour_distance_ccw(ip_low->param, param_overlap1, contour_length); //if (trim_l > trim_l_threshold) ip_low->trim_next(trim_l); trim_l = closed_contour_distance_ccw(param_overlap2, ip_high->param, contour_length); //if (trim_l > trim_l_threshold) ip_high->trim_prev(trim_l); assert(ip_low->next_trimmed == ip_high->prev_trimmed); assert(validate_boundary_intersections(boundary_intersections)); //FIXME mark point as consumed? //FIXME verify the sequence between prev and next? #ifdef INFILL_DEBUG_OUTPUT { #if 0 static size_t iRun = 0; ExPolygon expoly(Polygon(*grid.contours().front())); for (size_t i = 1; i < grid.contours().size(); ++i) expoly.holes.emplace_back(Polygon(*grid.contours()[i])); SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill", iRun++).c_str(), get_extents(expoly)); svg.draw(expoly, "green"); svg.draw(Line(segment.first, segment.second), "red"); svg.draw(Line(this->infill_pt1->cast(), this->infill_pt2->cast()), "magenta"); #endif } #endif // INFILL_DEBUG_OUTPUT } } // Continue traversing the grid along the edge. return true; } const EdgeGrid::Grid &grid; const std::vector &boundary; const std::vector> &boundary_parameters; std::vector> &boundary_intersections; // Maximum distance between the boundary and the infill line allowed to consider the boundary not touching the infill line. const double radius; // Region around the contour / infill line intersection point, where the intersections are ignored. const double trim_l_threshold; const Vec2d* infill_pt1; const Vec2d* infill_pt2; BoundingBoxf infill_bbox; #ifdef INFILL_DEBUG_OUTPUT Polylines perimeter_overlaps; #endif // INFILL_DEBUG_OUTPUT } visitor(grid, boundary, boundary_parameters, boundary_intersections, distance_colliding); for (const Polyline& polyline : infill) { #ifdef INFILL_DEBUG_OUTPUT ++ iStep; #endif // INFILL_DEBUG_OUTPUT // Clip the infill polyline by the Eucledian distance along the polyline. SegmentPoint start_point = clip_start_segment_and_point(polyline.points, clip_distance); SegmentPoint end_point = clip_end_segment_and_point(polyline.points, clip_distance); if (start_point.valid() && end_point.valid() && (start_point.idx_segment < end_point.idx_segment || (start_point.idx_segment == end_point.idx_segment && start_point.t < end_point.t))) { // The clipped polyline is non-empty. #ifdef INFILL_DEBUG_OUTPUT visitor.perimeter_overlaps.clear(); #endif // INFILL_DEBUG_OUTPUT for (size_t point_idx = start_point.idx_segment; point_idx <= end_point.idx_segment; ++point_idx) { //FIXME extend the EdgeGrid to suport tracing a thick line. #if 0 Point pt1, pt2; Vec2d pt1d, pt2d; if (point_idx == start_point.idx_segment) { pt1d = start_point.point; pt1 = pt1d.cast(); } else { pt1 = polyline.points[point_idx]; pt1d = pt1.cast(); } if (point_idx == start_point.idx_segment) { pt2d = end_point.point; pt2 = pt1d.cast(); } else { pt2 = polyline.points[point_idx]; pt2d = pt2.cast(); } visitor.init(pt1d, pt2d); grid.visit_cells_intersecting_thick_line(pt1, pt2, distance_colliding, visitor); #else Vec2d pt1 = (point_idx == start_point.idx_segment) ? start_point.point : polyline.points[point_idx].cast(); Vec2d pt2 = (point_idx == end_point.idx_segment) ? end_point.point : polyline.points[point_idx + 1].cast(); #if 0 { static size_t iRun = 0; ExPolygon expoly(Polygon(*grid.contours().front())); for (size_t i = 1; i < grid.contours().size(); ++i) expoly.holes.emplace_back(Polygon(*grid.contours()[i])); SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill0", iRun++).c_str(), get_extents(expoly)); svg.draw(expoly, "green"); svg.draw(polyline, "blue"); svg.draw(Line(pt1.cast(), pt2.cast()), "magenta", scale_(0.1)); } #endif visitor.init(pt1, pt2); // Simulate tracing of a thick line. This only works reliably if distance_colliding <= grid cell size. Vec2d v = (pt2 - pt1).normalized() * distance_colliding; Vec2d vperp = perp(v); Vec2d a = pt1 - v - vperp; Vec2d b = pt2 + v - vperp; assert(grid.bbox().contains(a.cast())); assert(grid.bbox().contains(b.cast())); grid.visit_cells_intersecting_line(a.cast(), b.cast(), visitor); a = pt1 - v + vperp; b = pt2 + v + vperp; assert(grid.bbox().contains(a.cast())); assert(grid.bbox().contains(b.cast())); grid.visit_cells_intersecting_line(a.cast(), b.cast(), visitor); #endif #ifdef INFILL_DEBUG_OUTPUT // export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d-%03d-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-step", iRun, iStep, int(point_idx)), { polyline }); #endif // INFILL_DEBUG_OUTPUT } #ifdef INFILL_DEBUG_OUTPUT Polylines perimeter_overlaps; export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-step", iRun, iStep), visitor.perimeter_overlaps, { polyline }); append(perimeter_overlaps, std::move(visitor.perimeter_overlaps)); perimeter_overlaps.clear(); #endif // INFILL_DEBUG_OUTPUT } } #ifdef INFILL_DEBUG_OUTPUT export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-end", iRun), perimeter_overlaps); #endif // INFILL_DEBUG_OUTPUT assert(validate_boundary_intersections(boundary_intersections)); } void connect_infill(Polylines&& infill_ordered, const ExPolygon& boundary_src, Polylines& polylines_out, const double spacing, const FillParams& params) { assert(!boundary_src.contour.points.empty()); auto polygons_src = reserve_vector(boundary_src.holes.size() + 1); if (icOuterShell == params.connection || icConnected == params.connection) polygons_src.emplace_back(&boundary_src.contour); if (icHoles == params.connection || icConnected == params.connection) for (const Polygon& polygon : boundary_src.holes) polygons_src.emplace_back(&polygon); connect_infill(std::move(infill_ordered), polygons_src, get_extents(boundary_src.contour), polylines_out, spacing, params); } void connect_infill(Polylines&& infill_ordered, const Polygons& boundary_src, const BoundingBox& bbox, Polylines& polylines_out, const double spacing, const FillParams& params) { auto polygons_src = reserve_vector(boundary_src.size()); for (const Polygon& polygon : boundary_src) polygons_src.emplace_back(&polygon); connect_infill(std::move(infill_ordered), polygons_src, bbox, polylines_out, spacing, params); } void connect_infill(Polylines&& infill_ordered, const std::vector& boundary_src, const BoundingBox& bbox, Polylines& polylines_out, const double spacing, const FillParams& params) { assert(!infill_ordered.empty()); assert(params.anchor_length >= 0.); assert(params.anchor_length_max >= 0.01f); assert(params.anchor_length_max >= params.anchor_length); const coordf_t anchor_length = scale_d(params.anchor_length); const coordf_t anchor_length_max = scale_d(params.anchor_length_max); #if 0 append(polylines_out, infill_ordered); return; #endif // 1) Add the end points of infill_ordered to boundary_src. std::vector boundary; std::vector> boundary_params; boundary.assign(boundary_src.size(), Points()); boundary_params.assign(boundary_src.size(), std::vector()); // Mapping the infill_ordered end point to a (contour, point) of boundary. static constexpr auto boundary_idx_unconnected = std::numeric_limits::max(); std::vector map_infill_end_point_to_boundary(infill_ordered.size() * 2, ContourIntersectionPoint{ boundary_idx_unconnected, boundary_idx_unconnected }); { // Project the infill_ordered end points onto boundary_src. std::vector> intersection_points; { EdgeGrid::Grid grid; grid.set_bbox(bbox.inflated(SCALED_EPSILON)); grid.create(boundary_src, coord_t(scale_(10.))); intersection_points.reserve(infill_ordered.size() * 2); for (const Polyline &pl : infill_ordered) for (const Point *pt : { &pl.points.front(), &pl.points.back() }) { EdgeGrid::Grid::ClosestPointResult cp = grid.closest_point(*pt, SCALED_EPSILON); if (cp.valid()) { // The infill end point shall lie on the contour. //assert(cp.distance <= 3.); intersection_points.emplace_back(cp, (&pl - infill_ordered.data()) * 2 + (pt == &pl.points.front() ? 0 : 1)); } } std::sort(intersection_points.begin(), intersection_points.end(), [](const std::pair& cp1, const std::pair& cp2) { return cp1.first.contour_idx < cp2.first.contour_idx || (cp1.first.contour_idx == cp2.first.contour_idx && (cp1.first.start_point_idx < cp2.first.start_point_idx || (cp1.first.start_point_idx == cp2.first.start_point_idx && cp1.first.t < cp2.first.t))); }); } auto it = intersection_points.begin(); auto it_end = intersection_points.end(); std::vector> boundary_intersection_points(boundary.size(), std::vector()); for (size_t idx_contour = 0; idx_contour < boundary_src.size(); ++idx_contour) { // Copy contour_src to contour_dst while adding intersection points. // Map infill end points map_infill_end_point_to_boundary to the newly inserted boundary points of contour_dst. // chain the points of map_infill_end_point_to_boundary along their respective contours. const Polygon& contour_src = *boundary_src[idx_contour]; Points& contour_dst = boundary[idx_contour]; std::vector& contour_intersection_points = boundary_intersection_points[idx_contour]; ContourIntersectionPoint* pfirst = nullptr; ContourIntersectionPoint* pprev = nullptr; { // Reserve intersection points. size_t n_intersection_points = 0; for (auto itx = it; itx != it_end && itx->first.contour_idx == idx_contour; ++itx) ++n_intersection_points; contour_intersection_points.reserve(n_intersection_points); } for (size_t idx_point = 0; idx_point < contour_src.points.size(); ++ idx_point) { const Point &ipt = contour_src.points[idx_point]; if (contour_dst.empty() || contour_dst.back() != ipt) contour_dst.emplace_back(ipt); for (; it != it_end && it->first.contour_idx == idx_contour && it->first.start_point_idx == idx_point; ++ it) { // Add these points to the destination contour. const Polyline &infill_line = infill_ordered[it->second / 2]; const Point &pt = (it->second & 1) ? infill_line.points.back() : infill_line.points.front(); #ifndef NDEBUG { const Vec2d pt1 = ipt.cast(); const Vec2d pt2 = (idx_point + 1 == contour_src.size() ? contour_src.points.front() : contour_src.points[idx_point + 1]).cast(); const Vec2d ptx = lerp(pt1, pt2, it->first.t); assert(std::abs(pt.x() - pt.x()) < SCALED_EPSILON); assert(std::abs(pt.y() - pt.y()) < SCALED_EPSILON); } #endif // NDEBUG size_t idx_tjoint_pt = 0; if (idx_point + 1 < contour_src.size() || pt != contour_dst.front()) { if (pt != contour_dst.back()) contour_dst.emplace_back(pt); idx_tjoint_pt = contour_dst.size() - 1; } map_infill_end_point_to_boundary[it->second] = ContourIntersectionPoint{ idx_contour, idx_tjoint_pt }; ContourIntersectionPoint *pthis = &map_infill_end_point_to_boundary[it->second]; if (pprev) { pprev->next_on_contour = pthis; pthis->prev_on_contour = pprev; } else pfirst = pthis; contour_intersection_points.emplace_back(pthis); pprev = pthis; } if (pfirst) { pprev->next_on_contour = pfirst; pfirst->prev_on_contour = pprev; } } // Parametrize the new boundary with the intersection points inserted. std::vector &contour_params = boundary_params[idx_contour]; contour_params.assign(contour_dst.size() + 1, 0.); for (size_t i = 1; i < contour_dst.size(); ++i) { contour_params[i] = contour_params[i - 1] + (contour_dst[i].cast() - contour_dst[i - 1].cast()).norm(); assert(contour_params[i] > contour_params[i - 1]); } contour_params.back() = contour_params[contour_params.size() - 2] + (contour_dst.back().cast() - contour_dst.front().cast()).norm(); assert(contour_params.back() > contour_params[contour_params.size() - 2]); // Map parameters from contour_params to boundary_intersection_points. for (ContourIntersectionPoint* ip : contour_intersection_points) ip->param = contour_params[ip->point_idx]; // and measure distance to the previous and next intersection point. const double contour_length = contour_params.back(); for (ContourIntersectionPoint *ip : contour_intersection_points) if (ip->next_on_contour == ip) { assert(ip->prev_on_contour == ip); ip->contour_not_taken_length_prev = ip->contour_not_taken_length_next = contour_length; } else { assert(ip->prev_on_contour != ip); ip->contour_not_taken_length_prev = closed_contour_distance_ccw(ip->prev_on_contour->param, ip->param, contour_length); ip->contour_not_taken_length_next = closed_contour_distance_ccw(ip->param, ip->next_on_contour->param, contour_length); } } assert(boundary.size() == boundary_src.size()); #if 0 // Adaptive Cubic Infill produces infill lines, which not always end at the outer boundary. assert(std::all_of(map_infill_end_point_to_boundary.begin(), map_infill_end_point_to_boundary.end(), [&boundary](const ContourIntersectionPoint& contour_point) { return contour_point.contour_idx < boundary.size() && contour_point.point_idx < boundary[contour_point.contour_idx].size(); })); #endif // Mark the points and segments of split boundary as consumed if they are very close to some of the infill line. { // @supermerill used 2. * scale_(spacing) const double clip_distance = 1.7 * scale_(spacing); // Allow a bit of overlap. This value must be slightly higher than the overlap of FillAdaptive, otherwise // the anchors of the adaptive infill will mask the other side of the perimeter line. // (see connect_lines_using_hooks() in FillAdaptive.cpp) const double distance_colliding = 0.8 * scale_(spacing); mark_boundary_segments_touching_infill(boundary, boundary_params, boundary_intersection_points, bbox, infill_ordered, clip_distance, distance_colliding); } } // Connection from end of one infill line to the start of another infill line. //const double length_max = scale_(spacing); // const auto length_max = double(scale_((2. / params.density) * spacing)); const auto length_max = double(scale_((1000. / params.density) * spacing)); std::vector merged_with(infill_ordered.size()); std::iota(merged_with.begin(), merged_with.end(), 0); struct ConnectionCost { ConnectionCost(size_t idx_first, double cost, bool reversed) : idx_first(idx_first), cost(cost), reversed(reversed) {} size_t idx_first; double cost; bool reversed; }; std::vector connections_sorted; connections_sorted.reserve(infill_ordered.size() * 2 - 2); for (size_t idx_chain = 1; idx_chain < infill_ordered.size(); ++idx_chain) { const Polyline& pl1 = infill_ordered[idx_chain - 1]; const Polyline& pl2 = infill_ordered[idx_chain]; const ContourIntersectionPoint* cp1 = &map_infill_end_point_to_boundary[(idx_chain - 1) * 2 + 1]; const ContourIntersectionPoint* cp2 = &map_infill_end_point_to_boundary[idx_chain * 2]; if (cp1->contour_idx != boundary_idx_unconnected && cp1->contour_idx == cp2->contour_idx) { // End points on the same contour. Try to connect them. std::pair len = path_lengths_along_contour(cp1, cp2, boundary_params[cp1->contour_idx].back()); if (len.first < length_max) connections_sorted.emplace_back(idx_chain - 1, len.first, false); if (len.second < length_max) connections_sorted.emplace_back(idx_chain - 1, len.second, true); } } std::sort(connections_sorted.begin(), connections_sorted.end(), [](const ConnectionCost& l, const ConnectionCost& r) { return l.cost < r.cost; }); //mark point as used depends of connection parameter //if (params.connection == icOuterShell) { // for (auto it = boundary_data.begin() + 1; it != boundary_data.end(); ++it) { // for (ContourPointData& pt : *it) { // pt.point_consumed = true; // } // } //} else if (params.connection == icHoles) { // for (ContourPointData& pt : boundary_data[0]) { // pt.point_consumed = true; // } //} //assert(boundary_data.size() == boundary_src.holes.size() + 1); auto get_and_update_merged_with = [&merged_with](size_t polyline_idx) -> size_t { for (size_t last = polyline_idx;;) { size_t lower = merged_with[last]; assert(lower <= last); if (lower == last) { merged_with[polyline_idx] = last; return last; } last = lower; } assert(false); return std::numeric_limits::max(); }; const double line_half_width = 0.5 * scale_(spacing); #if 0 for (ConnectionCost& connection_cost : connections_sorted) { ContourIntersectionPoint* cp1 = &map_infill_end_point_to_boundary[connection_cost.idx_first * 2 + 1]; ContourIntersectionPoint* cp2 = &map_infill_end_point_to_boundary[(connection_cost.idx_first + 1) * 2]; assert(cp1 != cp2); assert(cp1->contour_idx == cp2->contour_idx && cp1->contour_idx != boundary_idx_unconnected); if (cp1->consumed || cp2->consumed) continue; const double length = connection_cost.cost; bool could_connect; { // cp1, cp2 sorted CCW. ContourIntersectionPoint* cp_low = connection_cost.reversed ? cp2 : cp1; ContourIntersectionPoint* cp_high = connection_cost.reversed ? cp1 : cp2; assert(std::abs(length - closed_contour_distance_ccw(cp_low->param, cp_high->param, boundary_params[cp1->contour_idx].back())) < SCALED_EPSILON); could_connect = !cp_low->next_trimmed && !cp_high->prev_trimmed; if (could_connect && cp_low->next_on_contour != cp_high) { // Other end of cp1, may or may not be on the same contour as cp1. const ContourIntersectionPoint* cp1prev = cp1 - 1; // Other end of cp2, may or may not be on the same contour as cp2. const ContourIntersectionPoint* cp2next = cp2 + 1; for (auto* cp = cp_low->next_on_contour; cp != cp_high; cp = cp->next_on_contour) if (cp->consumed || cp == cp1prev || cp == cp2next || cp->prev_trimmed || cp->next_trimmed) { could_connect = false; break; } } } // Indices of the polylines to be connected by a perimeter segment. size_t idx_first = connection_cost.idx_first; size_t idx_second = idx_first + 1; idx_first = get_and_update_merged_with(idx_first); assert(idx_first < idx_second); assert(idx_second == merged_with[idx_second]); if (could_connect && length < anchor_length_max) { // Take the complete contour. // Connect the two polygons using the boundary contour. take(infill_ordered[idx_first], infill_ordered[idx_second], boundary[cp1->contour_idx], cp1, cp2, connection_cost.reversed); // Mark the second polygon as merged with the first one. merged_with[idx_second] = merged_with[idx_first]; infill_ordered[idx_second].points.clear(); } else { // Try to connect cp1 resp. cp2 with a piece of perimeter line. take_limited(infill_ordered[idx_first], boundary[cp1->contour_idx], boundary_params[cp1->contour_idx], cp1, cp2, connection_cost.reversed, anchor_length, line_half_width); take_limited(infill_ordered[idx_second], boundary[cp1->contour_idx], boundary_params[cp1->contour_idx], cp2, cp1, !connection_cost.reversed, anchor_length, line_half_width); } } #endif struct Arc { ContourIntersectionPoint* intersection; double arc_length; }; std::vector arches; arches.reserve(map_infill_end_point_to_boundary.size()); for (ContourIntersectionPoint& cp : map_infill_end_point_to_boundary) if (cp.contour_idx != boundary_idx_unconnected && cp.next_on_contour != &cp && cp.could_connect_next()) arches.push_back({ &cp, path_length_along_contour_ccw(&cp, cp.next_on_contour, boundary_params[cp.contour_idx].back()) }); std::sort(arches.begin(), arches.end(), [](const auto& l, const auto& r) { return l.arc_length < r.arc_length; }); //FIXME improve the Traveling Salesman problem with 2-opt and 3-opt local optimization. for (Arc& arc : arches) if (!arc.intersection->consumed && !arc.intersection->next_on_contour->consumed) { // Indices of the polylines to be connected by a perimeter segment. ContourIntersectionPoint *cp1 = arc.intersection; ContourIntersectionPoint *cp2 = arc.intersection->next_on_contour; size_t polyline_idx1 = get_and_update_merged_with(((cp1 - map_infill_end_point_to_boundary.data()) / 2)); size_t polyline_idx2 = get_and_update_merged_with(((cp2 - map_infill_end_point_to_boundary.data()) / 2)); const Points &contour = boundary[cp1->contour_idx]; const std::vector &contour_params = boundary_params[cp1->contour_idx]; if (polyline_idx1 != polyline_idx2) { Polyline& polyline1 = infill_ordered[polyline_idx1]; Polyline& polyline2 = infill_ordered[polyline_idx2]; if (arc.arc_length < anchor_length_max) { // Not closing a loop, connecting the lines. assert(contour[cp1->point_idx] == polyline1.points.front() || contour[cp1->point_idx] == polyline1.points.back()); if (contour[cp1->point_idx] == polyline1.points.front()) polyline1.reverse(); assert(contour[cp2->point_idx] == polyline2.points.front() || contour[cp2->point_idx] == polyline2.points.back()); if (contour[cp2->point_idx] == polyline2.points.back()) polyline2.reverse(); take(polyline1, polyline2, contour, cp1, cp2, false); // Mark the second polygon as merged with the first one. if (polyline_idx2 < polyline_idx1) { polyline2 = std::move(polyline1); polyline1.points.clear(); merged_with[polyline_idx1] = merged_with[polyline_idx2]; } else { polyline2.points.clear(); merged_with[polyline_idx2] = merged_with[polyline_idx1]; } } else if (anchor_length > SCALED_EPSILON) { // Move along the perimeter, but don't take the whole arc. take_limited(polyline1, contour, contour_params, cp1, cp2, false, anchor_length, line_half_width); take_limited(polyline2, contour, contour_params, cp2, cp1, true, anchor_length, line_half_width); } } } // Connect the remaining open infill lines to the perimeter lines if possible. for (ContourIntersectionPoint &contour_point : map_infill_end_point_to_boundary) if (! contour_point.consumed && contour_point.contour_idx != boundary_idx_unconnected) { const Points &contour = boundary[contour_point.contour_idx]; const std::vector &contour_params = boundary_params[contour_point.contour_idx]; const size_t contour_pt_idx = contour_point.point_idx; double lprev = contour_point.could_connect_prev() ? path_length_along_contour_ccw(contour_point.prev_on_contour, &contour_point, contour_params.back()) : std::numeric_limits::max(); double lnext = contour_point.could_connect_next() ? path_length_along_contour_ccw(&contour_point, contour_point.next_on_contour, contour_params.back()) : std::numeric_limits::max(); size_t polyline_idx = get_and_update_merged_with(((&contour_point - map_infill_end_point_to_boundary.data()) / 2)); Polyline& polyline = infill_ordered[polyline_idx]; assert(!polyline.empty()); assert(contour[contour_point.point_idx] == polyline.points.front() || contour[contour_point.point_idx] == polyline.points.back()); bool connected = false; for (double l : { std::min(lprev, lnext), std::max(lprev, lnext) }) { if (l == std::numeric_limits::max() || l > anchor_length_max) break; // Take the complete contour. bool reversed = l == lprev; ContourIntersectionPoint* cp2 = reversed ? contour_point.prev_on_contour : contour_point.next_on_contour; // Identify which end of the polyline touches the boundary. size_t polyline_idx2 = get_and_update_merged_with(((cp2 - map_infill_end_point_to_boundary.data()) / 2)); if (polyline_idx == polyline_idx2) // Try the other side. continue; // Not closing a loop. if (contour[contour_point.point_idx] == polyline.points.front()) polyline.reverse(); Polyline& polyline2 = infill_ordered[polyline_idx2]; assert(!polyline.empty()); assert(contour[cp2->point_idx] == polyline2.points.front() || contour[cp2->point_idx] == polyline2.points.back()); if (contour[cp2->point_idx] == polyline2.points.back()) polyline2.reverse(); take(polyline, polyline2, contour, &contour_point, cp2, reversed); if (polyline_idx < polyline_idx2) { // Mark the second polyline as merged with the first one. merged_with[polyline_idx2] = polyline_idx; polyline2.points.clear(); } else { // Mark the first polyline as merged with the second one. merged_with[polyline_idx] = polyline_idx2; polyline2 = std::move(polyline); polyline.points.clear(); } connected = true; break; } if (! connected && anchor_length > SCALED_EPSILON) { // Which to take? One could optimize for: // 1) Shortest path // 2) Hook length // ... // Let's take the longer now, as this improves the chance of another hook to be placed on the other side of this contour point. double l = std::max(contour_point.contour_not_taken_length_prev, contour_point.contour_not_taken_length_next); if (l > SCALED_EPSILON) { if (contour_point.contour_not_taken_length_prev > contour_point.contour_not_taken_length_next) take_limited(polyline, contour, contour_params, &contour_point, contour_point.prev_on_contour, true, anchor_length, line_half_width); else take_limited(polyline, contour, contour_params, &contour_point, contour_point.next_on_contour, false, anchor_length, line_half_width); } } } polylines_out.reserve(polylines_out.size() + std::count_if(infill_ordered.begin(), infill_ordered.end(), [](const Polyline& pl) { return !pl.empty(); })); for (Polyline& pl : infill_ordered) if (!pl.empty()) polylines_out.emplace_back(std::move(pl)); } } void Fill::connect_infill(Polylines&& infill_ordered, const ExPolygon& boundary, Polylines& polylines_out, const double spacing, const FillParams& params) { if (params.anchor_length_max == 0) { PrusaSimpleConnect::connect_infill(std::move(infill_ordered), boundary, polylines_out, spacing, params); } else { FakePerimeterConnect::connect_infill(std::move(infill_ordered), boundary, polylines_out, spacing, params); } } void Fill::connect_infill(Polylines&& infill_ordered, const ExPolygon& boundary, const Polygons& polygons_src, Polylines& polylines_out, const double spacing, const FillParams& params) { if (params.anchor_length_max == 0) { PrusaSimpleConnect::connect_infill(std::move(infill_ordered), boundary, polylines_out, spacing, params); } else { FakePerimeterConnect::connect_infill(std::move(infill_ordered), polygons_src, get_extents(boundary.contour), polylines_out, spacing, params); } } } // namespace Slic3r