#include "Config.hpp" #include // for setenv() #include #include #include #include #include // std::runtime_error #include #include #include #include #include #include #include #include #include #include #include #if defined(_WIN32) && !defined(setenv) && defined(_putenv_s) #define setenv(k, v, o) _putenv_s(k, v) #endif namespace Slic3r { std::string escape_string_cstyle(const std::string &str) { // Allocate a buffer twice the input string length, // so the output will fit even if all input characters get escaped. std::vector out(str.size() * 2, 0); char *outptr = out.data(); for (size_t i = 0; i < str.size(); ++ i) { char c = str[i]; if (c == '\n' || c == '\r') { (*outptr ++) = '\\'; (*outptr ++) = 'n'; } else (*outptr ++) = c; } return std::string(out.data(), outptr - out.data()); } std::string escape_strings_cstyle(const std::vector &strs) { // 1) Estimate the output buffer size to avoid buffer reallocation. size_t outbuflen = 0; for (size_t i = 0; i < strs.size(); ++ i) // Reserve space for every character escaped + quotes + semicolon. outbuflen += strs[i].size() * 2 + 3; // 2) Fill in the buffer. std::vector out(outbuflen, 0); char *outptr = out.data(); for (size_t j = 0; j < strs.size(); ++ j) { if (j > 0) // Separate the strings. (*outptr ++) = ';'; const std::string &str = strs[j]; // Is the string simple or complex? Complex string contains spaces, tabs, new lines and other // escapable characters. Empty string shall be quoted as well, if it is the only string in strs. bool should_quote = strs.size() == 1 && str.empty(); for (size_t i = 0; i < str.size(); ++ i) { char c = str[i]; if (c == ' ' || c == '\t' || c == '\\' || c == '"' || c == '\r' || c == '\n') { should_quote = true; break; } } if (should_quote) { (*outptr ++) = '"'; for (size_t i = 0; i < str.size(); ++ i) { char c = str[i]; if (c == '\\' || c == '"') { (*outptr ++) = '\\'; (*outptr ++) = c; } else if (c == '\n' || c == '\r') { (*outptr ++) = '\\'; (*outptr ++) = 'n'; } else (*outptr ++) = c; } (*outptr ++) = '"'; } else { memcpy(outptr, str.data(), str.size()); outptr += str.size(); } } return std::string(out.data(), outptr - out.data()); } bool unescape_string_cstyle(const std::string &str, std::string &str_out) { std::vector out(str.size(), 0); char *outptr = out.data(); for (size_t i = 0; i < str.size(); ++ i) { char c = str[i]; if (c == '\\') { if (++ i == str.size()) return false; c = str[i]; if (c == 'n') (*outptr ++) = '\n'; } else (*outptr ++) = c; } str_out.assign(out.data(), outptr - out.data()); return true; } bool unescape_strings_cstyle(const std::string &str, std::vector &out) { if (str.empty()) return true; size_t i = 0; for (;;) { // Skip white spaces. char c = str[i]; while (c == ' ' || c == '\t') { if (++ i == str.size()) return true; c = str[i]; } // Start of a word. std::vector buf; buf.reserve(16); // Is it enclosed in quotes? c = str[i]; if (c == '"') { // Complex case, string is enclosed in quotes. for (++ i; i < str.size(); ++ i) { c = str[i]; if (c == '"') { // End of string. break; } if (c == '\\') { if (++ i == str.size()) return false; c = str[i]; if (c == 'n') c = '\n'; } buf.push_back(c); } if (i == str.size()) return false; ++ i; } else { for (; i < str.size(); ++ i) { c = str[i]; if (c == ';') break; buf.push_back(c); } } // Store the string into the output vector. out.push_back(std::string(buf.data(), buf.size())); if (i == str.size()) return true; // Skip white spaces. c = str[i]; while (c == ' ' || c == '\t') { if (++ i == str.size()) // End of string. This is correct. return true; c = str[i]; } if (c != ';') return false; if (++ i == str.size()) { // Emit one additional empty string. out.push_back(std::string()); return true; } } } bool operator== (const ConfigOption &a, const ConfigOption &b) { return a.serialize().compare(b.serialize()) == 0; } bool operator!= (const ConfigOption &a, const ConfigOption &b) { return !(a == b); } ConfigOptionDef::ConfigOptionDef(const ConfigOptionDef &other) : type(other.type), default_value(NULL), gui_type(other.gui_type), gui_flags(other.gui_flags), label(other.label), full_label(other.full_label), category(other.category), tooltip(other.tooltip), sidetext(other.sidetext), cli(other.cli), ratio_over(other.ratio_over), multiline(other.multiline), full_width(other.full_width), readonly(other.readonly), height(other.height), width(other.width), min(other.min), max(other.max), aliases(other.aliases), shortcut(other.shortcut), enum_values(other.enum_values), enum_labels(other.enum_labels), enum_keys_map(other.enum_keys_map) { if (other.default_value != NULL) this->default_value = other.default_value->clone(); } ConfigOptionDef::~ConfigOptionDef() { if (this->default_value != NULL) delete this->default_value; } ConfigOptionDef* ConfigDef::add(const t_config_option_key &opt_key, ConfigOptionType type) { ConfigOptionDef* opt = &this->options[opt_key]; opt->type = type; return opt; } ConfigOptionDef* ConfigDef::add(const t_config_option_key &opt_key, const ConfigOptionDef &def) { this->options.insert(std::make_pair(opt_key, def)); return &this->options[opt_key]; } bool ConfigDef::has(const t_config_option_key &opt_key) const { return this->options.count(opt_key) > 0; } const ConfigOptionDef* ConfigDef::get(const t_config_option_key &opt_key) const { if (this->options.count(opt_key) == 0) return NULL; return &const_cast(this)->options[opt_key]; } void ConfigDef::merge(const ConfigDef &other) { this->options.insert(other.options.begin(), other.options.end()); } bool ConfigBase::has(const t_config_option_key &opt_key) { return (this->option(opt_key, false) != NULL); } void ConfigBase::apply(const ConfigBase &other, bool ignore_nonexistent) { // get list of option keys to apply t_config_option_keys opt_keys = other.keys(); // loop through options and apply them for (t_config_option_keys::const_iterator it = opt_keys.begin(); it != opt_keys.end(); ++it) { ConfigOption* my_opt = this->option(*it, true); if (my_opt == NULL) { if (ignore_nonexistent == false) throw "Attempt to apply non-existent option"; continue; } // not the most efficient way, but easier than casting pointers to subclasses bool res = my_opt->deserialize( other.option(*it)->serialize() ); if (!res) { std::string error = "Unexpected failure when deserializing serialized value for " + *it; CONFESS(error.c_str()); } } } bool ConfigBase::equals(ConfigBase &other) { return this->diff(other).empty(); } // this will *ignore* options not present in both configs t_config_option_keys ConfigBase::diff(ConfigBase &other) { t_config_option_keys diff; t_config_option_keys my_keys = this->keys(); for (t_config_option_keys::const_iterator opt_key = my_keys.begin(); opt_key != my_keys.end(); ++opt_key) { if (other.has(*opt_key) && other.serialize(*opt_key) != this->serialize(*opt_key)) { diff.push_back(*opt_key); } } return diff; } std::string ConfigBase::serialize(const t_config_option_key &opt_key) const { const ConfigOption* opt = this->option(opt_key); assert(opt != NULL); return opt->serialize(); } bool ConfigBase::set_deserialize(t_config_option_key opt_key, std::string str, bool append) { const ConfigOptionDef* optdef = this->def->get(opt_key); if (optdef == NULL) { // If we didn't find an option, look for any other option having this as an alias. for (const auto &opt : this->def->options) { for (const t_config_option_key &opt_key2 : opt.second.aliases) { if (opt_key2 == opt_key) { opt_key = opt_key2; optdef = &opt.second; break; } } if (optdef != NULL) break; } if (optdef == NULL) throw UnknownOptionException(); } if (!optdef->shortcut.empty()) { for (const t_config_option_key &shortcut : optdef->shortcut) { if (!this->set_deserialize(shortcut, str)) return false; } return true; } ConfigOption* opt = this->option(opt_key, true); assert(opt != NULL); return opt->deserialize(str, append); } // Return an absolute value of a possibly relative config variable. // For example, return absolute infill extrusion width, either from an absolute value, or relative to the layer height. double ConfigBase::get_abs_value(const t_config_option_key &opt_key) const { const ConfigOption* opt = this->option(opt_key); if (const ConfigOptionFloatOrPercent* optv = dynamic_cast(opt)) { // get option definition const ConfigOptionDef* def = this->def->get(opt_key); assert(def != NULL); // compute absolute value over the absolute value of the base option return optv->get_abs_value(this->get_abs_value(def->ratio_over)); } else if (const ConfigOptionFloat* optv = dynamic_cast(opt)) { return optv->value; } else { throw "Not a valid option type for get_abs_value()"; } } // Return an absolute value of a possibly relative config variable. // For example, return absolute infill extrusion width, either from an absolute value, or relative to a provided value. double ConfigBase::get_abs_value(const t_config_option_key &opt_key, double ratio_over) const { // get stored option value const ConfigOptionFloatOrPercent* opt = dynamic_cast(this->option(opt_key)); assert(opt != NULL); // compute absolute value return opt->get_abs_value(ratio_over); } void ConfigBase::setenv_() { #ifdef setenv t_config_option_keys opt_keys = this->keys(); for (t_config_option_keys::const_iterator it = opt_keys.begin(); it != opt_keys.end(); ++it) { // prepend the SLIC3R_ prefix std::ostringstream ss; ss << "SLIC3R_"; ss << *it; std::string envname = ss.str(); // capitalize environment variable name for (size_t i = 0; i < envname.size(); ++i) envname[i] = (envname[i] <= 'z' && envname[i] >= 'a') ? envname[i]-('a'-'A') : envname[i]; setenv(envname.c_str(), this->serialize(*it).c_str(), 1); } #endif } const ConfigOption* ConfigBase::option(const t_config_option_key &opt_key) const { return const_cast(this)->option(opt_key, false); } ConfigOption* ConfigBase::option(const t_config_option_key &opt_key, bool create) { return this->optptr(opt_key, create); } void ConfigBase::load(const std::string &file) { namespace pt = boost::property_tree; pt::ptree tree; pt::read_ini(file, tree); BOOST_FOREACH(const pt::ptree::value_type &v, tree) { try { t_config_option_key opt_key = v.first; std::string value = v.second.get_value(); this->set_deserialize(opt_key, value); } catch (UnknownOptionException &e) { // ignore } } } void ConfigBase::save(const std::string &file) const { using namespace std; ofstream c; c.open(file.c_str(), ios::out | ios::trunc); { time_t now; time(&now); char buf[sizeof "0000-00-00 00:00:00"]; strftime(buf, sizeof buf, "%F %T", gmtime(&now)); c << "# generated by Slic3r " << SLIC3R_VERSION << " on " << buf << endl; } t_config_option_keys my_keys = this->keys(); for (t_config_option_keys::const_iterator opt_key = my_keys.begin(); opt_key != my_keys.end(); ++opt_key) c << *opt_key << " = " << this->serialize(*opt_key) << endl; c.close(); } DynamicConfig& DynamicConfig::operator= (DynamicConfig other) { this->swap(other); return *this; } void DynamicConfig::swap(DynamicConfig &other) { std::swap(this->options, other.options); } DynamicConfig::~DynamicConfig () { for (t_options_map::iterator it = this->options.begin(); it != this->options.end(); ++it) { ConfigOption* opt = it->second; if (opt != NULL) delete opt; } } DynamicConfig::DynamicConfig (const DynamicConfig& other) { this->def = other.def; this->apply(other, false); } ConfigOption* DynamicConfig::optptr(const t_config_option_key &opt_key, bool create) { if (this->options.count(opt_key) == 0) { if (create) { const ConfigOptionDef* optdef = this->def->get(opt_key); if (optdef == NULL) return NULL; ConfigOption* opt; if (optdef->default_value != NULL) { opt = optdef->default_value->clone(); } else if (optdef->type == coFloat) { opt = new ConfigOptionFloat (); } else if (optdef->type == coFloats) { opt = new ConfigOptionFloats (); } else if (optdef->type == coInt) { opt = new ConfigOptionInt (); } else if (optdef->type == coInts) { opt = new ConfigOptionInts (); } else if (optdef->type == coString) { opt = new ConfigOptionString (); } else if (optdef->type == coStrings) { opt = new ConfigOptionStrings (); } else if (optdef->type == coPercent) { opt = new ConfigOptionPercent (); } else if (optdef->type == coFloatOrPercent) { opt = new ConfigOptionFloatOrPercent (); } else if (optdef->type == coPoint) { opt = new ConfigOptionPoint (); } else if (optdef->type == coPoint3) { opt = new ConfigOptionPoint3 (); } else if (optdef->type == coPoints) { opt = new ConfigOptionPoints (); } else if (optdef->type == coBool) { opt = new ConfigOptionBool (); } else if (optdef->type == coBools) { opt = new ConfigOptionBools (); } else if (optdef->type == coEnum) { ConfigOptionEnumGeneric* optv = new ConfigOptionEnumGeneric (); optv->keys_map = &optdef->enum_keys_map; opt = static_cast(optv); } else { throw "Unknown option type"; } this->options[opt_key] = opt; return opt; } else { return NULL; } } return this->options[opt_key]; } template T* DynamicConfig::opt(const t_config_option_key &opt_key, bool create) { return dynamic_cast(this->option(opt_key, create)); } template ConfigOptionInt* DynamicConfig::opt(const t_config_option_key &opt_key, bool create); template ConfigOptionBool* DynamicConfig::opt(const t_config_option_key &opt_key, bool create); template ConfigOptionBools* DynamicConfig::opt(const t_config_option_key &opt_key, bool create); template ConfigOptionPercent* DynamicConfig::opt(const t_config_option_key &opt_key, bool create); t_config_option_keys DynamicConfig::keys() const { t_config_option_keys keys; for (t_options_map::const_iterator it = this->options.begin(); it != this->options.end(); ++it) keys.push_back(it->first); return keys; } void DynamicConfig::erase(const t_config_option_key &opt_key) { this->options.erase(opt_key); } void DynamicConfig::read_cli(const std::vector &tokens, t_config_option_keys* extra) { std::vector _argv; // push a bogus executable name (argv[0]) _argv.push_back(""); for (size_t i = 0; i < tokens.size(); ++i) _argv.push_back(const_cast(tokens[i].c_str())); this->read_cli(_argv.size(), &_argv[0], extra); } void DynamicConfig::read_cli(const int argc, const char** argv, t_config_option_keys* extra) { // cache the CLI option => opt_key mapping std::map opts; for (const auto &oit : this->def->options) { std::string cli = oit.second.cli; cli = cli.substr(0, cli.find("=")); boost::trim_right_if(cli, boost::is_any_of("!")); std::vector tokens; boost::split(tokens, cli, boost::is_any_of("|")); for (const std::string &t : tokens) opts[t] = oit.first; } bool parse_options = true; for (int i = 1; i < argc; ++i) { std::string token = argv[i]; // Store non-option arguments in the provided vector. if (!parse_options || !boost::starts_with(token, "-")) { extra->push_back(token); continue; } // Stop parsing tokens as options when -- is supplied. if (token == "--") { parse_options = false; continue; } // Remove leading dashes boost::trim_left_if(token, boost::is_any_of("-")); // Remove the "no-" prefix used to negate boolean options. bool no = false; if (boost::starts_with(token, "no-")) { no = true; boost::replace_first(token, "no-", ""); } // Read value when supplied in the --key=value form. std::string value; { size_t equals_pos = token.find("="); if (equals_pos != std::string::npos) { value = token.substr(equals_pos+1); token.erase(equals_pos); } } // Look for the cli -> option mapping. const auto it = opts.find(token); if (it == opts.end()) { printf("Warning: unknown option --%s\n", token.c_str()); continue; } const t_config_option_key opt_key = it->second; const ConfigOptionDef &optdef = this->def->options.at(opt_key); // If the option type expects a value and it was not already provided, // look for it in the next token. if (optdef.type != coBool && optdef.type != coBools && value.empty()) { if (i == (argc-1)) { printf("No value supplied for --%s\n", token.c_str()); continue; } value = argv[++i]; } // Store the option value. const bool existing = this->has(opt_key); if (ConfigOptionBool* opt = this->opt(opt_key, true)) { opt->value = !no; } else if (ConfigOptionBools* opt = this->opt(opt_key, true)) { if (!existing) opt->values.clear(); // remove the default values opt->values.push_back(!no); } else if (ConfigOptionStrings* opt = this->opt(opt_key, true)) { if (!existing) opt->values.clear(); // remove the default values opt->deserialize(value, true); } else if (ConfigOptionFloats* opt = this->opt(opt_key, true)) { if (!existing) opt->values.clear(); // remove the default values opt->deserialize(value, true); } else if (ConfigOptionPoints* opt = this->opt(opt_key, true)) { if (!existing) opt->values.clear(); // remove the default values opt->deserialize(value, true); } else { this->set_deserialize(opt_key, value, true); } } } void StaticConfig::set_defaults() { // use defaults from definition if (this->def == NULL) return; t_config_option_keys keys = this->keys(); for (t_config_option_keys::const_iterator it = keys.begin(); it != keys.end(); ++it) { const ConfigOptionDef* def = this->def->get(*it); if (def->default_value != NULL) this->option(*it)->set(*def->default_value); } } t_config_option_keys StaticConfig::keys() const { t_config_option_keys keys; for (t_optiondef_map::const_iterator it = this->def->options.begin(); it != this->def->options.end(); ++it) { const ConfigOption* opt = this->option(it->first); if (opt != NULL) keys.push_back(it->first); } return keys; } bool ConfigOptionPoint::deserialize(std::string str, bool append) { std::vector tokens(2); boost::split(tokens, str, boost::is_any_of(",x")); try { this->value.x = boost::lexical_cast(tokens[0]); this->value.y = boost::lexical_cast(tokens[1]); } catch (boost::bad_lexical_cast &e){ std::cout << "Exception caught : " << e.what() << std::endl; return false; } return true; }; bool ConfigOptionPoint3::deserialize(std::string str, bool append) { std::vector tokens(3); boost::split(tokens, str, boost::is_any_of(",x")); try { this->value.x = boost::lexical_cast(tokens[0]); this->value.y = boost::lexical_cast(tokens[1]); this->value.z = boost::lexical_cast(tokens[2]); } catch (boost::bad_lexical_cast &e){ std::cout << "Exception caught : " << e.what() << std::endl; return false; } return true; }; bool ConfigOptionPoints::deserialize(std::string str, bool append) { if (!append) this->values.clear(); std::vector tokens; boost::split(tokens, str, boost::is_any_of("x,")); if (tokens.size() % 2) return false; try { for (size_t i = 0; i < tokens.size(); ++i) { Pointf point; point.x = boost::lexical_cast(tokens[i]); point.y = boost::lexical_cast(tokens[++i]); this->values.push_back(point); } } catch (boost::bad_lexical_cast &e) { printf("%s\n", e.what()); return false; } return true; } }