#include "MedialAxis.hpp" #include "BoundingBox.hpp" #include "ExPolygon.hpp" #include "Geometry.hpp" #include "Polygon.hpp" #include "Line.hpp" #include "ClipperUtils.hpp" #include "SVG.hpp" #include "polypartition.h" #include "poly2tri/poly2tri.h" #include #include #include namespace Slic3r { int count_error = 0; //int Slic3r::MedialAxis::staticid = 0; void MedialAxis::build(Polylines &polylines) { //TODO: special case for triangles // take the longest edge // take the opposite vertex and get the otho dist // move the longest edge by X% that dist (depends on angle? from 1/2 to 1/4? or always 1/3?) use move dist as width // clip it and then enlarge it into anchor // note: ensure that if anchor is over only one edge, it's not the one choosen. //TODO: special case for quasi-rectangle // take longest (not-anchor if any) edge // get mid-dist for each adjascent edge // use these point to get the line, with the mid-dist as widths. // enlarge it into anchor ThickPolylines tp; this->build(tp); polylines.insert(polylines.end(), tp.begin(), tp.end()); } void MedialAxis::polyline_from_voronoi(const Lines& voronoi_edges, ThickPolylines* polylines) { std::map > thickness; Lines lines = voronoi_edges; VD vd; construct_voronoi(lines.begin(), lines.end(), &vd); typedef const VD::edge_type edge_t; // DEBUG: dump all Voronoi edges //{ // std::stringstream stri; // stri << "medial_axis_04_voronoi_" << this->id << ".svg"; // SVG svg(stri.str()); // for (VD::const_edge_iterator edge = vd.edges().begin(); edge != vd.edges().end(); ++edge) { // if (edge->is_infinite()) continue; // const edge_t* edgeptr = &*edge; // ThickPolyline polyline; // polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() )); // polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() )); // polyline.width.push_back(thickness[edgeptr].first); // polyline.width.push_back(thickness[edgeptr].second); // //polylines->push_back(polyline); // svg.draw(polyline, "red"); // } // svg.Close(); // return; //} // collect valid edges (i.e. prune those not belonging to MAT) // note: this keeps twins, so it inserts twice the number of the valid edges std::set valid_edges; { std::set seen_edges; for (VD::const_edge_iterator edge = vd.edges().begin(); edge != vd.edges().end(); ++edge) { // if we only process segments representing closed loops, none if the // infinite edges (if any) would be part of our MAT anyway if (edge->is_secondary() || edge->is_infinite()) continue; // don't re-validate twins if (seen_edges.find(&*edge) != seen_edges.end()) continue; // TODO: is this needed? seen_edges.insert(&*edge); seen_edges.insert(edge->twin()); if (!this->validate_edge(&*edge, lines, thickness)) continue; valid_edges.insert(&*edge); valid_edges.insert(edge->twin()); } } std::set edges = valid_edges; // iterate through the valid edges to build polylines while (!edges.empty()) { const edge_t* edge = *edges.begin(); if (thickness[edge].first > this->max_width*1.001) { //std::cerr << "Error, edge.first has a thickness of " << unscaled(this->thickness[edge].first) << " > " << unscaled(this->max_width) << "\n"; //(void)this->edges.erase(edge); //(void)this->edges.erase(edge->twin()); //continue; } if (thickness[edge].second > this->max_width*1.001) { //std::cerr << "Error, edge.second has a thickness of " << unscaled(this->thickness[edge].second) << " > " << unscaled(this->max_width) << "\n"; //(void)this->edges.erase(edge); //(void)this->edges.erase(edge->twin()); //continue; } // start a polyline ThickPolyline polyline; polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() )); polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() )); polyline.width.push_back(thickness[edge].first); polyline.width.push_back(thickness[edge].second); // remove this edge and its twin from the available edges (void)edges.erase(edge); (void)edges.erase(edge->twin()); // get next points this->process_edge_neighbors(edge, &polyline, edges, valid_edges, thickness); // get previous points { ThickPolyline rpolyline; this->process_edge_neighbors(edge->twin(), &rpolyline, edges, valid_edges, thickness); polyline.points.insert(polyline.points.begin(), rpolyline.points.rbegin(), rpolyline.points.rend()); polyline.width.insert(polyline.width.begin(), rpolyline.width.rbegin(), rpolyline.width.rend()); polyline.endpoints.first = rpolyline.endpoints.second; } assert(polyline.width.size() == polyline.points.size()); // if loop, set endpoints to false // prevent loop endpoints from being extended if (polyline.first_point().coincides_with(polyline.last_point())) { polyline.endpoints.first = false; polyline.endpoints.second = false; } // append polyline to result polylines->push_back(polyline); } #ifdef SLIC3R_DEBUG { static int iRun = 0; dump_voronoi_to_svg(this->lines, this->vd, polylines, debug_out_path("MedialAxis-%d.svg", iRun ++).c_str()); printf("Thick lines: "); for (ThickPolylines::const_iterator it = polylines->begin(); it != polylines->end(); ++ it) { ThickLines lines = it->thicklines(); for (ThickLines::const_iterator it2 = lines.begin(); it2 != lines.end(); ++ it2) { printf("%f,%f ", it2->a_width, it2->b_width); } } printf("\n"); } #endif /* SLIC3R_DEBUG */ } void MedialAxis::process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline, std::set &edges, std::set &valid_edges, std::map > &thickness) { while (true) { // Since rot_next() works on the edge starting point but we want // to find neighbors on the ending point, we just swap edge with // its twin. const VD::edge_type* twin = edge->twin(); // count neighbors for this edge std::vector neighbors; for (const VD::edge_type* neighbor = twin->rot_next(); neighbor != twin; neighbor = neighbor->rot_next()) { if (valid_edges.count(neighbor) > 0) neighbors.push_back(neighbor); } // if we have a single neighbor then we can continue recursively if (neighbors.size() == 1) { const VD::edge_type* neighbor = neighbors.front(); // break if this is a closed loop if (edges.count(neighbor) == 0) return; Point new_point(neighbor->vertex1()->x(), neighbor->vertex1()->y()); polyline->points.push_back(new_point); polyline->width.push_back(thickness[neighbor].second); (void)edges.erase(neighbor); (void)edges.erase(neighbor->twin()); edge = neighbor; } else if (neighbors.size() == 0) { polyline->endpoints.second = true; return; } else { // T-shaped or star-shaped joint return; } } } bool MedialAxis::validate_edge(const VD::edge_type* edge, Lines &lines, std::map > &thickness) { // prevent overflows and detect almost-infinite edges if (std::abs(edge->vertex0()->x()) > double(CLIPPER_MAX_COORD_UNSCALED) || std::abs(edge->vertex0()->y()) > double(CLIPPER_MAX_COORD_UNSCALED) || std::abs(edge->vertex1()->x()) > double(CLIPPER_MAX_COORD_UNSCALED) || std::abs(edge->vertex1()->y()) > double(CLIPPER_MAX_COORD_UNSCALED) || std::isnan(edge->vertex0()->x()) || std::isnan(edge->vertex0()->y()) || std::isnan(edge->vertex1()->x()) || std::isnan(edge->vertex1()->y()) ) return false; // construct the line representing this edge of the Voronoi diagram const Line line( Point( edge->vertex0()->x(), edge->vertex0()->y() ), Point( edge->vertex1()->x(), edge->vertex1()->y() ) ); // discard edge if it lies outside the supplied shape // this could maybe be optimized (checking inclusion of the endpoints // might give false positives as they might belong to the contour itself) if (line.a.coincides_with_epsilon(line.b)) { // in this case, contains(line) returns a false positive if (!this->expolygon.contains(line.a)) return false; } else { //test if (!expolygon.contains(line)) //this if isn't perfect (the middle of the line may still be out of the polygon) //but this edge-case shouldn't occur anyway, by the way the voronoi is built. if (!expolygon.contains(line.a) || !expolygon.contains(line.b)) { //this if reduced diff_pl from 25% to 18% cpu usage //this line can count for 25% of slicing time, if not enclosed in if Polylines external_bits = diff_pl(Polylines{ Polyline{ line.a, line.b } }, expolygon); if (!external_bits.empty()) { //check if the bits that are not inside are under epsilon length coordf_t max_length = 0; for (Polyline& poly : external_bits) { max_length = std::max(max_length, poly.length()); } if (max_length > SCALED_EPSILON) return false; } } } // retrieve the original line segments which generated the edge we're checking const VD::cell_type* cell_l = edge->cell(); const VD::cell_type* cell_r = edge->twin()->cell(); const Line &segment_l = this->retrieve_segment(cell_l, lines); const Line &segment_r = this->retrieve_segment(cell_r, lines); //SVG svg("edge.svg"); //svg.draw(this->expolygon.expolygon); //svg.draw(line); //svg.draw(segment_l, "red"); //svg.draw(segment_r, "blue"); //svg.Close(); // /* Calculate thickness of the cross-section at both the endpoints of this edge. Our Voronoi edge is part of a CCW sequence going around its Voronoi cell located on the left side. (segment_l). This edge's twin goes around segment_r. Thus, segment_r is oriented in the same direction as our main edge, and segment_l is oriented in the same direction as our twin edge. We used to only consider the (half-)distances to segment_r, and that works whenever segment_l and segment_r are almost specular and facing. However, at curves they are staggered and they only face for a very little length (our very short edge represents such visibility). Both w0 and w1 can be calculated either towards cell_l or cell_r with equal results by Voronoi definition. When cell_l or cell_r don't refer to the segment but only to an endpoint, we calculate the distance to that endpoint instead. */ coordf_t w0 = cell_r->contains_segment() ? line.a.distance_to(segment_r)*2 : line.a.distance_to(this->retrieve_endpoint(cell_r, lines))*2; coordf_t w1 = cell_l->contains_segment() ? line.b.distance_to(segment_l)*2 : line.b.distance_to(this->retrieve_endpoint(cell_l, lines))*2; //don't remove the line that goes to the intersection of the contour // we use them to create nicer thin wall lines //if (cell_l->contains_segment() && cell_r->contains_segment()) { // // calculate the relative angle between the two boundary segments // double angle = fabs(segment_r.orientation() - segment_l.orientation()); // if (angle > PI) angle = 2*PI - angle; // assert(angle >= 0 && angle <= PI); // // // fabs(angle) ranges from 0 (collinear, same direction) to PI (collinear, opposite direction) // // we're interested only in segments close to the second case (facing segments) // // so we allow some tolerance. // // this filter ensures that we're dealing with a narrow/oriented area (longer than thick) // // we don't run it on edges not generated by two segments (thus generated by one segment // // and the endpoint of another segment), since their orientation would not be meaningful // if (PI - angle > PI/8) { // // angle is not narrow enough // // // only apply this filter to segments that are not too short otherwise their // // angle could possibly be not meaningful // if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON || line.length() >= this->min_width) // return false; // } //} else { // if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON) // return false; //} // don't do that before we try to fusion them //if (w0 < this->min_width && w1 < this->min_width) // return false; // //shouldn't occur if perimeter_generator is well made. *1.05 for a little wiggle room if (w0 > this->max_width*1.05 && w1 > this->max_width*1.05) return false; thickness[edge] = std::make_pair(w0, w1); thickness[edge->twin()] = std::make_pair(w1, w0); return true; } const Line& MedialAxis::retrieve_segment(const VD::cell_type* cell, Lines& lines) const { return lines[cell->source_index()]; } const Point& MedialAxis::retrieve_endpoint(const VD::cell_type* cell, Lines &lines) const { const Line& line = this->retrieve_segment(cell, lines); if (cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) { return line.a; } else { return line.b; } } /// remove point that are at SCALED_EPSILON * 2 distance. void remove_point_too_near(ThickPolyline* to_reduce) { const coord_t smallest = (coord_t)SCALED_EPSILON * 2; size_t id = 1; while (id < to_reduce->points.size() - 1) { coord_t newdist = (coord_t)std::min(to_reduce->points[id].distance_to(to_reduce->points[id - 1]) , to_reduce->points[id].distance_to(to_reduce->points[id + 1])); if (newdist < smallest) { to_reduce->points.erase(to_reduce->points.begin() + id); to_reduce->width.erase(to_reduce->width.begin() + id); newdist = (coord_t)to_reduce->points[id].distance_to(to_reduce->points[id - 1]); //if you removed a point, it check if the next one isn't too near from the previous one. // if not, it bypass it. if (newdist > smallest) { ++id; } } //go to next one else ++id; } } /// add points from pattern to to_modify at the same % of the length /// so not add if an other point is present at the correct position void add_point_same_percent(ThickPolyline* pattern, ThickPolyline* to_modify) { const coordf_t to_modify_length = to_modify->length(); const double percent_epsilon = SCALED_EPSILON / to_modify_length; const coordf_t pattern_length = pattern->length(); double percent_length = 0; for (size_t idx_point = 1; idx_point < pattern->points.size() - 1; ++idx_point) { percent_length += pattern->points[idx_point-1].distance_to(pattern->points[idx_point]) / pattern_length; //find position size_t idx_other = 1; double percent_length_other_before = 0; double percent_length_other = 0; while (idx_other < to_modify->points.size()) { percent_length_other_before = percent_length_other; percent_length_other += to_modify->points[idx_other-1].distance_to(to_modify->points[idx_other]) / to_modify_length; if (percent_length_other > percent_length - percent_epsilon) { //if higher (we have gone over it) break; } ++idx_other; } if (percent_length_other > percent_length + percent_epsilon) { //insert a new point before the position double percent_dist = (percent_length - percent_length_other_before) / (percent_length_other - percent_length_other_before); coordf_t new_width = to_modify->width[idx_other - 1] * (1 - percent_dist); new_width += to_modify->width[idx_other] * (percent_dist); to_modify->width.insert(to_modify->width.begin() + idx_other, new_width); to_modify->points.insert( to_modify->points.begin() + idx_other, to_modify->points[idx_other - 1].interpolate(percent_dist, to_modify->points[idx_other])); } } } /// find the nearest angle in the contour (or 2 nearest if it's difficult to choose) /// return 1 for an angle of 90° and 0 for an angle of 0° or 180° /// find the nearest angle in the contour (or 2 nearest if it's difficult to choose) /// return 1 for an angle of 90° and 0 for an angle of 0° or 180° double get_coeff_from_angle_countour(Point &point, const ExPolygon &contour, coord_t min_dist_between_point) { coordf_t nearest_dist = point.distance_to(contour.contour.points.front()); Point point_nearest = contour.contour.points.front(); size_t id_nearest = 0; coordf_t near_dist = nearest_dist; Point point_near = point_nearest; size_t id_near = 0; for (size_t id_point = 1; id_point < contour.contour.points.size(); ++id_point) { if (nearest_dist > point.distance_to(contour.contour.points[id_point])) { //update point_near id_near = id_nearest; point_near = point_nearest; near_dist = nearest_dist; //update nearest nearest_dist = point.distance_to(contour.contour.points[id_point]); point_nearest = contour.contour.points[id_point]; id_nearest = id_point; } } double angle = 0; size_t id_before = id_nearest == 0 ? contour.contour.points.size() - 1 : id_nearest - 1; Point point_before = id_nearest == 0 ? contour.contour.points.back() : contour.contour.points[id_nearest - 1]; //Search one point far enough to be relevant while (point_nearest.distance_to(point_before) < min_dist_between_point) { point_before = id_before == 0 ? contour.contour.points.back() : contour.contour.points[id_before - 1]; id_before = id_before == 0 ? contour.contour.points.size() - 1 : id_before - 1; //don't loop if (id_before == id_nearest) { id_before = id_nearest == 0 ? contour.contour.points.size() - 1 : id_nearest - 1; point_before = id_nearest == 0 ? contour.contour.points.back() : contour.contour.points[id_nearest - 1]; break; } } size_t id_after = id_nearest == contour.contour.points.size() - 1 ? 0 : id_nearest + 1; Point point_after = id_nearest == contour.contour.points.size() - 1 ? contour.contour.points.front() : contour.contour.points[id_nearest + 1]; //Search one point far enough to be relevant while (point_nearest.distance_to(point_after) < min_dist_between_point) { point_after = id_after == contour.contour.points.size() - 1 ? contour.contour.points.front() : contour.contour.points[id_after + 1]; id_after = id_after == contour.contour.points.size() - 1 ? 0 : id_after + 1; //don't loop if (id_after == id_nearest) { id_after = id_nearest == contour.contour.points.size() - 1 ? 0 : id_nearest + 1; point_after = id_nearest == contour.contour.points.size() - 1 ? contour.contour.points.front() : contour.contour.points[id_nearest + 1]; break; } } //compute angle angle = point_nearest.ccw_angle(point_before, point_after); if (angle >= PI) angle = 2 * PI - angle; // smaller angle //compute the diff from 90° angle = abs(angle - PI / 2); if (point_near.coincides_with(point_nearest) && std::max(nearest_dist, near_dist) + SCALED_EPSILON < point_nearest.distance_to(point_near)) { //not only nearest Point point_before = id_near == 0 ? contour.contour.points.back() : contour.contour.points[id_near - 1]; Point point_after = id_near == contour.contour.points.size() - 1 ? contour.contour.points.front() : contour.contour.points[id_near + 1]; double angle2 = std::min(point_nearest.ccw_angle(point_before, point_after), point_nearest.ccw_angle(point_after, point_before)); angle2 = abs(angle - PI / 2); angle = (angle + angle2) / 2; } return 1 - (angle / (PI / 2)); } double dot(Line l1, Line l2) { Vec2d v_1(l1.b.x() - l1.a.x(), l1.b.y() - l1.a.y()); v_1.normalize(); Vec2d v_2(l2.b.x() - l2.a.x(), l2.b.y() - l2.a.y()); v_2.normalize(); return v_1.x()*v_2.x() + v_1.y()*v_2.y(); } void MedialAxis::fusion_curve(ThickPolylines &pp) { //fusion Y with only 1 '0' value => the "0" branch "pull" the cross-point bool changes = false; for (size_t i = 0; i < pp.size(); ++i) { ThickPolyline& polyline = pp[i]; // only consider 2-point polyline with endpoint //if (polyline.points.size() != 2) continue; // too restrictive. if (polyline.endpoints.first) polyline.reverse(); else if (!polyline.endpoints.second) continue; if (polyline.width.back() > EPSILON) continue; //check my length is small coord_t length = (coord_t)polyline.length(); if (length > this->max_width) continue; size_t closest_point_idx = this->expolygon.contour.closest_point_index(polyline.points.back()); //check the 0-width point is on the contour. if (closest_point_idx == (size_t)-1) continue; size_t prev_idx = closest_point_idx == 0 ? this->expolygon.contour.points.size() - 1 : closest_point_idx - 1; size_t next_idx = closest_point_idx == this->expolygon.contour.points.size() - 1 ? 0 : closest_point_idx + 1; double mindot = 1; mindot = std::min(mindot, abs(dot(Line(polyline.points[polyline.points.size() - 1], polyline.points[polyline.points.size() - 2]), (Line(this->expolygon.contour.points[closest_point_idx], this->expolygon.contour.points[prev_idx]))))); mindot = std::min(mindot, abs(dot(Line(polyline.points[polyline.points.size() - 1], polyline.points[polyline.points.size() - 2]), (Line(this->expolygon.contour.points[closest_point_idx], this->expolygon.contour.points[next_idx]))))); //compute angle double coeff_contour_angle = this->expolygon.contour.points[closest_point_idx].ccw_angle(this->expolygon.contour.points[prev_idx], this->expolygon.contour.points[next_idx]); if (coeff_contour_angle >= PI) coeff_contour_angle = 2 * PI - coeff_contour_angle; // smaller angle //compute the diff from 90° coeff_contour_angle = abs(coeff_contour_angle - PI / 2); // look if other end is a cross point with almost 90° angle double sum_dot = 0; double min_dot = 0; // look if other end is a cross point with multiple other branch std::vector crosspoint; for (size_t j = 0; j < pp.size(); ++j) { if (j == i) continue; ThickPolyline& other = pp[j]; if (polyline.first_point().coincides_with(other.last_point())) { other.reverse(); crosspoint.push_back(j); double dot_temp = dot(Line(polyline.points[0], polyline.points[1]), (Line(other.points[0], other.points[1]))); min_dot = std::min(min_dot, abs(dot_temp)); sum_dot += dot_temp; } else if (polyline.first_point().coincides_with(other.first_point())) { crosspoint.push_back(j); double dot_temp = dot(Line(polyline.points[0], polyline.points[1]), (Line(other.points[0], other.points[1]))); min_dot = std::min(min_dot, abs(dot_temp)); sum_dot += dot_temp; } } sum_dot = abs(sum_dot); //only consider very shallow angle for contour if (mindot > 0.15 && (1 - (coeff_contour_angle / (PI / 2))) > 0.2) continue; //check if it's a line that we can pull if (crosspoint.size() != 2) continue; if (sum_dot > 0.2) continue; if (min_dot > 0.5) continue; //don't remove useful bits. TODO: use the mindot to know by how much to multiply (1 when 90°, 1.42 when 45+, 1 when 0°) if (polyline.length() > polyline.width.front()*1.42) continue; //don't pull, it distords the line if there are too many points. //// pull it a bit, depends on my size, the dot?, and the coeff at my 0-end (~14% for a square, almost 0 for a gentle curve) //coord_t length_pull = polyline.length(); //length_pull *= 0.144 * get_coeff_from_angle_countour(polyline.points.back(), this->expolygon, std::min(min_width, polyline.length() / 2)); ////compute dir //Vectorf pull_direction(polyline.points[1].x() - polyline.points[0].x(), polyline.points[1].y() - polyline.points[0].y()); //pull_direction = normalize(pull_direction); //pull_direction.x() *= length_pull; //pull_direction.y() *= length_pull; ////pull the points //Point &p1 = pp[crosspoint[0]].points[0]; //p1.x() = p1.x() + (coord_t)pull_direction.x(); //p1.y() = p1.y() + (coord_t)pull_direction.y(); //Point &p2 = pp[crosspoint[1]].points[0]; //p2.x() = p2.x() + (coord_t)pull_direction.x(); //p2.y() = p2.y() + (coord_t)pull_direction.y(); //delete the now unused polyline pp.erase(pp.begin() + i); --i; changes = true; } if (changes) { concatThickPolylines(pp); ///reorder, in case of change std::sort(pp.begin(), pp.end(), [](const ThickPolyline & a, const ThickPolyline & b) { return a.length() < b.length(); }); //have to redo it to remove multi-branch bits. fusion_curve(pp); } } void MedialAxis::remove_bits(ThickPolylines &pp) { //remove small bits that stick out of the path bool changes = false; for (size_t i = 0; i < pp.size(); ++i) { ThickPolyline& polyline = pp[i]; // only consider polyline with 0-end if (polyline.endpoints.first) polyline.reverse(); else if (!polyline.endpoints.second) continue; if (polyline.width.back() > 0) continue; //check my length is small coordf_t length = polyline.length(); if (length > coordf_t(this->max_width) * 1.5) { continue; } // look if other end is a cross point with multiple other branch std::vector crosspoint; for (size_t j = 0; j < pp.size(); ++j) { if (j == i) continue; ThickPolyline& other = pp[j]; if (polyline.first_point().coincides_with(other.last_point())) { other.reverse(); crosspoint.push_back(j); } else if (polyline.first_point().coincides_with(other.first_point())) { crosspoint.push_back(j); } } if (crosspoint.size() < 2) continue; //check if is smaller or the other ones are not endpoits int nb_better_than_me = 0; for (int i = 0; i < crosspoint.size(); i++) { if (!pp[crosspoint[0]].endpoints.second || length <= pp[crosspoint[0]].length()) nb_better_than_me++; } if (nb_better_than_me < 2) continue; //check if the length of the polyline is small vs width of the other lines coord_t local_max_width = 0; for (int i = 0; i < crosspoint.size(); i++) { local_max_width = std::max(local_max_width, pp[crosspoint[i]].width[0]); } if (length > coordf_t(local_max_width + min_width)) continue; //delete the now unused polyline pp.erase(pp.begin() + i); --i; changes = true; } if (changes) { concatThickPolylines(pp); ///reorder, in case of change std::sort(pp.begin(), pp.end(), [](const ThickPolyline & a, const ThickPolyline & b) { return a.length() < b.length(); }); } } void MedialAxis::fusion_corners(ThickPolylines &pp) { //fusion Y with only 1 '0' value => the "0" branch "pull" the cross-point bool changes = false; for (size_t i = 0; i < pp.size(); ++i) { ThickPolyline& polyline = pp[i]; // only consider polyline with 0-end //if (polyline.points.size() != 2) continue; // maybe we should have something to merge X-point to 2-point if it's near enough. if (polyline.endpoints.first) polyline.reverse(); else if (!polyline.endpoints.second) continue; //check my length is small coord_t length = (coord_t)polyline.length(); if (length > this->max_width) continue; // look if other end is a cross point with multiple other branch std::vector crosspoint; for (size_t j = 0; j < pp.size(); ++j) { if (j == i) continue; ThickPolyline& other = pp[j]; if (polyline.first_point().coincides_with(other.last_point())) { other.reverse(); crosspoint.push_back(j); } else if (polyline.first_point().coincides_with(other.first_point())) { crosspoint.push_back(j); } } //check if it's a line that we can pull if (crosspoint.size() != 2) continue; // check if i am at the external side of a curve double angle1 = polyline.points[0].ccw_angle(polyline.points[1], pp[crosspoint[0]].points[1]); if (angle1 >= PI) angle1 = 2 * PI - angle1; // smaller angle double angle2 = polyline.points[0].ccw_angle(polyline.points[1], pp[crosspoint[1]].points[1]); if (angle2 >= PI) angle2 = 2 * PI - angle2; // smaller angle if (angle1 + angle2 < PI) continue; //check if is smaller or the other ones are not endpoits if (pp[crosspoint[0]].endpoints.second && length > pp[crosspoint[0]].length()) continue; if (pp[crosspoint[1]].endpoints.second && length > pp[crosspoint[1]].length()) continue; if (polyline.width.back() > 0) { //FIXME: also pull (a bit less) points that are near to this one. // if true, pull it a bit, depends on my size, the dot?, and the coeff at my 0-end (~14% for a square, almost 0 for a gentle curve) coord_t length_pull = (coord_t)polyline.length(); length_pull *= (coord_t)(0.144 * get_coeff_from_angle_countour( polyline.points.back(), this->expolygon, std::min(min_width, (coord_t)(polyline.length() / 2)))); //compute dir Vec2d pull_direction(polyline.points[1].x() - polyline.points[0].x(), polyline.points[1].y() - polyline.points[0].y()); pull_direction.normalize(); pull_direction.x() *= length_pull; pull_direction.y() *= length_pull; //pull the points Point& p1 = pp[crosspoint[0]].points[0]; p1.x() = p1.x() + (coord_t)pull_direction.x(); p1.y() = p1.y() + (coord_t)pull_direction.y(); Point& p2 = pp[crosspoint[1]].points[0]; p2.x() = p2.x() + (coord_t)pull_direction.x(); p2.y() = p2.y() + (coord_t)pull_direction.y(); } //delete the now unused polyline pp.erase(pp.begin() + i); --i; changes = true; } if (changes) { concatThickPolylines(pp); ///reorder, in case of change std::sort(pp.begin(), pp.end(), [](const ThickPolyline & a, const ThickPolyline & b) { return a.length() < b.length(); }); } } void MedialAxis::extends_line_both_side(ThickPolylines& pp) { const ExPolygons anchors = offset2_ex(to_polygons(diff_ex(*this->bounds, this->expolygon)), double(-SCALED_RESOLUTION), double(SCALED_RESOLUTION)); for (size_t i = 0; i < pp.size(); ++i) { ThickPolyline& polyline = pp[i]; this->extends_line(polyline, anchors, this->min_width); if (!polyline.points.empty()) { polyline.reverse(); this->extends_line(polyline, anchors, this->min_width); } if (polyline.points.empty()) { pp.erase(pp.begin() + i); --i; } } } void MedialAxis::extends_line(ThickPolyline& polyline, const ExPolygons& anchors, const coord_t join_width) { // extend initial and final segments of each polyline if they're actual endpoints // We assign new endpoints to temporary variables because in case of a single-line // polyline, after we extend the start point it will be caught by the intersection() // call, so we keep the inner point until we perform the second intersection() as well if (polyline.endpoints.second && !bounds->has_boundary_point(polyline.points.back())) { size_t first_idx = polyline.points.size() - 2; Line line(*(polyline.points.begin() + first_idx), polyline.points.back()); while (line.length() < SCALED_RESOLUTION && first_idx>0) { first_idx--; line.a = *(polyline.points.begin() + first_idx); } // prevent the line from touching on the other side, otherwise intersection() might return that solution if (polyline.points.size() == 2 && this->expolygon.contains(line.midpoint())) line.a = line.midpoint(); line.extend_end((double)this->max_width); Point new_back; if (this->expolygon.contour.has_boundary_point(polyline.points.back())) { new_back = polyline.points.back(); } else { bool finded = this->expolygon.contour.first_intersection(line, &new_back); //verify also for holes. Point new_back_temp; for (Polygon hole : this->expolygon.holes) { if (hole.first_intersection(line, &new_back_temp)) { if (!finded || line.a.distance_to(new_back_temp) < line.a.distance_to(new_back)) { finded = true; new_back = new_back_temp; } } } // safety check if no intersection if (!finded) { if (!this->expolygon.contains(line.b)) { //it's outside!!! //if (!this->expolygon.contains(line.a)) { // std::cout << "Error, a line is formed that start outside a polygon, end outside of it and don't cross it!\n"; //} else { // std::cout << "Error, a line is formed that start in a polygon, end outside of it and don't cross it!\n"; //} //{ // std::stringstream stri; // stri << "Error_" << (count_error++) << ".svg"; // SVG svg(stri.str()); // svg.draw(anchors); // svg.draw(this->expolygon); // svg.draw(line); // svg.draw(polyline); // svg.Close(); //} //it's not possible to print that polyline.points.clear(); polyline.width.clear(); return; } new_back = line.b; } polyline.points.push_back(new_back); polyline.width.push_back(polyline.width.back()); } Point new_bound; bool finded = bounds->contour.first_intersection(line, &new_bound); //verify also for holes. Point new_bound_temp; for (Polygon hole : bounds->holes) { if (hole.first_intersection(line, &new_bound_temp)) { if (!finded || line.a.distance_to(new_bound_temp) < line.a.distance_to(new_bound)) { finded = true; new_bound = new_bound_temp; } } } // safety check if no intersection if (!finded) { if (line.b.coincides_with_epsilon(polyline.points.back())) return; //check if we don't over-shoot inside us bool is_in_anchor = false; for (const ExPolygon& a : anchors) { if (a.contains(line.b)) { is_in_anchor = true; break; } } if (!is_in_anchor) return; new_bound = line.b; } /* if (new_bound.coincides_with_epsilon(new_back)) { return; }*/ // find anchor Point best_anchor; coordf_t shortest_dist = (coordf_t)this->max_width; for (const ExPolygon& a : anchors) { Point p_maybe_inside = a.contour.centroid(); coordf_t test_dist = new_bound.distance_to(p_maybe_inside) + new_back.distance_to(p_maybe_inside); //if (test_dist < max_width / 2 && (test_dist < shortest_dist || shortest_dist < 0)) { double angle_test = new_back.ccw_angle(p_maybe_inside, line.a); if (angle_test > PI) angle_test = 2 * PI - angle_test; if (test_dist < (coordf_t)this->max_width && test_dist PI / 2) { shortest_dist = test_dist; best_anchor = p_maybe_inside; } } if (best_anchor.x() != 0 && best_anchor.y() != 0) { Point p_obj = best_anchor + new_bound; p_obj.x() /= 2; p_obj.y() /= 2; Line l2 = Line(new_back, p_obj); l2.extend_end((coordf_t)this->max_width); (void)bounds->contour.first_intersection(l2, &new_bound); } if (new_bound.coincides_with_epsilon(new_back)) return; polyline.points.push_back(new_bound); //polyline.width.push_back(join_width); //it thickens the line a bit too early, imo polyline.width.push_back(polyline.width.back()); } } void MedialAxis::main_fusion(ThickPolylines& pp) { //int idf = 0; bool changes = true; std::map coeff_angle_cache; while (changes) { concatThickPolylines(pp); //reoder pp by length (ascending) It's really important to do that to avoid building the line from the width insteand of the length std::sort(pp.begin(), pp.end(), [](const ThickPolyline & a, const ThickPolyline & b) { bool ahas0 = a.width.front() == 0 || a.width.back() == 0; bool bhas0 = b.width.front() == 0 || b.width.back() == 0; if (ahas0 && !bhas0) return true; if (!ahas0 && bhas0) return false; return a.length() < b.length(); }); changes = false; for (size_t i = 0; i < pp.size(); ++i) { ThickPolyline& polyline = pp[i]; //simple check to see if i can be fusionned if (!polyline.endpoints.first && !polyline.endpoints.second) continue; ThickPolyline* best_candidate = nullptr; float best_dot = -1; size_t best_idx = 0; double dot_poly_branch = 0; double dot_candidate_branch = 0; bool find_main_branch = false; size_t biggest_main_branch_id = 0; coord_t biggest_main_branch_length = 0; // find another polyline starting here for (size_t j = i + 1; j < pp.size(); ++j) { ThickPolyline& other = pp[j]; if (polyline.last_point().coincides_with(other.last_point())) { polyline.reverse(); other.reverse(); } else if (polyline.first_point().coincides_with(other.last_point())) { other.reverse(); } else if (polyline.first_point().coincides_with(other.first_point())) { } else if (polyline.last_point().coincides_with(other.first_point())) { polyline.reverse(); } else { continue; } //std::cout << " try : " << i << ":" << j << " : " << // (polyline.points.size() < 2 && other.points.size() < 2) << // (!polyline.endpoints.second || !other.endpoints.second) << // ((polyline.points.back().distance_to(other.points.back()) // + (polyline.width.back() + other.width.back()) / 4) // > max_width*1.05) << // (abs(polyline.length() - other.length()) > max_width) << "\n"; //// mergeable tests if (polyline.points.size() < 2 && other.points.size() < 2) continue; if (!polyline.endpoints.second || !other.endpoints.second) continue; // test if the new width will not be too big if a fusion occur //note that this isn't the real calcul. It's just to avoid merging lines too far apart. if ( ((polyline.points.back().distance_to(other.points.back()) + (polyline.width.back() + other.width.back()) / 4) > this->max_width *1.05)) continue; // test if the lines are not too different in length. if (abs(polyline.length() - other.length()) > (coordf_t)this->max_width) continue; //test if we don't merge with something too different and without any relevance. double coeffSizePolyI = 1; if (polyline.width.back() == 0) { coeffSizePolyI = 0.1 + 0.9*get_coeff_from_angle_countour(polyline.points.back(), this->expolygon, std::min(min_width, (coord_t)(polyline.length() / 2))); } double coeffSizeOtherJ = 1; if (other.width.back() == 0) { coeffSizeOtherJ = 0.1 + 0.9*get_coeff_from_angle_countour(other.points.back(), this->expolygon, std::min(min_width, (coord_t)(polyline.length() / 2))); } //std::cout << " try2 : " << i << ":" << j << " : " // << (abs(polyline.length()*coeffSizePolyI - other.length()*coeffSizeOtherJ) > max_width / 2) // << (abs(polyline.length()*coeffSizePolyI - other.length()*coeffSizeOtherJ) > max_width) // << "\n"; if (abs(polyline.length()*coeffSizePolyI - other.length()*coeffSizeOtherJ) > (coordf_t)(this->max_width / 2)) continue; //compute angle to see if it's better than previous ones (straighter = better). //we need to add how strait we are from our main. float test_dot = (float)(dot(polyline.lines().front(), other.lines().front())); // Get the branch/line in wich we may merge, if possible // with that, we can decide what is important, and how we can merge that. // angle_poly - angle_candi =90° => one is useless // both angle are equal => both are useful with same strength // ex: Y => | both are useful to crete a nice line // ex2: TTTTT => ----- these 90° useless lines should be discarded find_main_branch = false; biggest_main_branch_id = 0; biggest_main_branch_length = 0; for (size_t k = 0; k < pp.size(); ++k) { //std::cout << "try to find main : " << k << " ? " << i << " " << j << " "; if (k == i || k == j) continue; ThickPolyline& main = pp[k]; if (polyline.first_point().coincides_with(main.last_point())) { main.reverse(); if (!main.endpoints.second) find_main_branch = true; else if (biggest_main_branch_length < main.length()) { biggest_main_branch_id = k; biggest_main_branch_length = (coord_t)main.length(); } } else if (polyline.first_point().coincides_with(main.first_point())) { if (!main.endpoints.second) find_main_branch = true; else if (biggest_main_branch_length < main.length()) { biggest_main_branch_id = k; biggest_main_branch_length = (coord_t)main.length(); } } if (find_main_branch) { //use this variable to store the good index and break to compute it biggest_main_branch_id = k; break; } } double dot_poly_branch_test = 0.707; double dot_candidate_branch_test = 0.707; if (!find_main_branch && biggest_main_branch_length == 0) { // nothing -> it's impossible! dot_poly_branch_test = 0.707; dot_candidate_branch_test = 0.707; //std::cout << "no main branch... impossible!!\n"; } else if (!find_main_branch && ( (pp[biggest_main_branch_id].length() < polyline.length() && (polyline.width.back() != 0 || pp[biggest_main_branch_id].width.back() ==0)) || (pp[biggest_main_branch_id].length() < other.length() && (other.width.back() != 0 || pp[biggest_main_branch_id].width.back() == 0)))) { //the main branch should have no endpoint or be bigger! //here, it have an endpoint, and is not the biggest -> bad! //std::cout << "he main branch should have no endpoint or be bigger! here, it have an endpoint, and is not the biggest -> bad!\n"; continue; } else { //compute the dot (biggest_main_branch_id) dot_poly_branch_test = -dot(Line(polyline.points[0], polyline.points[1]), Line(pp[biggest_main_branch_id].points[0], pp[biggest_main_branch_id].points[1])); dot_candidate_branch_test = -dot(Line(other.points[0], other.points[1]), Line(pp[biggest_main_branch_id].points[0], pp[biggest_main_branch_id].points[1])); if (dot_poly_branch_test < 0) dot_poly_branch_test = 0; if (dot_candidate_branch_test < 0) dot_candidate_branch_test = 0; if (pp[biggest_main_branch_id].width.back()>0) test_dot += 2 * (float)dot_poly_branch; //std::cout << "compute dot "<< dot_poly_branch_test<<" & "<< dot_candidate_branch_test <<"\n"; } //test if it's useful to merge or not //ie, don't merge 'T' but ok for 'Y', merge only lines of not disproportionate different length (ratio max: 4) (or they are both with 0-width end) if (dot_poly_branch_test < 0.1 || dot_candidate_branch_test < 0.1 || ( ((polyline.length()>other.length() ? polyline.length() / other.length() : other.length() / polyline.length()) > 4) && !(polyline.width.back() == 0 && other.width.back()==0) )) { //std::cout << "not useful to merge\n"; continue; } if (test_dot > best_dot) { best_candidate = &other; best_idx = j; best_dot = test_dot; dot_poly_branch = dot_poly_branch_test; dot_candidate_branch = dot_candidate_branch_test; //{ // std::cout << "going to merge: b1=" << i << ", b2=" << best_idx << ", main=" << biggest_main_branch_id << "\n"; // std::cout << "b1=" << polyline.points.front().x() << " : " << polyline.points.front().y() << " => " << polyline.points.back().x() << " : " << polyline.points.back().y() << "\n"; // std::cout << "b2=" << other.points.front().x() << " : " << other.points.front().y() << " => " << other.points.back().x() << " : " << other.points.back().y() << "\n"; // std::cout << "main=" << pp[biggest_main_branch_id].points.front().x() << " : " << pp[biggest_main_branch_id].points.front().y() << " => " << pp[biggest_main_branch_id].points.back().x() << " : " << pp[biggest_main_branch_id].points.back().y() << "\n"; //} } } if (best_candidate != nullptr) { //idf++; //std::cout << " == fusion " << id <<" : "<< idf << " == with "<< i <<" & "<expolygon, std::min(min_width, (coord_t)(polyline.length() / 2)))); const double coeff_angle_candi = (coeff_angle_cache.find(best_candidate->points.back()) != coeff_angle_cache.end()) ? coeff_angle_cache[best_candidate->points.back()] : (get_coeff_from_angle_countour(best_candidate->points.back(), this->expolygon, std::min(min_width, (coord_t)(best_candidate->length() / 2)))); //this will encourage to follow the curve, a little, because it's shorter near the center //without that, it tends to go to the outter rim. //std::cout << " std::max(polyline.length(), best_candidate->length())=" << std::max(polyline.length(), best_candidate->length()) // << ", polyline.length()=" << polyline.length() // << ", best_candidate->length()=" << best_candidate->length() // << ", polyline.length() / max=" << (polyline.length() / std::max(polyline.length(), best_candidate->length())) // << ", best_candidate->length() / max=" << (best_candidate->length() / std::max(polyline.length(), best_candidate->length())) // << "\n"; double weight_poly = 2 - (polyline.length() / std::max(polyline.length(), best_candidate->length())); double weight_candi = 2 - (best_candidate->length() / std::max(polyline.length(), best_candidate->length())); weight_poly *= coeff_angle_poly; weight_candi *= coeff_angle_candi; const double coeff_poly = (dot_poly_branch * weight_poly) / (dot_poly_branch * weight_poly + dot_candidate_branch * weight_candi); const double coeff_candi = 1.0 - coeff_poly; //std::cout << "coeff_angle_poly=" << coeff_angle_poly // << ", coeff_angle_candi=" << coeff_angle_candi // << ", weight_poly=" << (2 - (polyline.length() / std::max(polyline.length(), best_candidate->length()))) // << ", weight_candi=" << (2 - (best_candidate->length() / std::max(polyline.length(), best_candidate->length()))) // << ", sumpoly=" << weight_poly // << ", sumcandi=" << weight_candi // << ", dot_poly_branch=" << dot_poly_branch // << ", dot_candidate_branch=" << dot_candidate_branch // << ", coeff_poly=" << coeff_poly // << ", coeff_candi=" << coeff_candi // << "\n"; //iterate the points // as voronoi should create symetric thing, we can iterate synchonously size_t idx_point = 1; while (idx_point < std::min(polyline.points.size(), best_candidate->points.size())) { //fusion polyline.points[idx_point].x() = (coord_t)( polyline.points[idx_point].x() * coeff_poly + best_candidate->points[idx_point].x() * coeff_candi); polyline.points[idx_point].y() = (coord_t)(polyline.points[idx_point].y() * coeff_poly + best_candidate->points[idx_point].y() * coeff_candi); // The width decrease with distance from the centerline. // This formula is what works the best, even if it's not perfect (created empirically). 0->3% error on a gap fill on some tests. //If someone find an other formula based on the properties of the voronoi algorithm used here, and it works better, please use it. //or maybe just use the distance to nearest edge in bounds... double value_from_current_width = 0.5*polyline.width[idx_point] * dot_poly_branch / std::max(dot_poly_branch, dot_candidate_branch); value_from_current_width += 0.5*best_candidate->width[idx_point] * dot_candidate_branch / std::max(dot_poly_branch, dot_candidate_branch); double value_from_dist = 2 * polyline.points[idx_point].distance_to(best_candidate->points[idx_point]); value_from_dist *= sqrt(std::min(dot_poly_branch, dot_candidate_branch) / std::max(dot_poly_branch, dot_candidate_branch)); polyline.width[idx_point] = value_from_current_width + value_from_dist; //std::cout << "width:" << polyline.width[idx_point] << " = " << value_from_current_width << " + " << value_from_dist // << " (<" << max_width << " && " << (bounds.contour.closest_point(polyline.points[idx_point])->distance_to(polyline.points[idx_point]) * 2.1)<<")\n"; //failsafes if (polyline.width[idx_point] > this->max_width) polyline.width[idx_point] = this->max_width; //failsafe: try to not go out of the radius of the section, take the width of the merging point for that. (and with some offset) coord_t main_branch_width = pp[biggest_main_branch_id].width.front(); coordf_t main_branch_dist = pp[biggest_main_branch_id].points.front().distance_to(polyline.points[idx_point]); coord_t max_width_from_main = (coord_t)std::sqrt(main_branch_width*main_branch_width + main_branch_dist*main_branch_dist); if (find_main_branch && polyline.width[idx_point] > max_width_from_main) polyline.width[idx_point] = max_width_from_main; if (find_main_branch && polyline.width[idx_point] > pp[biggest_main_branch_id].width.front() * 1.1) polyline.width[idx_point] = coord_t(pp[biggest_main_branch_id].width.front() * 1.1); //std::cout << "main fusion, max dist : " << max_width_from_main << "\n"; ++idx_point; } if (idx_point < best_candidate->points.size()) { if (idx_point + 1 < best_candidate->points.size()) { //create a new polyline pp.emplace_back(); best_candidate = &pp[best_idx]; // have to refresh the pointer, as the emplace_back() may have moved the array pp.back().endpoints.first = true; pp.back().endpoints.second = best_candidate->endpoints.second; for (size_t idx_point_new_line = idx_point; idx_point_new_line < best_candidate->points.size(); ++idx_point_new_line) { pp.back().points.push_back(best_candidate->points[idx_point_new_line]); pp.back().width.push_back(best_candidate->width[idx_point_new_line]); } } else { //Add last point polyline.points.push_back(best_candidate->points[idx_point]); polyline.width.push_back(best_candidate->width[idx_point]); //select if an end occur polyline.endpoints.second &= best_candidate->endpoints.second; } } else { //select if an end occur polyline.endpoints.second &= best_candidate->endpoints.second; } //remove points that are the same or too close each other, ie simplify for (size_t idx_point = 1; idx_point < polyline.points.size(); ++idx_point) { if (polyline.points[idx_point - 1].distance_to(polyline.points[idx_point]) < SCALED_EPSILON) { if (idx_point < polyline.points.size() - 1) { polyline.points.erase(polyline.points.begin() + idx_point); polyline.width.erase(polyline.width.begin() + idx_point); } else { polyline.points.erase(polyline.points.begin() + idx_point - 1); polyline.width.erase(polyline.width.begin() + idx_point - 1); } --idx_point; } } //remove points that are outside of the geometry for (size_t idx_point = 0; idx_point < polyline.points.size(); ++idx_point) { if (!bounds->contains_b(polyline.points[idx_point])) { polyline.points.erase(polyline.points.begin() + idx_point); polyline.width.erase(polyline.width.begin() + idx_point); --idx_point; } } if (polyline.points.size() < 2) { //remove self pp.erase(pp.begin() + i); --i; --best_idx; } else { //update cache coeff_angle_cache[polyline.points.back()] = coeff_angle_poly * coeff_poly + coeff_angle_candi * coeff_candi; } pp.erase(pp.begin() + best_idx); //{ // std::stringstream stri; // stri << "medial_axis_2.0_aft_fus_" << id << "_" << idf << ".svg"; // SVG svg(stri.str()); // svg.draw(bounds); // svg.draw(this->expolygon); // svg.draw(pp); // svg.Close(); //} changes = true; break; } } } } void MedialAxis::remove_too_thin_extrusion(ThickPolylines& pp) { // remove too thin extrusion at start & end of polylines bool changes = false; for (size_t i = 0; i < pp.size(); ++i) { ThickPolyline& polyline = pp[i]; // remove bits with too small extrusion while (polyline.points.size() > 1 && polyline.width.front() < this->min_width && polyline.endpoints.first) { //try to split if possible if (polyline.width[1] > min_width) { double percent_can_keep = (min_width - polyline.width[0]) / (polyline.width[1] - polyline.width[0]); if (polyline.points.front().distance_to(polyline.points[1]) * (1 - percent_can_keep) > SCALED_RESOLUTION) { //Can split => move the first point and assign a new weight. //the update of endpoints wil be performed in concatThickPolylines polyline.points.front() = polyline.points.front().interpolate(percent_can_keep, polyline.points[1]); polyline.width.front() = min_width; } else { /// almost 0-length, Remove polyline.points.erase(polyline.points.begin()); polyline.width.erase(polyline.width.begin()); } changes = true; break; } polyline.points.erase(polyline.points.begin()); polyline.width.erase(polyline.width.begin()); changes = true; } while (polyline.points.size() > 1 && polyline.width.back() < this->min_width && polyline.endpoints.second) { //try to split if possible if (polyline.width[polyline.points.size() - 2] > min_width) { double percent_can_keep = (min_width - polyline.width.back()) / (polyline.width[polyline.points.size() - 2] - polyline.width.back()); if (polyline.points.back().distance_to(polyline.points[polyline.points.size() - 2]) * (1 - percent_can_keep) > SCALED_RESOLUTION) { //Can split => move the first point and assign a new weight. //the update of endpoints wil be performed in concatThickPolylines polyline.points.back() = polyline.points.back().interpolate(percent_can_keep, polyline.points[polyline.points.size() - 2]); polyline.width.back() = min_width; } else { /// almost 0-length, Remove polyline.points.erase(polyline.points.end() - 1); polyline.width.erase(polyline.width.end() - 1); } changes = true; break; } polyline.points.erase(polyline.points.end() - 1); polyline.width.erase(polyline.width.end() - 1); changes = true; } //remove points and bits that comes from a "main line" if (polyline.points.size() < 2 || (changes && polyline.length() < this->max_width && polyline.points.size() ==2)) { //remove self if too small pp.erase(pp.begin() + i); --i; } } if (changes) concatThickPolylines(pp); } void MedialAxis::concatenate_polylines_with_crossing(ThickPolylines& pp) { // concatenate, but even where multiple thickpolyline join, to create nice long strait polylines /* If we removed any short polylines we now try to connect consecutive polylines in order to allow loop detection. Note that this algorithm is greedier than MedialAxis::process_edge_neighbors() as it will connect random pairs of polylines even when more than two start from the same point. This has no drawbacks since we optimize later using nearest-neighbor which would do the same, but should we use a more sophisticated optimization algorithm we should not connect polylines when more than two meet. Optimisation of the old algorithm : now we select the most "strait line" choice when we merge with an other line at a point with more than two meet. */ for (size_t i = 0; i < pp.size(); ++i) { ThickPolyline& polyline = pp[i]; if (polyline.endpoints.first && polyline.endpoints.second) continue; // optimization ThickPolyline* best_candidate = nullptr; float best_dot = -1; size_t best_idx = 0; // find another polyline starting here for (size_t j = 0; j < pp.size(); ++j) { if (j == i) continue; ThickPolyline& other = pp[j]; if (other.endpoints.first && other.endpoints.second) continue; bool me_reverse = false; bool other_reverse = false; if (polyline.last_point().coincides_with(other.last_point())) { other_reverse = true; } else if (polyline.first_point().coincides_with(other.last_point())) { me_reverse = true; other_reverse = true; } else if (polyline.first_point().coincides_with(other.first_point())) { me_reverse = true; } else if (!polyline.last_point().coincides_with(other.first_point())) { continue; } Vec2d v_poly(me_reverse ? polyline.lines().front().vector().x() : polyline.lines().back().vector().x(), me_reverse ? polyline.lines().front().vector().y() : polyline.lines().back().vector().y()); v_poly *= (1 / std::sqrt(v_poly.x()*v_poly.x() + v_poly.y()*v_poly.y())); Vec2d v_other(other_reverse ? other.lines().back().vector().x() : other.lines().front().vector().x(), other_reverse ? other.lines().back().vector().y() : other.lines().front().vector().y()); v_other *= (1 / std::sqrt(v_other.x()*v_other.x() + v_other.y()*v_other.y())); float other_dot = std::abs(float( v_poly.x()*v_other.x() + v_poly.y()*v_other.y() )); if (other_dot > best_dot) { best_candidate = &other; best_idx = j; best_dot = other_dot; } } if (best_candidate != nullptr && best_candidate->points.size() > 1) { if (polyline.last_point().coincides_with(best_candidate->last_point())) { best_candidate->reverse(); } else if (polyline.first_point().coincides_with(best_candidate->last_point())) { polyline.reverse(); best_candidate->reverse(); } else if (polyline.first_point().coincides_with(best_candidate->first_point())) { polyline.reverse(); } //intersections may create over-extrusion because the included circle can be a bit larger. We have to make it short again if needed. if (polyline.points.size() > 1 && best_candidate->points.size() > 1 && polyline.width.back() > polyline.width[polyline.width.size() - 2] && polyline.width.back() > best_candidate->width[1]) { polyline.width.back() = std::min(polyline.width[polyline.width.size() - 2], best_candidate->width[1]); } polyline.points.insert(polyline.points.end(), best_candidate->points.begin() + 1, best_candidate->points.end()); polyline.width.insert(polyline.width.end(), best_candidate->width.begin() + 1, best_candidate->width.end()); polyline.endpoints.second = best_candidate->endpoints.second; assert(polyline.width.size() == polyline.points.size()); if (best_idx < i) i--; pp.erase(pp.begin() + best_idx); } } } void MedialAxis::remove_too_thin_points(ThickPolylines& pp) { //remove too thin polylines points (inside a polyline : split it) for (size_t i = 0; i < pp.size(); ++i) { ThickPolyline* polyline = &pp[i]; // remove bits with too small extrusion size_t idx_point = 0; while (idx_pointpoints.size()) { if (polyline->width[idx_point] < min_width) { if (idx_point == 0) { //too thin at start polyline->points.erase(polyline->points.begin()); polyline->width.erase(polyline->width.begin()); idx_point = 0; } else if (idx_point == 1) { //too thin at start polyline->points.erase(polyline->points.begin()); polyline->width.erase(polyline->width.begin()); polyline->points.erase(polyline->points.begin()); polyline->width.erase(polyline->width.begin()); idx_point = 0; } else if (idx_point == polyline->points.size() - 2) { //too thin at (near) end polyline->points.erase(polyline->points.end() - 1); polyline->width.erase(polyline->width.end() - 1); polyline->points.erase(polyline->points.end() - 1); polyline->width.erase(polyline->width.end() - 1); } else if (idx_point == polyline->points.size() - 1) { //too thin at end polyline->points.erase(polyline->points.end() - 1); polyline->width.erase(polyline->width.end() - 1); } else { //too thin in middle : split pp.emplace_back(); polyline = &pp[i]; // have to refresh the pointer, as the emplace_back() may have moved the array ThickPolyline &newone = pp.back(); newone.points.insert(newone.points.begin(), polyline->points.begin() + idx_point + 1, polyline->points.end()); newone.width.insert(newone.width.begin(), polyline->width.begin() + idx_point + 1, polyline->width.end()); polyline->points.erase(polyline->points.begin() + idx_point, polyline->points.end()); polyline->width.erase(polyline->width.begin() + idx_point, polyline->width.end()); } } else idx_point++; if (polyline->points.size() < 2) { //remove self if too small pp.erase(pp.begin() + i); --i; break; } } } } void MedialAxis::remove_too_short_polylines(ThickPolylines& pp, const coord_t min_size) { // reduce the flow at the intersection ( + ) points //FIXME: TODO: note that crossings are unnafected right now. they may need a different codepath directly in their method //TODO: unit tests for that. //TODO: never triggered. ther's only the sections passed by crossing fusion that aren't edge-case and it's not treated by this. => comment for now //for each not-endpoint point //std::vector endpoint_not_used(pp.size() * 2, true); //for (size_t idx_endpoint = 0; idx_endpoint < endpoint_not_used.size(); idx_endpoint++) { // ThickPolyline& polyline = pp[idx_endpoint / 2]; // //update endpoint_not_used if not seen before // if (idx_endpoint % 2 == 0 && endpoint_not_used[idx_endpoint]) { // //update // endpoint_not_used[(idx_endpoint / 2)] = !polyline.endpoints.first; // endpoint_not_used[(idx_endpoint / 2) + 1] = endpoint_not_used[(idx_endpoint / 2) + 1] && !polyline.endpoints.second; // } // if (endpoint_not_used[idx_endpoint]) { // int nb_endpoints; // Point pt = idx_endpoint % 2 == 0 ? polyline.first_point() : polyline.last_point(); // if (idx_endpoint % 2 == 0 && pt.coincides_with(polyline.last_point())) { // nb_endpoints++; // endpoint_not_used[(idx_endpoint / 2) + 1] = false; // } // //good, now find other points // for (size_t idx_other_pp = (idx_endpoint / 2) + 1; idx_other_pp < pp.size(); idx_other_pp++) { // ThickPolyline& other = pp[idx_other_pp]; // if (pt.coincides_with(other.first_point())) { // nb_endpoints++; // endpoint_not_used[idx_other_pp * 2] = false; // } // if (pt.coincides_with(other.last_point())) { // nb_endpoints++; // endpoint_not_used[idx_other_pp * 2 + 1] = false; // } // } // if (nb_endpoints < 3) // continue; // // reduce width accordingly // float reduction = 2.f / nb_endpoints; // std::cout << "reduce " << reduction << " points!\n"; // if (idx_endpoint % 2 == 0 ) { // polyline.width.front() *= reduction; // if(pt.coincides_with(polyline.last_point())) // polyline.width.back() *= reduction; // } else { // polyline.width.back() *= reduction; // } // //good, now find other points // for (size_t idx_other_pp = (idx_endpoint / 2) + 1; idx_other_pp < pp.size(); idx_other_pp++) { // ThickPolyline& other = pp[idx_other_pp]; // if (pt.coincides_with(other.first_point())) { // other.width.front() *= reduction; // } // if (pt.coincides_with(other.last_point())) { // other.width.back() *= reduction; // } // } // //TODO: restore good width at width dist, or reduce other points up to width dist // } //} //remove too short polyline bool changes = true; while (changes) { changes = false; coordf_t shortest_size = (coordf_t) min_size; size_t shortest_idx = -1; for (size_t i = 0; i < pp.size(); ++i) { ThickPolyline& polyline = pp[i]; // Remove the shortest polylines : polyline that are shorter than wider // (we can't do this check before endpoints extension and clipping because we don't // know how long will the endpoints be extended since it depends on polygon thickness // which is variable - extension will be <= max_width/2 on each side) if ((polyline.endpoints.first || polyline.endpoints.second)) { coordf_t local_max_width = this->max_width / 2; for (coordf_t w : polyline.width) local_max_width = std::max(local_max_width, w); if(polyline.length() < local_max_width) { if (shortest_size > polyline.length()) { shortest_size = polyline.length(); shortest_idx = i; } } } } if (shortest_idx < pp.size()) { pp.erase(pp.begin() + shortest_idx); changes = true; } if (changes) concatThickPolylines(pp); } } void MedialAxis::check_width(ThickPolylines& pp, coord_t local_max_width, std::string msg) { //remove empty polyline int nb = 0; for (size_t i = 0; i < pp.size(); ++i) { for (size_t j = 0; j < pp[i].width.size(); ++j) { if (pp[i].width[j] > coord_t(local_max_width * 1.01)) { BOOST_LOG_TRIVIAL(error) << "Error " << msg << " width " << unscaled(pp[i].width[j]) << "(" << i << ":" << j << ") > " << unscaled(local_max_width) << "\n"; nb++; } } } if (nb > 0) BOOST_LOG_TRIVIAL(error) << "== nbBig = " << nb << " ==\n"; } void MedialAxis::ensure_not_overextrude(ThickPolylines& pp) { //ensure the volume extruded is correct for what we have been asked // => don't over-extrude double surface = 0; double volume = 0; for (ThickPolyline& polyline : pp) { for (ThickLine &l : polyline.thicklines()) { surface += l.length() * (l.a_width + l.b_width) / 2; coord_t width_mean = (l.a_width + l.b_width) / 2; volume += height * (width_mean - height * (1. - 0.25 * PI)) * l.length(); } } // compute bounds volume double boundsVolume = 0; boundsVolume += height*bounds->area(); // add external "perimeter gap" double perimeterRoundGap = bounds->contour.length() * height * (1 - 0.25*PI) * 0.5; // add holes "perimeter gaps" double holesGaps = 0; for (const Polygon &hole : bounds->holes) { holesGaps += hole.length() * height * (1 - 0.25*PI) * 0.5; } boundsVolume += perimeterRoundGap + holesGaps; if (boundsVolume < volume) { //reduce width double reduce_by = boundsVolume / volume; for (ThickPolyline& polyline : pp) { for (coord_t &width : polyline.width) { width = coord_t( double(width) * reduce_by); } } } } void MedialAxis::simplify_polygon_frontier() { //it will remove every point in the surface contour that aren't on the bounds contour this->expolygon = this->surface; this->expolygon.contour.remove_collinear(SCALED_EPSILON); for (Polygon &hole : this->expolygon.holes) hole.remove_collinear(SCALED_EPSILON); if (&this->surface != this->bounds) { bool need_intersect = false; for (size_t i = 0; i < this->expolygon.contour.points.size(); i++) { Point &p_check = this->expolygon.contour.points[i]; //if (!find) { if (!bounds->has_boundary_point(p_check)) { //check if we put it at a bound point instead of delete it size_t prev_i = i == 0 ? this->expolygon.contour.points.size() - 1 : (i - 1); size_t next_i = i == this->expolygon.contour.points.size() - 1 ? 0 : (i + 1); const Point* closest = bounds->contour.closest_point(p_check); if (closest != nullptr && closest->distance_to(p_check) + SCALED_EPSILON < std::min(p_check.distance_to(this->expolygon.contour.points[prev_i]), p_check.distance_to(this->expolygon.contour.points[next_i])) / 2) { p_check.x() = closest->x(); p_check.y() = closest->y(); need_intersect = true; } else { this->expolygon.contour.points.erase(this->expolygon.contour.points.begin() + i); i--; } } } if (need_intersect) { ExPolygons simplified_polygons = intersection_ex(this->expolygon, *bounds); if (simplified_polygons.size() == 1) { this->expolygon = simplified_polygons[0]; } else { //can't simplify that much, reuse the given one this->expolygon = this->surface; this->expolygon.contour.remove_collinear(SCALED_EPSILON); for (Polygon &hole : this->expolygon.holes) hole.remove_collinear(SCALED_EPSILON); } } } if (!this->expolygon.contour.points.empty()) this->expolygon.remove_point_too_near((coord_t)SCALED_RESOLUTION); } /// Grow the extrusion to at least nozzle_diameter*1.05 (lowest safe extrusion width) /// Do not grow points inside the anchor. void MedialAxis::grow_to_nozzle_diameter(ThickPolylines& pp, const ExPolygons& anchors) { //compute the min width coord_t min_width = this->nozzle_diameter; if (this->height > 0) min_width = Flow::new_from_spacing( float(unscaled(this->nozzle_diameter)), float(unscaled(this->nozzle_diameter)), float(unscaled(this->height)), 1, false).scaled_width(); //ensure the width is not lower than min_width. for (ThickPolyline& polyline : pp) { for (int i = 0; i < polyline.points.size(); ++i) { bool is_anchored = false; for (const ExPolygon &poly : anchors) { if (poly.contains(polyline.points[i])) { is_anchored = true; break; } } if (!is_anchored && polyline.width[i] < min_width) polyline.width[i] = min_width; } } } void MedialAxis::taper_ends(ThickPolylines& pp) { // minimum size of the taper: be sure to extrude at least the "round edges" of the extrusion (0-spacing extrusion). const coord_t min_size = (coord_t) std::max(this->nozzle_diameter * 0.1, this->height * (1. - 0.25 * PI)); const coordf_t length = (coordf_t) std::min(this->taper_size, (this->nozzle_diameter - min_size) / 2); if (length <= SCALED_RESOLUTION) return; //ensure the width is not lower than min_size. for (ThickPolyline& polyline : pp) { if (polyline.length() < length * 2.2) continue; if (polyline.endpoints.first) { polyline.width[0] = min_size; coord_t current_dist = min_size; coord_t last_dist = min_size; for (size_t i = 1; i length) { //create a new point if not near enough if (current_dist > length + SCALED_RESOLUTION) { coordf_t percent_dist = (length - last_dist) / (current_dist - last_dist); polyline.points.insert(polyline.points.begin() + i, polyline.points[i - 1].interpolate(percent_dist, polyline.points[i])); polyline.width.insert(polyline.width.begin() + i, polyline.width[i]); } break; } polyline.width[i] = std::max((coordf_t)min_size, min_size + (polyline.width[i] - min_size) * current_dist / length); last_dist = current_dist; } } if (polyline.endpoints.second) { polyline.width[polyline.width.size() - 1] = min_size; coord_t current_dist = min_size; coord_t last_dist = min_size; for (size_t i = polyline.width.size()-1; i > 0; --i) { current_dist += (coord_t)polyline.points[i].distance_to(polyline.points[i - 1]); if (current_dist > length) { //create new point if not near enough if (current_dist > length + SCALED_RESOLUTION) { coordf_t percent_dist = (length - last_dist) / (current_dist - last_dist); polyline.points.insert(polyline.points.begin() + i, polyline.points[i].interpolate(percent_dist, polyline.points[i - 1])); polyline.width.insert(polyline.width.begin() + i, polyline.width[i - 1]); } break; } polyline.width[i - 1] = std::max((coordf_t)min_size, min_size + (polyline.width[i - 1] - min_size) * current_dist / length); last_dist = current_dist; } } } } double check_circular(ExPolygon& expolygon, coord_t max_variation) { if (expolygon.holes.size() > 0) return 0; //test if convex if (expolygon.contour.concave_points().empty() && expolygon.contour.points.size() > 3) { // Computing circle center Point center = expolygon.contour.centroid(); coordf_t radius_min = std::numeric_limits::max(), radius_max = 0; for (int i = 0; i < expolygon.contour.points.size(); ++i) { coordf_t dist = expolygon.contour.points[i].distance_to(center); radius_min = std::min(radius_min, dist); radius_max = std::max(radius_max, dist); } // check with max_variation to be sure it's round enough if (radius_max - radius_min < max_variation) { return radius_max; } } return 0; } void MedialAxis::build(ThickPolylines &polylines_out) { //static int id = 0; //id++; //std::cout << this->id << "\n"; //{ // std::stringstream stri; // stri << "medial_axis_0_enter_" << id << ".svg"; // SVG svg(stri.str()); // svg.draw(this->surface); // svg.Close(); //} simplify_polygon_frontier(); //{ // std::stringstream stri; // stri << "medial_axis_0.5_simplified_" << id << ".svg"; // SVG svg(stri.str()); // svg.draw(bounds); // svg.draw(this->expolygon); // svg.Close(); //} //safety check if (this->expolygon.area() < this->min_width * this->min_width) this->expolygon = this->surface; if (this->expolygon.area() < this->min_width * this->min_width) return; //check for circular shape coordf_t radius = check_circular(this->expolygon, this->min_width/4); if (radius > 0 && this->expolygon.contour.points.size() > 4) { ExPolygons miniPeri = offset_ex(this->expolygon.contour, -radius / 2); if (miniPeri.size() == 1 && miniPeri[0].holes.size() == 0) { ThickPolyline thickPoly; thickPoly.points = miniPeri[0].contour.points; thickPoly.points.push_back(thickPoly.points.front()); thickPoly.endpoints.first = false; thickPoly.endpoints.second = false; for (int i = 0; i < thickPoly.points.size(); i++) { thickPoly.width.push_back(radius); } polylines_out.insert(polylines_out.end(), thickPoly); return; } } //std::cout << "simplify_polygon_frontier\n"; // compute the Voronoi diagram and extract medial axis polylines ThickPolylines pp; this->polyline_from_voronoi(this->expolygon.lines(), &pp); //FIXME this is a stop-gap for voronoi bug, see superslicer/issues/995 { double ori_area = 0; for (ThickPolyline& tp : pp) { for (int i = 1; i < tp.points.size(); i++) { ori_area += (tp.width[i - 1] + tp.width[i]) * tp.points[i - 1].distance_to(tp.points[i]) / 2; } } double area = this->expolygon.area(); double ratio_area = ori_area / area; if (ratio_area < 1) ratio_area = 1 / ratio_area; //check if the returned voronoi is really off if (ratio_area > 1.1) { //add a little offset and retry ExPolygons fixer = offset_ex(this->expolygon, SCALED_EPSILON); if (fixer.size() == 1) { ExPolygon fixPoly = fixer[0]; ThickPolylines pp_stopgap; this->polyline_from_voronoi(fixPoly.lines(), &pp_stopgap); double fix_area = 0; for (ThickPolyline& tp : pp_stopgap) { for (int i = 1; i < tp.points.size(); i++) { fix_area += (tp.width[i - 1] + tp.width[i]) * tp.points[i - 1].distance_to(tp.points[i]) / 2; } } double fix_ratio_area = fix_area / area; if (fix_ratio_area < 1) fix_ratio_area = 1 / fix_ratio_area; //if it's less off, then use it. if (fix_ratio_area < ratio_area) { pp = pp_stopgap; } } } } //{ // std::stringstream stri; // stri << "medial_axis_0.9_voronoi_" << id << ".svg"; // SVG svg(stri.str()); // //svg.draw(bounds); // svg.draw(this->expolygon); // svg.draw(pp); // svg.Close(); //} //sanity check, as the voronoi can return (abeit very rarely) randomly high values. for (size_t tp_idx = 0; tp_idx < pp.size(); tp_idx++) { ThickPolyline& tp = pp[tp_idx]; for (size_t i = 0; i < tp.width.size(); i++) { if (tp.width[i] > this->max_width) { tp.width[i] = this->max_width; } } // voronoi bugfix: when we have a wheel, it creates a polyline at the center, completly out of the polygon. #651 // note: can't reproduce in the new verison. This may have been fixed by another way. //if (tp.endpoints.first && tp.endpoints.second && !this->expolygon.contains(tp.first_point()) && !this->expolygon.contains(tp.last_point()) && pp.size() > 1) { // //delete this out-of-bounds polyline // pp.erase(pp.begin() + tp_idx); // --tp_idx; //} } //std::cout << "polyline_from_voronoi\n"; //{ // std::stringstream stri; // stri << "medial_axis_1_voronoi_" << id << ".svg"; // SVG svg(stri.str()); // svg.draw(*bounds); // svg.draw(this->expolygon); // svg.draw(pp); // svg.Close(); //} //check_width(pp, this->max_width, "polyline_from_voronoi"); concatThickPolylines(pp); //std::cout << "concatThickPolylines\n"; //{ // std::stringstream stri; // stri << "medial_axis_1_voronoi_" << id << ".svg"; // SVG svg(stri.str()); // svg.draw(*bounds); // svg.draw(this->expolygon); // svg.draw(pp); // svg.Close(); //} /* Find the maximum width returned; we're going to use this for validating and filtering the output segments. */ coord_t max_w = 0; for (ThickPolylines::const_iterator it = pp.begin(); it != pp.end(); ++it) max_w = std::max(max_w, (coord_t)*std::max_element(it->width.begin(), it->width.end())); //for (auto &p : pp) { // std::cout << "Start polyline : "; // for (auto &w : p.width) { // std::cout << ", " << w; // } // std::cout << "\n"; //} // "remove" the little paths that are at the outside of a curve. fusion_curve(pp); //{ // std::stringstream stri; // stri << "medial_axis_2_curve_" << id << ".svg"; // SVG svg(stri.str()); // svg.draw(*bounds); // svg.draw(this->expolygon); // svg.draw(pp); // svg.Close(); //} // Aligned fusion: Fusion the bits at the end of lines by "increasing thickness" // For that, we have to find other lines, // and with a next point no more distant than the max width. // Then, we can merge the bit from the first point to the second by following the mean. // main_fusion(pp); //{ // std::stringstream stri; // stri << "medial_axis_3_fusion_" << id << ".svg"; // SVG svg(stri.str()); // svg.draw(bounds); // svg.draw(this->expolygon); // svg.draw(pp); // svg.Close(); //} //fusion right-angle corners. fusion_corners(pp); // Loop through all returned polylines in order to extend their endpoints to the // expolygon boundaries (if done here, it may be cut later if not thick enough) if (stop_at_min_width) { extends_line_both_side(pp); } /*for (auto &p : pp) { std::cout << "Fusion polyline : "; for (auto &w : p.width) { std::cout << ", " << w; } std::cout << "\n"; }*/ //reduce extrusion when it's too thin to be printable remove_too_thin_extrusion(pp); //{ // std::stringstream stri; // stri << "medial_axis_4_thinok_" << id << ".svg"; // SVG svg(stri.str()); // svg.draw(bounds); // svg.draw(this->expolygon); // svg.draw(pp); // svg.Close(); //} remove_too_thin_points(pp); //{ // std::stringstream stri; // stri << "medial_axis_5.0_thuinner_" << id << ".svg"; // SVG svg(stri.str()); // svg.draw(*bounds); // svg.draw(this->expolygon); // svg.draw(pp); // svg.Close(); //} // Loop through all returned polylines in order to extend their endpoints to the // expolygon boundaries if (!stop_at_min_width) { extends_line_both_side(pp); } //{ // std::stringstream stri; // stri << "medial_axis_5_expand_" << id << ".svg"; // SVG svg(stri.str()); // svg.draw(*bounds); // svg.draw(this->expolygon); // svg.draw(pp); // svg.Close(); //} //TODO: reduce the flow at the intersection ( + ) points on crossing? concatenate_polylines_with_crossing(pp); //{ // std::stringstream stri; // stri << "medial_axis_6_concat_" << id << ".svg"; // SVG svg(stri.str()); // svg.draw(bounds); // svg.draw(this->expolygon); // svg.draw(pp); // svg.Close(); //} remove_too_short_polylines(pp, max_w * 2); //{ // std::stringstream stri; // stri << "medial_axis_8_tooshort_" << id << ".svg"; // SVG svg(stri.str()); // svg.draw(bounds); // svg.draw(this->expolygon); // svg.draw(pp); // svg.Close(); //} ensure_not_overextrude(pp); //{ // std::stringstream stri; // stri << "medial_axis_9.1_end_" << id << ".svg"; // SVG svg(stri.str()); // svg.draw(*bounds); // svg.draw(this->expolygon); // svg.draw(pp); // svg.Close(); //} if (nozzle_diameter != min_width) { grow_to_nozzle_diameter(pp, diff_ex(*this->bounds, this->expolygon)); } if(this->taper_size != 0){ taper_ends(pp); } //{ // std::stringstream stri; // stri << "medial_axis_9.9_endnwithtaper_" << id << ".svg"; // SVG svg(stri.str()); // svg.draw(*bounds); // svg.draw(this->expolygon); // svg.draw(pp); // svg.Close(); //} remove_bits(pp); //sort_polylines(pp); //for (auto &p : pp) { // std::cout << " polyline : "; // for (auto &w : p.width) { // std::cout << ", " << w; // } // std::cout << "\n"; //} polylines_out.insert(polylines_out.end(), pp.begin(), pp.end()); } ExtrusionEntityCollection thin_variable_width(const ThickPolylines &polylines, ExtrusionRole role, Flow flow, coord_t resolution_internal) { assert(resolution_internal > SCALED_EPSILON); // this value determines granularity of adaptive width, as G-code does not allow // variable extrusion within a single move; this value shall only affect the amount // of segments, and any pruning shall be performed before we apply this tolerance const coord_t tolerance = flow.scaled_width() / 10;//scale_(0.05); ExtrusionEntityCollection coll; for (const ThickPolyline &p : polylines) { ExtrusionPaths paths; ExtrusionPath path(role); ThickLines lines = p.thicklines(); coordf_t saved_line_len = 0; for (int i = 0; i < (int)lines.size(); ++i) { ThickLine& line = lines[i]; const coordf_t line_len = line.length(); const coordf_t prev_line_len = saved_line_len; saved_line_len = line_len; assert(line.a_width >= 0); assert(line.b_width >= 0); coord_t thickness_delta = std::abs(line.a_width - line.b_width); // split lines ? if (resolution_internal < line_len) { if (thickness_delta > tolerance && ceil(float(thickness_delta) / float(tolerance)) > 2) { const uint16_t segments = 1 + (uint16_t)std::min((uint32_t)16000, (uint32_t)ceil(float(thickness_delta) / float(tolerance))); Points pp; std::vector width; { for (size_t j = 0; j < segments; ++j) { pp.push_back(line.a.interpolate(((double)j) / segments, line.b)); double percent_width = ((double)j) / (segments - 1); width.push_back(line.a_width * (1 - percent_width) + line.b_width * percent_width); } pp.push_back(line.b); assert(pp.size() == segments + 1); assert(width.size() == segments); } // delete this line and insert new ones lines.erase(lines.begin() + i); for (size_t j = 0; j < segments; ++j) { ThickLine new_line(pp[j], pp[j + 1]); new_line.a_width = width[j]; new_line.b_width = width[j]; lines.insert(lines.begin() + i + j, new_line); } // go back to the start of this loop iteration --i; continue; } else if (thickness_delta > 0) { //create a middle point ThickLine new_line(line.a.interpolate(0.5, line.b), line.b); new_line.a_width = line.b_width; new_line.b_width = line.b_width; line.b = new_line.a; line.b_width = line.a_width; lines.insert(lines.begin() + i + 1, new_line); // go back to the start of this loop iteration --i; continue; } } else if (i > 0 && resolution_internal > line_len + prev_line_len) { ThickLine& prev_line = lines[i - 1]; //merge lines? coordf_t width = prev_line_len * (prev_line.a_width + prev_line.b_width) / 2; width += line_len * (line.a_width + line.b_width) / 2; prev_line.b = line.b; coordf_t new_length = prev_line.length(); width /= new_length; prev_line.a_width = width; prev_line.b_width = width; saved_line_len = new_length; //erase 'line' lines.erase(lines.begin() + i); --i; continue; } else if (thickness_delta > 0) { //set width as a middle-ground line.a_width = (line.a_width + line.b_width) / 2; line.b_width = line.a_width; } } for (int i = 0; i < (int)lines.size(); ++i) { ThickLine& line = lines[i]; //gapfill : we want to be able to fill the voids (touching the perimeters), so the spacing is what we want. //thinwall: we want the extrusion to not go out of the polygon, so the width is what we want. // but we can't extrude with a negative spacing, so we have to gradually fall back to spacing if the width is too small. // default: extrude a thin wall that doesn't go outside of the specified width. double wanted_width = unscaled(line.a_width); if (role == erGapFill) { // Convert from spacing to extrusion width based on the extrusion model // of a square extrusion ended with semi circles. wanted_width = unscaled(line.a_width) + flow.height * (1. - 0.25 * PI); } else if (unscale(line.a_width) < 2 * flow.height * (1. - 0.25 * PI)) { //width (too) small, be sure to not extrude with negative spacing. //we began to fall back to spacing gradually even before the spacing go into the negative // to make extrusion1 < extrusion2 if width1 < width2 even if width2 is too small. wanted_width = unscaled(line.a_width)*0.35 + 1.3 * flow.height * (1. - 0.25 * PI); } if (path.polyline.points.empty()) { flow.width = wanted_width; path.polyline.append(line.a); path.polyline.append(line.b); assert(flow.mm3_per_mm() == flow.mm3_per_mm()); assert(flow.width == flow.width); assert(flow.height == flow.height); path.mm3_per_mm = flow.mm3_per_mm(); path.width = flow.width; path.height = flow.height; } else { coord_t thickness_delta = scale_t(fabs(flow.width - wanted_width)); if (thickness_delta <= tolerance / 2) { // the width difference between this line and the current flow width is // within the accepted tolerance path.polyline.append(line.b); } else { // we need to initialize a new line paths.emplace_back(std::move(path)); path = ExtrusionPath(role); flow.width = wanted_width; path.polyline.append(line.a); path.polyline.append(line.b); assert(flow.mm3_per_mm() == flow.mm3_per_mm()); assert(flow.width == flow.width); assert(flow.height == flow.height); path.mm3_per_mm = flow.mm3_per_mm(); path.width = flow.width; path.height = flow.height; } } } if (path.polyline.is_valid()) paths.emplace_back(std::move(path)); // Append paths to collection. if (!paths.empty()) { if (paths.front().first_point().coincides_with(paths.back().last_point())) { coll.append(ExtrusionLoop(paths)); } else { if (role == erThinWall){ //thin walls : avoid to cut them, please. //also, keep the start, as the start should be already in a frontier where possible. ExtrusionEntityCollection unsortable_coll(paths); unsortable_coll.set_can_sort_reverse(false, false); coll.append(unsortable_coll); } else { if (paths.size() <= 1) { coll.append(paths); } else { ExtrusionEntityCollection unsortable_coll(paths); //gap fill : can reverse, but refrain from cutting them as it creates a mess. // I say that, but currently (false, true) does bad things. unsortable_coll.set_can_sort_reverse(false, true); coll.append(unsortable_coll); } } } } } return coll; } } // namespace Slic3r