#include "Model.hpp" #include "Geometry.hpp" #include "IO.hpp" #include #include #include #include namespace Slic3r { Model::Model() : metadata(std::map()) {} Model::Model(const Model &other) { // copy materials for (ModelMaterialMap::const_iterator i = other.materials.begin(); i != other.materials.end(); ++i) this->add_material(i->first, *i->second); // copy objects this->objects.reserve(other.objects.size()); for (ModelObjectPtrs::const_iterator i = other.objects.begin(); i != other.objects.end(); ++i) this->add_object(**i, true); // copy metadata this->metadata = other.metadata; } Model& Model::operator= (Model other) { this->swap(other); return *this; } void Model::swap(Model &other) { std::swap(this->materials, other.materials); std::swap(this->objects, other.objects); std::swap(this->metadata, other.metadata); } Model::~Model() { this->clear_objects(); this->clear_materials(); } Model Model::read_from_file(std::string input_file) { if (!boost::filesystem::exists(input_file)) { throw std::runtime_error("No such file"); } Model model; if (boost::algorithm::iends_with(input_file, ".stl")) { IO::STL::read(input_file, &model); } else if (boost::algorithm::iends_with(input_file, ".obj")) { IO::OBJ::read(input_file, &model); } else if (boost::algorithm::iends_with(input_file, ".amf") || boost::algorithm::iends_with(input_file, ".amf.xml")) { IO::AMF::read(input_file, &model); } else if (boost::algorithm::iends_with(input_file, ".3mf")) { IO::TMF::read(input_file, &model); } else { throw std::runtime_error("Unknown file format"); } if (model.objects.empty()) throw std::runtime_error("The supplied file couldn't be read because it's empty"); for (ModelObjectPtrs::const_iterator o = model.objects.begin(); o != model.objects.end(); ++o) (*o)->input_file = input_file; return model; } void Model::merge(const Model &other) { for (ModelObject* o : other.objects) this->add_object(*o, true); } ModelObject* Model::add_object() { ModelObject* new_object = new ModelObject(this); this->objects.push_back(new_object); return new_object; } ModelObject* Model::add_object(const ModelObject &other, bool copy_volumes) { ModelObject* new_object = new ModelObject(this, other, copy_volumes); this->objects.push_back(new_object); return new_object; } void Model::delete_object(size_t idx) { ModelObjectPtrs::iterator i = this->objects.begin() + idx; delete *i; this->objects.erase(i); } void Model::clear_objects() { while (!this->objects.empty()) this->delete_object(0); } void Model::delete_material(t_model_material_id material_id) { ModelMaterialMap::iterator i = this->materials.find(material_id); if (i != this->materials.end()) { delete i->second; this->materials.erase(i); } } void Model::clear_materials() { while (!this->materials.empty()) this->delete_material( this->materials.begin()->first ); } ModelMaterial* Model::add_material(t_model_material_id material_id) { ModelMaterial* material = this->get_material(material_id); if (material == NULL) { material = this->materials[material_id] = new ModelMaterial(this); } return material; } ModelMaterial* Model::add_material(t_model_material_id material_id, const ModelMaterial &other) { // delete existing material if any ModelMaterial* material = this->get_material(material_id); if (material != NULL) { delete material; } // set new material material = new ModelMaterial(this, other); this->materials[material_id] = material; return material; } ModelMaterial* Model::get_material(t_model_material_id material_id) { ModelMaterialMap::iterator i = this->materials.find(material_id); if (i == this->materials.end()) { return NULL; } else { return i->second; } } bool Model::has_objects_with_no_instances() const { for (ModelObjectPtrs::const_iterator i = this->objects.begin(); i != this->objects.end(); ++i) { if ((*i)->instances.empty()) { return true; } } return false; } // makes sure all objects have at least one instance bool Model::add_default_instances() { // apply a default position to all objects not having one bool added = false; for (ModelObject* o : this->objects) { if (o->instances.empty()) { o->add_instance(); added = true; } } return added; } // this returns the bounding box of the *transformed* instances BoundingBoxf3 Model::bounding_box() const { BoundingBoxf3 bb; for (ModelObjectPtrs::const_iterator o = this->objects.begin(); o != this->objects.end(); ++o) { bb.merge((*o)->bounding_box()); } return bb; } void Model::repair() { for (ModelObjectPtrs::const_iterator o = this->objects.begin(); o != this->objects.end(); ++o) (*o)->repair(); } void Model::split() { Model new_model; for (ModelObject* o : this->objects) o->split(&new_model.objects); this->clear_objects(); for (ModelObject* o : new_model.objects) this->add_object(*o); } void Model::center_instances_around_point(const Pointf &point) { BoundingBoxf3 bb = this->bounding_box(); Sizef3 size = bb.size(); coordf_t shift_x = -bb.min.x + point.x - size.x/2; coordf_t shift_y = -bb.min.y + point.y - size.y/2; for (ModelObjectPtrs::const_iterator o = this->objects.begin(); o != this->objects.end(); ++o) { for (ModelInstancePtrs::const_iterator i = (*o)->instances.begin(); i != (*o)->instances.end(); ++i) { (*i)->offset.translate(shift_x, shift_y); } (*o)->invalidate_bounding_box(); } } void Model::translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObjectPtrs::const_iterator o = this->objects.begin(); o != this->objects.end(); ++o) { (*o)->translate(x, y, z); } } // flattens everything to a single mesh TriangleMesh Model::mesh() const { TriangleMesh mesh; for (ModelObjectPtrs::const_iterator o = this->objects.begin(); o != this->objects.end(); ++o) { mesh.merge((*o)->mesh()); } return mesh; } // flattens everything to a single mesh TriangleMesh Model::raw_mesh() const { TriangleMesh mesh; for (ModelObjectPtrs::const_iterator o = this->objects.begin(); o != this->objects.end(); ++o) { mesh.merge((*o)->raw_mesh()); } return mesh; } bool Model::_arrange(const Pointfs &sizes, coordf_t dist, const BoundingBoxf* bb, Pointfs &out) const { // we supply unscaled data to arrange() bool result = Slic3r::Geometry::arrange( sizes.size(), // number of parts BoundingBoxf(sizes).max, // width and height of a single cell dist, // distance between cells bb, // bounding box of the area to fill out // output positions ); if (!result && bb != NULL) { // Try to arrange again ignoring bb result = Slic3r::Geometry::arrange( sizes.size(), // number of parts BoundingBoxf(sizes).max, // width and height of a single cell dist, // distance between cells NULL, // bounding box of the area to fill out // output positions ); } return result; } /* arrange objects preserving their instance count but altering their instance positions */ bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb) { // get the (transformed) size of each instance so that we take // into account their different transformations when packing Pointfs instance_sizes; for (const ModelObject* o : this->objects) for (size_t i = 0; i < o->instances.size(); ++i) instance_sizes.push_back(o->instance_bounding_box(i).size()); Pointfs positions; if (! this->_arrange(instance_sizes, dist, bb, positions)) return false; for (ModelObjectPtrs::const_iterator o = this->objects.begin(); o != this->objects.end(); ++o) { for (ModelInstancePtrs::const_iterator i = (*o)->instances.begin(); i != (*o)->instances.end(); ++i) { (*i)->offset = positions.back(); positions.pop_back(); } (*o)->invalidate_bounding_box(); } return true; } /* duplicate the entire model preserving instance relative positions */ void Model::duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb) { Pointfs model_sizes(copies_num-1, this->bounding_box().size()); Pointfs positions; if (! this->_arrange(model_sizes, dist, bb, positions)) CONFESS("Cannot duplicate part as the resulting objects would not fit on the print bed.\n"); // note that this will leave the object count unaltered for (ModelObjectPtrs::const_iterator o = this->objects.begin(); o != this->objects.end(); ++o) { // make a copy of the pointers in order to avoid recursion when appending their copies ModelInstancePtrs instances = (*o)->instances; for (ModelInstancePtrs::const_iterator i = instances.begin(); i != instances.end(); ++i) { for (Pointfs::const_iterator pos = positions.begin(); pos != positions.end(); ++pos) { ModelInstance* instance = (*o)->add_instance(**i); instance->offset.translate(*pos); } } (*o)->invalidate_bounding_box(); } } /* this will append more instances to each object and then automatically rearrange everything */ void Model::duplicate_objects(size_t copies_num, coordf_t dist, const BoundingBoxf* bb) { for (ModelObject* o : this->objects) { // make a copy of the pointers in order to avoid recursion when appending their copies const auto instances = o->instances; for (const ModelInstance* i : instances) for (size_t k = 2; k <= copies_num; ++k) o->add_instance(*i); } this->arrange_objects(dist, bb); } void Model::duplicate_objects_grid(size_t x, size_t y, coordf_t dist) { if (this->objects.size() > 1) throw std::runtime_error("Grid duplication is not supported with multiple objects"); if (this->objects.empty()) throw std::runtime_error("No objects!"); ModelObject* object = this->objects.front(); object->clear_instances(); Sizef3 size = object->bounding_box().size(); for (size_t x_copy = 1; x_copy <= x; ++x_copy) { for (size_t y_copy = 1; y_copy <= y; ++y_copy) { ModelInstance* instance = object->add_instance(); instance->offset.x = (size.x + dist) * (x_copy-1); instance->offset.y = (size.y + dist) * (y_copy-1); } } } void Model::print_info() const { for (ModelObjectPtrs::const_iterator o = this->objects.begin(); o != this->objects.end(); ++o) (*o)->print_info(); } bool Model::looks_like_multipart_object() const { if (this->objects.size() == 1) return false; for (const ModelObject* o : this->objects) { if (o->volumes.size() > 1) return false; if (o->config.keys().size() > 1) return false; } std::set heights; for (const ModelObject* o : this->objects) for (const ModelVolume* v : o->volumes) heights.insert(v->bounding_box().min.z); return heights.size() > 1; } void Model::convert_multipart_object() { if (this->objects.empty()) return; ModelObject* object = this->add_object(); object->input_file = this->objects.front()->input_file; for (const ModelObject* o : this->objects) { for (const ModelVolume* v : o->volumes) { ModelVolume* v2 = object->add_volume(*v); v2->name = o->name; } } for (const ModelInstance* i : this->objects.front()->instances) object->add_instance(*i); while (this->objects.size() > 1) this->delete_object(0); } ModelMaterial::ModelMaterial(Model *model) : model(model) {} ModelMaterial::ModelMaterial(Model *model, const ModelMaterial &other) : attributes(other.attributes), config(other.config), model(model) {} void ModelMaterial::apply(const t_model_material_attributes &attributes) { this->attributes.insert(attributes.begin(), attributes.end()); } ModelObject::ModelObject(Model *model) : part_number(-1), _bounding_box_valid(false), model(model) {} ModelObject::ModelObject(Model *model, const ModelObject &other, bool copy_volumes) : name(other.name), input_file(other.input_file), instances(), volumes(), config(other.config), layer_height_ranges(other.layer_height_ranges), part_number(other.part_number), layer_height_spline(other.layer_height_spline), origin_translation(other.origin_translation), _bounding_box(other._bounding_box), _bounding_box_valid(other._bounding_box_valid), model(model) { if (copy_volumes) { this->volumes.reserve(other.volumes.size()); for (ModelVolumePtrs::const_iterator i = other.volumes.begin(); i != other.volumes.end(); ++i) this->add_volume(**i); } this->instances.reserve(other.instances.size()); for (ModelInstancePtrs::const_iterator i = other.instances.begin(); i != other.instances.end(); ++i) this->add_instance(**i); } ModelObject& ModelObject::operator= (ModelObject other) { this->swap(other); return *this; } void ModelObject::swap(ModelObject &other) { std::swap(this->input_file, other.input_file); std::swap(this->instances, other.instances); std::swap(this->volumes, other.volumes); std::swap(this->config, other.config); std::swap(this->layer_height_ranges, other.layer_height_ranges); std::swap(this->layer_height_spline, other.layer_height_spline); std::swap(this->origin_translation, other.origin_translation); std::swap(this->_bounding_box, other._bounding_box); std::swap(this->_bounding_box_valid, other._bounding_box_valid); std::swap(this->part_number, other.part_number); } ModelObject::~ModelObject() { this->clear_volumes(); this->clear_instances(); } ModelVolume* ModelObject::add_volume(const TriangleMesh &mesh) { ModelVolume* v = new ModelVolume(this, mesh); this->volumes.push_back(v); this->invalidate_bounding_box(); return v; } ModelVolume* ModelObject::add_volume(const ModelVolume &other) { ModelVolume* v = new ModelVolume(this, other); this->volumes.push_back(v); this->invalidate_bounding_box(); return v; } void ModelObject::delete_volume(size_t idx) { ModelVolumePtrs::iterator i = this->volumes.begin() + idx; delete *i; this->volumes.erase(i); this->invalidate_bounding_box(); } void ModelObject::clear_volumes() { while (!this->volumes.empty()) this->delete_volume(0); } ModelInstance* ModelObject::add_instance() { ModelInstance* i = new ModelInstance(this); this->instances.push_back(i); return i; } ModelInstance* ModelObject::add_instance(const ModelInstance &other) { ModelInstance* i = new ModelInstance(this, other); this->instances.push_back(i); return i; } void ModelObject::delete_instance(size_t idx) { ModelInstancePtrs::iterator i = this->instances.begin() + idx; delete *i; this->instances.erase(i); } void ModelObject::delete_last_instance() { this->delete_instance(this->instances.size() - 1); } void ModelObject::clear_instances() { while (!this->instances.empty()) this->delete_last_instance(); } // this returns the bounding box of the *transformed* instances BoundingBoxf3 ModelObject::bounding_box() { if (!this->_bounding_box_valid) this->update_bounding_box(); return this->_bounding_box; } void ModelObject::invalidate_bounding_box() { this->_bounding_box_valid = false; } void ModelObject::update_bounding_box() { // this->_bounding_box = this->mesh().bounding_box(); BoundingBoxf3 raw_bbox; for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { if ((*v)->modifier) continue; raw_bbox.merge((*v)->bounding_box()); } BoundingBoxf3 bb; for (ModelInstancePtrs::const_iterator i = this->instances.begin(); i != this->instances.end(); ++i) bb.merge((*i)->transform_bounding_box(raw_bbox)); this->_bounding_box = bb; this->_bounding_box_valid = true; } void ModelObject::repair() { for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) (*v)->mesh.repair(); } // flattens all volumes and instances into a single mesh TriangleMesh ModelObject::mesh() const { TriangleMesh mesh; for (ModelInstancePtrs::const_iterator i = this->instances.begin(); i != this->instances.end(); ++i) { TransformationMatrix instance_trafo = (*i)->get_trafo_matrix(); for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { mesh.merge((*v)->get_transformed_mesh(instance_trafo)); } } return mesh; } TriangleMesh ModelObject::raw_mesh() const { TriangleMesh mesh; for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { if ((*v)->modifier) continue; mesh.merge((*v)->mesh); } return mesh; } BoundingBoxf3 ModelObject::raw_bounding_box() const { BoundingBoxf3 bb; if (this->instances.empty()) CONFESS("Can't call raw_bounding_box() with no instances"); TransformationMatrix trafo = this->instances.front()->get_trafo_matrix(true); for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { if ((*v)->modifier) continue; bb.merge((*v)->get_transformed_bounding_box(trafo)); } return bb; } // this returns the bounding box of the *transformed* given instance BoundingBoxf3 ModelObject::instance_bounding_box(size_t instance_idx) const { BoundingBoxf3 bb; if (this->instances.size()<=instance_idx) CONFESS("Can't call instance_bounding_box(index) with insufficient amount of instances"); TransformationMatrix trafo = this->instances[instance_idx]->get_trafo_matrix(true); for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { if ((*v)->modifier) continue; bb.merge((*v)->get_transformed_bounding_box(trafo)); } return bb; } void Model::align_instances_to_origin() { BoundingBoxf3 bb = this->bounding_box(); Pointf new_center = (Pointf)bb.size(); new_center.translate(-new_center.x/2, -new_center.y/2); this->center_instances_around_point(new_center); } void Model::align_to_ground() { BoundingBoxf3 bb = this->bounding_box(); for (ModelObject* o : this->objects) o->translate(0, 0, -bb.min.z); } void ModelObject::align_to_ground() { BoundingBoxf3 bb; for (const ModelVolume* v : this->volumes) if (!v->modifier) bb.merge(v->bounding_box()); this->translate(0, 0, -bb.min.z); this->origin_translation.translate(0, 0, -bb.min.z); } void ModelObject::center_around_origin() { // calculate the displacements needed to // center this object around the origin BoundingBoxf3 bb; for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) if (! (*v)->modifier) bb.merge((*v)->bounding_box()); // first align to origin on XYZ Vectorf3 vector(-bb.min.x, -bb.min.y, -bb.min.z); // then center it on XY Sizef3 size = bb.size(); vector.x -= size.x/2; vector.y -= size.y/2; this->translate(vector); this->origin_translation.translate(vector); if (!this->instances.empty()) { for (ModelInstancePtrs::const_iterator i = this->instances.begin(); i != this->instances.end(); ++i) { // apply rotation and scaling to vector as well before translating instance, // in order to leave final position unaltered Vectorf3 v = vector.negative(); v.rotate((*i)->rotation, (*i)->offset); v.scale((*i)->scaling_factor); (*i)->offset.translate(v.x, v.y); } this->invalidate_bounding_box(); } } TransformationMatrix ModelObject::get_trafo_to_center() const { BoundingBoxf3 raw_bb = this->raw_bounding_box(); return TransformationMatrix::mat_translation(raw_bb.center().negative()); } void ModelObject::translate(const Vectorf3 &vector) { this->translate(vector.x, vector.y, vector.z); } void ModelObject::translate(coordf_t x, coordf_t y, coordf_t z) { TransformationMatrix trafo = TransformationMatrix::mat_translation(x, y, z); this->apply_transformation(trafo); if (this->_bounding_box_valid) this->_bounding_box.translate(x, y, z); } void ModelObject::scale(double factor) { this->scale(Pointf3(factor, factor, factor)); } void ModelObject::scale(const Pointf3 &versor) { if (versor.x == 1 && versor.y == 1 && versor.z == 1) return; TransformationMatrix center_trafo = this->get_trafo_to_center(); TransformationMatrix trafo = TransformationMatrix::multiply(TransformationMatrix::mat_scale(versor.x, versor.y, versor.z), center_trafo); trafo.applyLeft(center_trafo.inverse()); this->apply_transformation(trafo); // reset origin translation since it doesn't make sense anymore this->origin_translation = Pointf3(0,0,0); this->invalidate_bounding_box(); } void ModelObject::scale_to_fit(const Sizef3 &size) { Sizef3 orig_size = this->bounding_box().size(); double factor = fminf( size.x / orig_size.x, fminf( size.y / orig_size.y, size.z / orig_size.z ) ); this->scale(factor); } void ModelObject::rotate(double angle, const Axis &axis) { if (angle == 0) return; TransformationMatrix center_trafo = this->get_trafo_to_center(); TransformationMatrix trafo = TransformationMatrix::multiply(TransformationMatrix::mat_rotation(angle, axis), center_trafo); trafo.applyLeft(center_trafo.inverse()); this->apply_transformation(trafo); this->origin_translation = Pointf3(0,0,0); this->invalidate_bounding_box(); } void ModelObject::rotate(double angle, const Vectorf3 &axis) { if (angle == 0) return; TransformationMatrix center_trafo = this->get_trafo_to_center(); TransformationMatrix trafo = TransformationMatrix::multiply(TransformationMatrix::mat_rotation(angle, axis), center_trafo); trafo.applyLeft(center_trafo.inverse()); this->apply_transformation(trafo); this->origin_translation = Pointf3(0,0,0); this->invalidate_bounding_box(); } void ModelObject::rotate(const Vectorf3 &origin, const Vectorf3 &target) { TransformationMatrix center_trafo = this->get_trafo_to_center(); TransformationMatrix trafo = TransformationMatrix::multiply(TransformationMatrix::mat_rotation(origin, target), center_trafo); trafo.applyLeft(center_trafo.inverse()); this->apply_transformation(trafo); this->origin_translation = Pointf3(0,0,0); this->invalidate_bounding_box(); } void ModelObject::mirror(const Axis &axis) { TransformationMatrix center_trafo = this->get_trafo_to_center(); TransformationMatrix trafo = TransformationMatrix::multiply(TransformationMatrix::mat_mirror(axis), center_trafo); trafo.applyLeft(center_trafo.inverse()); this->apply_transformation(trafo); this->origin_translation = Pointf3(0,0,0); this->invalidate_bounding_box(); } void ModelObject::reset_undo_trafo() { this->trafo_undo_stack = TransformationMatrix::mat_eye(); } TransformationMatrix ModelObject::get_undo_trafo() const { return this->trafo_undo_stack; } void ModelObject::apply_transformation(const TransformationMatrix & trafo) { this->trafo_undo_stack.applyLeft(trafo); for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { (*v)->apply_transformation(trafo); } } void ModelObject::transform_by_instance(ModelInstance instance, bool dont_translate) { // We get instance by copy because we would alter it in the loop below, // causing inconsistent values in subsequent instances. TransformationMatrix trafo = instance.get_trafo_matrix(dont_translate); for (ModelInstance* i : this->instances) { i->rotation -= instance.rotation; i->scaling_factor /= instance.scaling_factor; if (!dont_translate) i->offset.translate(-instance.offset.x, -instance.offset.y); } this->origin_translation = Pointf3(0,0,0); this->invalidate_bounding_box(); } size_t ModelObject::materials_count() const { std::set material_ids; for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { material_ids.insert((*v)->material_id()); } return material_ids.size(); } size_t ModelObject::facets_count() const { size_t num = 0; for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { if ((*v)->modifier) continue; num += (*v)->mesh.stl.stats.number_of_facets; } return num; } bool ModelObject::needed_repair() const { for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { if ((*v)->modifier) continue; if ((*v)->mesh.needed_repair()) return true; } return false; } void ModelObject::cut(Axis axis, coordf_t z, Model* model) const { // clone this one to duplicate instances, materials etc. ModelObject* upper = model->add_object(*this); ModelObject* lower = model->add_object(*this); upper->clear_volumes(); lower->clear_volumes(); // remove extension from filename and add suffix if (this->input_file.empty()) { upper->input_file = "upper"; lower->input_file = "lower"; } else { const boost::filesystem::path p{this->input_file}; upper->input_file = (p.parent_path() / p.stem()).string() + "_upper"; lower->input_file = (p.parent_path() / p.stem()).string() + "_lower"; } for (ModelVolumePtrs::const_iterator v = this->volumes.begin(); v != this->volumes.end(); ++v) { ModelVolume* volume = *v; if (volume->modifier) { // don't cut modifiers upper->add_volume(*volume); lower->add_volume(*volume); } else { TriangleMesh upper_mesh, lower_mesh; if (axis == X) { TriangleMeshSlicer(&volume->mesh).cut(z, &upper_mesh, &lower_mesh); } else if (axis == Y) { TriangleMeshSlicer(&volume->mesh).cut(z, &upper_mesh, &lower_mesh); } else if (axis == Z) { TriangleMeshSlicer(&volume->mesh).cut(z, &upper_mesh, &lower_mesh); } upper_mesh.repair(); lower_mesh.repair(); upper_mesh.reset_repair_stats(); lower_mesh.reset_repair_stats(); if (upper_mesh.facets_count() > 0) { ModelVolume* vol = upper->add_volume(upper_mesh); vol->name = volume->name; vol->config = volume->config; vol->set_material(volume->material_id(), *volume->material()); } if (lower_mesh.facets_count() > 0) { ModelVolume* vol = lower->add_volume(lower_mesh); vol->name = volume->name; vol->config = volume->config; vol->set_material(volume->material_id(), *volume->material()); } } } } void ModelObject::split(ModelObjectPtrs* new_objects) { if (this->volumes.size() > 1) { // We can't split meshes if there's more than one volume, because // we can't group the resulting meshes by object afterwards new_objects->push_back(this); return; } ModelVolume* volume = this->volumes.front(); TriangleMeshPtrs meshptrs = volume->mesh.split(); for (TriangleMeshPtrs::iterator mesh = meshptrs.begin(); mesh != meshptrs.end(); ++mesh) { (*mesh)->repair(); ModelObject* new_object = this->model->add_object(*this, false); new_object->input_file = ""; new_object->part_number = this->part_number; //According to 3mf part number should be given to the split parts. ModelVolume* new_volume = new_object->add_volume(**mesh); new_volume->name = volume->name; new_volume->config = volume->config; new_volume->modifier = volume->modifier; new_volume->material_id(volume->material_id()); new_objects->push_back(new_object); delete *mesh; } return; } void ModelObject::print_info() const { using namespace std; cout << fixed; cout << "[" << boost::filesystem::path(this->input_file).filename().string() << "]" << endl; TriangleMesh mesh = this->mesh(); mesh.check_topology(); BoundingBoxf3 bb = mesh.bounding_box(); Sizef3 size = bb.size(); cout << "size_x = " << size.x << endl; cout << "size_y = " << size.y << endl; cout << "size_z = " << size.z << endl; cout << "min_x = " << bb.min.x << endl; cout << "min_y = " << bb.min.y << endl; cout << "min_z = " << bb.min.z << endl; cout << "max_x = " << bb.max.x << endl; cout << "max_y = " << bb.max.y << endl; cout << "max_z = " << bb.max.z << endl; cout << "number_of_facets = " << mesh.stl.stats.number_of_facets << endl; cout << "manifold = " << (mesh.is_manifold() ? "yes" : "no") << endl; mesh.repair(); // this calculates number_of_parts if (mesh.needed_repair()) { mesh.repair(); if (mesh.stl.stats.degenerate_facets > 0) cout << "degenerate_facets = " << mesh.stl.stats.degenerate_facets << endl; if (mesh.stl.stats.edges_fixed > 0) cout << "edges_fixed = " << mesh.stl.stats.edges_fixed << endl; if (mesh.stl.stats.facets_removed > 0) cout << "facets_removed = " << mesh.stl.stats.facets_removed << endl; if (mesh.stl.stats.facets_added > 0) cout << "facets_added = " << mesh.stl.stats.facets_added << endl; if (mesh.stl.stats.facets_reversed > 0) cout << "facets_reversed = " << mesh.stl.stats.facets_reversed << endl; if (mesh.stl.stats.backwards_edges > 0) cout << "backwards_edges = " << mesh.stl.stats.backwards_edges << endl; } cout << "number_of_parts = " << mesh.stl.stats.number_of_parts << endl; cout << "volume = " << mesh.volume() << endl; } ModelVolume::ModelVolume(ModelObject* object, const TriangleMesh &mesh) : mesh(mesh), input_file(""), modifier(false), object(object) {} ModelVolume::ModelVolume(ModelObject* object, const ModelVolume &other) : name(other.name), mesh(other.mesh), trafo(other.trafo), config(other.config), input_file(other.input_file), input_file_obj_idx(other.input_file_obj_idx), input_file_vol_idx(other.input_file_vol_idx), modifier(other.modifier), object(object) { this->material_id(other.material_id()); } ModelVolume& ModelVolume::operator= (ModelVolume other) { this->swap(other); return *this; } void ModelVolume::swap(ModelVolume &other) { std::swap(this->name, other.name); std::swap(this->mesh, other.mesh); std::swap(this->trafo, other.trafo); std::swap(this->config, other.config); std::swap(this->modifier, other.modifier); std::swap(this->input_file, other.input_file); std::swap(this->input_file_obj_idx, other.input_file_obj_idx); std::swap(this->input_file_vol_idx, other.input_file_vol_idx); } TriangleMesh ModelVolume::get_transformed_mesh(TransformationMatrix const & trafo) const { return this->mesh.get_transformed_mesh(trafo); } BoundingBoxf3 ModelVolume::get_transformed_bounding_box(TransformationMatrix const & trafo) const { return this->mesh.get_transformed_bounding_box(trafo); } BoundingBoxf3 ModelVolume::bounding_box() const { return this->mesh.bounding_box(); } void ModelVolume::translate(double x, double y, double z) { TransformationMatrix trafo = TransformationMatrix::mat_translation(x,y,z); this->apply_transformation(trafo); } void ModelVolume::scale(double x, double y, double z) { TransformationMatrix trafo = TransformationMatrix::mat_scale(x,y,z); this->apply_transformation(trafo); } void ModelVolume::mirror(const Axis &axis) { TransformationMatrix trafo = TransformationMatrix::mat_mirror(axis); this->apply_transformation(trafo); } void ModelVolume::mirror(const Vectorf3 &normal) { TransformationMatrix trafo = TransformationMatrix::mat_mirror(normal); this->apply_transformation(trafo); } void ModelVolume::rotate(double angle_rad, const Axis &axis) { TransformationMatrix trafo = TransformationMatrix::mat_rotation(angle_rad, axis); this->apply_transformation(trafo); } void ModelVolume::apply_transformation(TransformationMatrix const & trafo) { this->mesh.transform(trafo); this->trafo.applyLeft(trafo); } t_model_material_id ModelVolume::material_id() const { return this->_material_id; } void ModelVolume::material_id(t_model_material_id material_id) { this->_material_id = material_id; // ensure this->_material_id references an existing material (void)this->object->get_model()->add_material(material_id); } ModelMaterial* ModelVolume::material() const { return this->object->get_model()->get_material(this->_material_id); } void ModelVolume::set_material(t_model_material_id material_id, const ModelMaterial &material) { this->_material_id = material_id; (void)this->object->get_model()->add_material(material_id, material); } ModelMaterial* ModelVolume::assign_unique_material() { Model* model = this->get_object()->get_model(); // as material-id "0" is reserved by the AMF spec we start from 1 this->_material_id = 1 + model->materials.size(); // watchout for implicit cast return model->add_material(this->_material_id); } ModelInstance::ModelInstance(ModelObject *object) : rotation(0), scaling_factor(1), object(object) {} ModelInstance::ModelInstance(ModelObject *object, const TransformationMatrix & trafo) : object(object) { this->set_complete_trafo(trafo); } ModelInstance::ModelInstance(ModelObject *object, const ModelInstance &other) : rotation(other.rotation), scaling_factor(other.scaling_factor), offset(other.offset), additional_trafo(other.additional_trafo), object(object) {} ModelInstance& ModelInstance::operator= (ModelInstance other) { this->swap(other); return *this; } void ModelInstance::swap(ModelInstance &other) { std::swap(this->rotation, other.rotation); std::swap(this->scaling_factor, other.scaling_factor); std::swap(this->offset, other.offset); std::swap(this->additional_trafo, other.additional_trafo); } void ModelInstance::set_complete_trafo(TransformationMatrix const & trafo) { // Extraction code moved from TMF class this->offset.x = trafo.m03; this->offset.y = trafo.m13; // Get the scale values. double sx = sqrt( trafo.m00 * trafo.m00 + trafo.m10 * trafo.m10 + trafo.m20 * trafo.m20), sy = sqrt( trafo.m01 * trafo.m01 + trafo.m11 * trafo.m11 + trafo.m21 * trafo.m21), sz = sqrt( trafo.m02 * trafo.m02 + trafo.m12 * trafo.m12 + trafo.m22 * trafo.m22); this->scaling_factor = (sx + sy + sz) / 3; // Get the rotation values. // Normalize scale from the matrix. TransformationMatrix rotmat = trafo.multiplyLeft(TransformationMatrix::mat_scale(1/sx, 1/sy, 1/sz)); rotmat.m00 /= sx; rotmat.m10 /= sy; rotmat.m20 /= sz; rotmat.m01 /= sx; rotmat.m11 /= sy; rotmat.m21 /= sz; rotmat.m02 /= sx; rotmat.m12 /= sy; rotmat.m22 /= sz; // Get quaternion values double q_w = sqrt(std::max(0.0, 1.0 + rotmat.m00 + rotmat.m11 + rotmat.m22)) / 2, q_x = sqrt(std::max(0.0, 1.0 + rotmat.m00 - rotmat.m11 - rotmat.m22)) / 2, q_y = sqrt(std::max(0.0, 1.0 - rotmat.m00 + rotmat.m11 - rotmat.m22)) / 2, q_z = sqrt(std::max(0.0, 1.0 - rotmat.m00 - rotmat.m11 + rotmat.m22)) / 2; q_x *= ((q_x * (rotmat.m21 - rotmat.m12)) <= 0 ? -1 : 1); q_y *= ((q_y * (rotmat.m02 - rotmat.m20)) <= 0 ? -1 : 1); q_z *= ((q_z * (rotmat.m10 - rotmat.m01)) <= 0 ? -1 : 1); // Normalize quaternion values. double q_magnitude = sqrt(q_w * q_w + q_x * q_x + q_y * q_y + q_z * q_z); q_w /= q_magnitude; q_x /= q_magnitude; q_y /= q_magnitude; q_z /= q_magnitude; double test = q_x * q_y + q_z * q_w; double result_z; // singularity at north pole if (test > 0.499) { result_z = PI / 2; } // singularity at south pole else if (test < -0.499) { result_z = -PI / 2; } else { result_z = asin(2 * q_x * q_y + 2 * q_z * q_w); if (result_z < 0) result_z += 2 * PI; } this->rotation = result_z; this->additional_trafo = TransformationMatrix::mat_eye(); // Complete = Instance * Additional // -> Instance^-1 * Complete = (Instance^-1 * Instance) * Additional // -> Instance^-1 * Complete = Additional this->additional_trafo = TransformationMatrix::multiply( this->get_trafo_matrix().inverse(), trafo); } void ModelInstance::transform_mesh(TriangleMesh* mesh, bool dont_translate) const { TransformationMatrix trafo = this->get_trafo_matrix(dont_translate); mesh->transform(trafo); } TransformationMatrix ModelInstance::get_trafo_matrix(bool dont_translate) const { TransformationMatrix trafo = this->additional_trafo; trafo.applyLeft(TransformationMatrix::mat_rotation(this->rotation, Axis::Z)); trafo.applyLeft(TransformationMatrix::mat_scale(this->scaling_factor)); if(!dont_translate) { trafo.applyLeft(TransformationMatrix::mat_translation(this->offset.x, this->offset.y, 0)); } return trafo; } BoundingBoxf3 ModelInstance::transform_bounding_box(const BoundingBoxf3 &bbox, bool dont_translate) const { TransformationMatrix Pointf3 pts[4] = { bbox.min, bbox.max, Pointf3(bbox.min.x, bbox.max.y, bbox.min.z), Pointf3(bbox.max.x, bbox.min.y, bbox.max.z) }; BoundingBoxf3 out; for (int i = 0; i < 4; ++ i) { Pointf3 &v = pts[i]; double xold = v.x; double yold = v.y; // Rotation around z axis. v.x = float(c * xold - s * yold); v.y = float(s * xold + c * yold); v.scale(this->scaling_factor); if (!dont_translate) { v.x += this->offset.x; v.y += this->offset.y; } out.merge(v); } return out; } void ModelInstance::transform_polygon(Polygon* polygon) const { polygon->rotate(this->rotation, Point(0,0)); // rotate around polygon origin polygon->scale(this->scaling_factor); // scale around polygon origin } }