#ifndef slic3r_Model_hpp_ #define slic3r_Model_hpp_ #include "libslic3r.h" #include "BoundingBox.hpp" #include "PrintConfig.hpp" #include "Layer.hpp" #include "Point.hpp" #include "TriangleMesh.hpp" #include "LayerHeightSpline.hpp" #include #include #include #include namespace Slic3r { class ModelInstance; class ModelMaterial; class ModelObject; class ModelVolume; typedef std::string t_model_material_id; typedef std::string t_model_material_attribute; typedef std::map t_model_material_attributes; typedef std::map ModelMaterialMap; typedef std::vector ModelObjectPtrs; typedef std::vector ModelVolumePtrs; typedef std::vector ModelInstancePtrs; /// Model Class representing the print bed content /// Description of a triangular model with multiple materials, multiple instances with various affine transformations /// and with multiple modifier meshes. /// A model groups multiple objects, each object having possibly multiple instances, /// all objects may share multiple materials. class Model { public: ModelMaterialMap materials; ///< Materials are owned by a model and referenced by objects through t_model_material_id. ///< Single material may be shared by multiple models. ModelObjectPtrs objects; ///< Objects are owned by a model. Each object may have multiple instances ///< , each instance having its own transformation (shift, scale, rotation). std::map metadata; ///< Model metadata , this is needed for 3MF format read/write. /// Model constructor. Model(); /// Model constructor. /// \param other Model the model to be copied Model(const Model &other); /// = Operator overloading. /// \param other Model the model to be copied /// \return Model& the current Model to enable operator cascading Model& operator= (Model other); /// Swap objects and materials with another model. /// \param other Model the model to be swapped with void swap(Model &other); /// Model destructor ~Model(); /// Read a model from file. /// This function supports the following formats (STL, OBJ, AMF), It auto-detects the file format from the file name suffix. /// \param input_file std::string the file path expressed in UTF-8 /// \return Model the read Model static Model read_from_file(std::string input_file); void merge(const Model &other); /// Create a new object and add it to the current Model. /// \return ModelObject* a pointer to the new Model ModelObject* add_object(); /// Create a new object and add it to the current Model. /// This function copies another model object /// \param other ModelObject the ModelObject to be copied /// \param copy_volumes if you also want to copy volumes of the other object. By default = true /// \return ModelObject* a pointer to the new ModelObject ModelObject* add_object(const ModelObject &other, bool copy_volumes = true); /// Delete a ModelObject from the current Model. /// \param idx size_t the index of the desired ModelObject void delete_object(size_t idx); /// Delete all ModelObjects found in the current Model. void clear_objects(); /// Add a new ModelMaterial to the model. /// \param material_id t_model_material_id the id of the new ModelMaterial to be added /// \return ModelMaterial* a pointer to the new ModelMaterial ModelMaterial* add_material(t_model_material_id material_id); /// Add a new ModelMaterial to the current Model. /// This function copies another ModelMaterial, It also delete the current ModelMaterial carrying the same /// material id in the map. /// \param material_id t_model_material_id the id of the new ModelMaterial to be added /// \param other ModelMaterial the model material to be copied /// \return ModelMaterial* a pointer to the new ModelMaterial ModelMaterial* add_material(t_model_material_id material_id, const ModelMaterial &other); /// Get the ModelMaterial object instance having a certain material id. /// Returns null if the ModelMaterial object instance is not found. /// \param material_id t_model_material_id the id of the needed ModelMaterial object instance /// \return ModelMaterial* a pointer to the ModelMaterial object instance or null if not found ModelMaterial* get_material(t_model_material_id material_id); /// Delete a ModelMaterial carrying a certain material id if found. /// \param material_id t_model_material_id the id of the ModelMaterial to be deleted void delete_material(t_model_material_id material_id); /// Delete all the ModelMaterial objects found in the current Model. void clear_materials(); /// Check if any ModelObject has no ModelInstances. /// \return bool true means there exists at least one ModelObject with no ModelInstance objects bool has_objects_with_no_instances() const; /// Add a new ModelInstance to each ModelObject having no ModelInstance objects /// \return bool bool add_default_instances(); /// Get the bounding box of the transformed instances. /// \return BoundingBoxf3 a bounding box object. BoundingBoxf3 bounding_box() const; /// Repair the ModelObjects of the current Model. /// This function calls repair function on each TriangleMesh of each model object volume void repair(); /// Split the meshes of the ModelObjects into several distinct ModelObjects. void split(); /// Center the total bounding box of the instances around a point. /// This transformation works in the XY plane only and no transformation in Z is performed. /// \param point pointf object to center the model instances of model objects around void center_instances_around_point(const Pointf &point); void align_instances_to_origin(); void align_to_ground(); /// Translate each ModelObject with x, y, z units. /// \param x coordf_t units in the x direction /// \param y coordf_t units in the y direction /// \param z coordf_t units in the z direction void translate(coordf_t x, coordf_t y, coordf_t z); /// Flatten all ModelInstances to a single mesh /// after performing instance transformations (if the object was rotated or translated). /// \return TriangleMesh a single TriangleMesh object TriangleMesh mesh() const; /// Flatten all ModelVolumes to a single mesh without any extra processing (i.e. without applying any instance duplication and/or transformation). /// \return TriangleMesh a single TriangleMesh object TriangleMesh raw_mesh() const; /// Arrange ModelInstances. ModelInstances of the same ModelObject do not preserve their relative positions. /// It uses the given BoundingBoxf as a hint, but falls back to free arrangement if it's not possible to fit all the parts in it. /// \param sizes Pointfs& number of parts /// \param dist coordf_t distance between cells /// \param bb BoundingBoxf* (optional) pointer to the bounding box of the area to fill /// \param out Pointfs& vector of the output positions /// \return bool whether the function finished arranging objects or it is impossible to arrange bool _arrange(const Pointfs &sizes, coordf_t dist, const BoundingBoxf* bb, Pointfs &out) const; /// Arrange ModelObjects preserving their ModelInstance count but altering their ModelInstance positions. /// \param dist coordf_t distance between cells /// \param bb BoundingBoxf* (optional) pointer to the bounding box of the area to fill /// \return bool whether the function finished arranging objects or it is impossible to arrange bool arrange_objects(coordf_t dist, const BoundingBoxf* bb = NULL); /// Duplicate the ModelInstances of each ModelObject as a whole preserving their relative positions. /// This function croaks if the duplicated objects do not fit the print bed. /// \param copies_num size_t number of copies /// \param dist coordf_t distance between cells /// \param bb BoundingBoxf* (optional) pointer to the bounding box of the area to fill void duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL); /// Duplicate each entire ModelInstances of the each ModelObject as a whole. /// This function will append more instances to each object /// and then calls arrange_objects() function to automatically rearrange everything. /// \param copies_num size_t number of copies /// \param dist coordf_t distance between cells /// \param bb BoundingBoxf* (optional) pointer to the bounding box of the area to fill void duplicate_objects(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL); /// Duplicate a single ModelObject and arranges them on a grid. /// Grid duplication is not supported with multiple objects. It throws an exception if there is more than one ModelObject. /// It also throws an exception if there are no ModelObjects in the current Model. /// \param x size_t number of duplicates in x direction /// \param y size_t offset number of duplicates in y direction /// \param dist coordf_t distance supposed to be between the duplicated ModelObjects void duplicate_objects_grid(size_t x, size_t y, coordf_t dist); /// This function calls the print_info() function of each ModelObject. void print_info() const; /// Check to see if the current Model has characteristics of having multiple parts (usually multiple volumes, etc). /// \return bool bool looks_like_multipart_object() const; /// Take all of the ModelObjects in the current Model and combines them into a single ModelObject void convert_multipart_object(); }; /// Model Material class /// Material, which may be shared across multiple ModelObjects of a single Model. class ModelMaterial { friend class Model; public: t_model_material_attributes attributes; ///< Attributes are defined by the AMF file format, but they don't seem to be used by Slic3r for any purpose. DynamicPrintConfig config; ///< Dynamic configuration storage for the object specific configuration values, overriding the global configuration. /// Get the parent model owing this material /// \return Model* the onwer Model Model* get_model() const { return this->model; }; /// Apply attributes defined by the AMF file format /// \param attributes t_model_material_attributes the attributes map void apply(const t_model_material_attributes &attributes); private: Model* model; ///model; }; /// Add a new ModelVolume to the current ModelObject. The mesh is copied into the newly created ModelVolume. /// \param mesh TriangularMesh /// \return ModelVolume* pointer to the new volume ModelVolume* add_volume(const TriangleMesh &mesh); /// Add a new ModelVolume to the current ModelObject. /// \param volume the ModelVolume object to be copied /// \return ModelVolume* pointer to the new volume ModelVolume* add_volume(const ModelVolume &volume); /// Delete a ModelVolume object. /// \param idx size_t the index of the ModelVolume to be deleted void delete_volume(size_t idx); /// Delete all ModelVolumes in the void clear_volumes(); /// Add a new ModelInstance to the current ModelObject. /// \return ModelInstance* a pointer to the new instance ModelInstance* add_instance(); /// Add a new ModelInstance to the current ModelObject. /// \param instance the ModelInstance to be copied /// \return ModelInstance* a pointer to the new instance ModelInstance* add_instance(const ModelInstance &instance); /// Delete a ModelInstance. /// \param idx size_t the index of the ModelInstance to be deleted void delete_instance(size_t idx); /// Delete the last created ModelInstance object. void delete_last_instance(); /// Delete all ModelInstance objects found in the current ModelObject. void clear_instances(); /// Get the bounding box of the *transformed* instances. BoundingBoxf3 bounding_box(); /// Invalidate the bounding box in the current ModelObject. void invalidate_bounding_box(); /// Repair all TriangleMesh objects found in each ModelVolume. void repair(); /// Flatten all volumes and instances into a single mesh and applying all the ModelInstances transformations. TriangleMesh mesh() const; /// Flatten all volumes into a single mesh. TriangleMesh raw_mesh() const; /// Get the raw bounding box. /// This function croaks when there are no ModelInstances for this ModelObject /// \return BoundingBoxf3 BoundingBoxf3 raw_bounding_box() const; /// Get the bounding box of the *transformed* given instance. /// \param instance_idx size_t the index of the ModelInstance in the ModelInstance vector /// \return BoundingBoxf3 the bounding box at the given index BoundingBoxf3 instance_bounding_box(size_t instance_idx) const; /// Align the current ModelObject to ground by translating the ModelVolumes in the z axis the needed units. void align_to_ground(); /// Center the current ModelObject to origin by translating the ModelVolumes void center_around_origin(); /// Translate the current ModelObject by translating ModelVolumes with (x,y,z) units. /// This function calls translate(coordf_t x, coordf_t y, coordf_t z) to translate every TriangleMesh in each ModelVolume. /// \param vector Vectorf3 the translation vector void translate(const Vectorf3 &vector); /// Translate the current ModelObject by translating ModelVolumes with (x,y,z) units. /// \param x coordf_t the x units /// \param y coordf_t the y units /// \param z coordf_t the z units void translate(coordf_t x, coordf_t y, coordf_t z); /// Scale the current ModelObject by scaling its ModelVolumes. /// This function calls scale(const Pointf3 &versor) to scale every TriangleMesh in each ModelVolume. /// \param factor float the scaling factor void scale(float factor); /// Scale the current ModelObject by scaling its ModelVolumes. /// \param versor Pointf3 the scaling factor in a 3d vector. void scale(const Pointf3 &versor); /// Scale the current ModelObject to fit by altering the scaling factor of ModelInstances. /// It operates on the total size by duplicating the object according to all the instances. /// \param size Sizef3 the size vector void scale_to_fit(const Sizef3 &size); /// Rotate the current ModelObject by rotating ModelVolumes. /// \param angle float the angle in radians /// \param axis Axis the axis to be rotated around void rotate(float angle, const Axis &axis); /// Mirror the current Model around a certain axis. /// \param axis Axis enum member void mirror(const Axis &axis); /// Transform the current ModelObject by a certain ModelInstance attributes. /// Inverse transformation is applied to all the ModelInstances, so that the final size/position/rotation of the transformed objects doesn't change. /// \param instance ModelInstance the instance used to transform the current ModelObject /// \param dont_translate bool whether to translate the current ModelObject or not void transform_by_instance(ModelInstance instance, bool dont_translate = false); /// Get the number of the unique ModelMaterial objects in this ModelObject. /// \return size_t the materials count size_t materials_count() const; /// Get the number of the facets found in all ModelVolume objects in this ModelObject which are not modifier volumes. /// \return size_t the facets count size_t facets_count() const; /// Know whether there exists a TriangleMesh object that needed repair or not. /// \return bool bool needed_repair() const; /// Cut (Slice) the current ModelObject along a certain axis at a certain coordinate. /// \param axis Axis the axis to slice at (X = 0 or Y or Z) /// \param z coordf_t the point at the certain axis to cut(slice) the Model at /// \param model Model* pointer to the Model which will get the resulting objects added void cut(Axis axis, coordf_t z, Model* model) const; /// Split the meshes of the ModelVolume in this ModelObject if there exists only one ModelVolume in this ModelObject. /// \param new_objects ModelObjectPtrs the generated ModelObjects after the single ModelVolume split void split(ModelObjectPtrs* new_objects); /// Update the bounding box in this ModelObject void update_bounding_box(); // this is a private method but we expose it until we need to expose it via XS /// Print the current info of this ModelObject void print_info() const; private: Model* model; ///< Parent object, owning this ModelObject. /// Constructor /// \param model Model the owner Model. ModelObject(Model *model); /// Constructor /// \param model Model the owner Model. /// \param other ModelObject the other ModelObject to be copied /// \param copy_volumes bool whether to also copy its volumes or not, by default = true ModelObject(Model *model, const ModelObject &other, bool copy_volumes = true); /// = Operator overloading /// \param other ModelObject the other ModelObject to be copied /// \return ModelObject& the current ModelObject to enable operator cascading ModelObject& operator= (ModelObject other); /// Swap the attributes between another ModelObject /// \param other ModelObject the other ModelObject to be swapped with. void swap(ModelObject &other); /// Destructor ~ModelObject(); }; /// An object STL, or a modifier volume, over which a different set of parameters shall be applied. /// ModelVolume instances are owned by a ModelObject. class ModelVolume { friend class ModelObject; public: std::string name; ///< Name of this ModelVolume object TriangleMesh mesh; ///< The triangular model. TransformationMatrix trafo; ///< The transformation matrix of this volume DynamicPrintConfig config; ///< Configuration parameters specific to an object model geometry or a modifier volume, ///< overriding the global Slic3r settings and the ModelObject settings. /// Input file path needed for reloading the volume from disk std::string input_file; ///< Input file path int input_file_obj_idx; ///< Input file object index int input_file_vol_idx; ///< Input file volume index bool modifier; ///< Is it an object to be printed, or a modifier volume? /// Get the parent object owning this modifier volume. /// \return ModelObject* pointer to the owner ModelObject ModelObject* get_object() const { return this->object; }; /// Get the material id of this ModelVolume object /// \return t_model_material_id the material id string t_model_material_id material_id() const; /// Set the material id to this ModelVolume object /// \param material_id t_model_material_id the id of the material void material_id(t_model_material_id material_id); /// Get the current ModelMaterial in this ModelVolume object /// \return ModelMaterial* a pointer to the ModelMaterial ModelMaterial* material() const; /// Add a new ModelMaterial to this ModelVolume /// \param material_id t_model_material_id the id of the material to be added /// \param material ModelMaterial the material to be coppied void set_material(t_model_material_id material_id, const ModelMaterial &material); /// Add a unique ModelMaterial to the current ModelVolume /// \return ModelMaterial* pointer to the new ModelMaterial ModelMaterial* assign_unique_material(); private: ///< Parent object owning this ModelVolume. ModelObject* object; ///< The id of the this ModelVolume t_model_material_id _material_id; /// Constructor /// \param object ModelObject* pointer to the owner ModelObject /// \param mesh TriangleMesh the mesh of the new ModelVolume object ModelVolume(ModelObject *object, const TriangleMesh &mesh); /// Constructor /// \param object ModelObject* pointer to the owner ModelObject /// \param other ModelVolume the ModelVolume object to be copied ModelVolume(ModelObject *object, const ModelVolume &other); /// = Operator overloading /// \param other ModelVolume a volume to be copied in the current ModelVolume object /// \return ModelVolume& the current ModelVolume to enable operator cascading ModelVolume& operator= (ModelVolume other); /// Swap attributes between another ModelVolume object /// \param other ModelVolume the other volume object void swap(ModelVolume &other); }; /// A single instance of a ModelObject. /// Knows the affine transformation of an object. class ModelInstance { friend class ModelObject; public: double rotation; ///< Rotation around the Z axis, in radians around mesh center point. double x_rotation; ///< Rotation around the X axis, in radians around mesh center point. Specific to 3MF format. double y_rotation; ///< Rotation around the Y axis, in radians around mesh center point. Specific to 3MF format. double scaling_factor; ///< uniform scaling factor. Pointf3 scaling_vector; ///< scaling vector. Specific to 3MF format. Pointf offset; ///< offset in unscaled coordinates. double z_translation; ///< translation in z axis. Specific to 3MF format. It's not used anywhere in Slic3r except at writing/reading 3mf. /// Get the owning ModelObject /// \return ModelObject* pointer to the owner ModelObject ModelObject* get_object() const { return this->object; }; /// Transform an external TriangleMesh object /// \param mesh TriangleMesh* pointer to the the mesh /// \param dont_translate bool whether to translate the mesh or not void transform_mesh(TriangleMesh* mesh, bool dont_translate = false) const; /// Calculate a bounding box of a transformed mesh. To be called on an external mesh. /// \param mesh TriangleMesh* pointer to the the mesh /// \param dont_translate bool whether to translate the bounding box or not /// \return BoundingBoxf3 the bounding box after transformation BoundingBoxf3 transform_mesh_bounding_box(const TriangleMesh* mesh, bool dont_translate = false) const; /// Transform an external bounding box. /// \param bbox BoundingBoxf3 the bounding box to be transformed /// \param dont_translate bool whether to translate the bounding box or not /// \return BoundingBoxf3 the bounding box after transformation BoundingBoxf3 transform_bounding_box(const BoundingBoxf3 &bbox, bool dont_translate = false) const; /// Rotate or scale an external polygon. It does not translate the polygon. /// \param polygon Polygon* a pointer to the Polygon void transform_polygon(Polygon* polygon) const; private: ModelObject* object; ///< Parent object, owning this instance. /// Constructor /// \param object ModelObject* pointer to the owner ModelObject ModelInstance(ModelObject *object); /// Constructor /// \param object ModelObject* pointer to the owner ModelObject /// \param other ModelInstance an instance to be copied in the new ModelInstance object ModelInstance(ModelObject *object, const ModelInstance &other); /// = Operator overloading /// \param other ModelInstance an instance to be copied in the current ModelInstance object /// \return ModelInstance& the current ModelInstance to enable operator cascading ModelInstance& operator= (ModelInstance other); /// Swap attributes between another ModelInstance object /// \param other ModelInstance& the other instance object void swap(ModelInstance &other); }; } #endif