340 lines
16 KiB
C++

#include <assert.h>
#include <stdio.h>
#include <memory>
#include "../ClipperUtils.hpp"
#include "../Geometry.hpp"
#include "../Layer.hpp"
#include "../Print.hpp"
#include "../PrintConfig.hpp"
#include "../Surface.hpp"
#include "FillBase.hpp"
namespace Slic3r {
struct SurfaceGroupAttrib
{
SurfaceGroupAttrib() : is_solid(false), flow_width(0.f), pattern(-1) {}
bool operator==(const SurfaceGroupAttrib &other) const
{ return is_solid == other.is_solid && flow_width == other.flow_width && pattern == other.pattern; }
bool is_solid;
float flow_width;
// pattern is of type InfillPattern, -1 for an unset pattern.
int pattern;
};
// Generate infills for Slic3r::Layer::Region.
// The Slic3r::Layer::Region at this point of time may contain
// surfaces of various types (internal/bridge/top/bottom/solid).
// The infills are generated on the groups of surfaces with a compatible type.
// Returns an array of Slic3r::ExtrusionPath::Collection objects containing the infills generaed now
// and the thin fills generated by generate_perimeters().
void make_fill(LayerRegion &layerm, ExtrusionEntityCollection &out)
{
// Slic3r::debugf "Filling layer %d:\n", $layerm->layer->id;
double fill_density = layerm.region()->config().fill_density;
Flow infill_flow = layerm.flow(frInfill);
Flow solid_infill_flow = layerm.flow(frSolidInfill);
Flow top_solid_infill_flow = layerm.flow(frTopSolidInfill);
const float perimeter_spacing = layerm.flow(frPerimeter).spacing();
Surfaces surfaces;
// merge adjacent surfaces
// in case of bridge surfaces, the ones with defined angle will be attached to the ones
// without any angle (shouldn't this logic be moved to process_external_surfaces()?)
{
Polygons polygons_bridged;
polygons_bridged.reserve(layerm.fill_surfaces.surfaces.size());
for (Surfaces::iterator it = layerm.fill_surfaces.surfaces.begin(); it != layerm.fill_surfaces.surfaces.end(); ++ it)
if (it->bridge_angle >= 0)
polygons_append(polygons_bridged, *it);
// group surfaces by distinct properties (equal surface_type, thickness, thickness_layers, bridge_angle)
// group is of type Slic3r::SurfaceCollection
//FIXME: Use some smart heuristics to merge similar surfaces to eliminate tiny regions.
std::vector<SurfacesPtr> groups;
layerm.fill_surfaces.group(&groups);
//if internal infill can be dense, place it on his own group
if (layerm.region()->config().infill_dense.getBool() && layerm.region()->config().fill_density<40) {
SurfacesPtr *denseGroup = NULL;
const uint32_t nbGroups = groups.size();
for (uint32_t num_group = 0; num_group < nbGroups; ++num_group) {
for (uint32_t num_srf = 0; num_srf < groups[num_group].size(); ++num_srf) {
Surface *srf = groups[num_group][num_srf];
//if solid, wrong group
if (srf->has_fill_solid()) break;
//find surface that can be used as dense infill
if (srf->maxNbSolidLayersOnTop <= 1
&& srf->maxNbSolidLayersOnTop > 0) {
//remove from the group
groups[num_group].erase(groups[num_group].begin() + num_srf);
--num_srf;
//add to the "dense" group
if (denseGroup == NULL) {
groups.resize(groups.size() + 1);
denseGroup = &groups.back();
}
denseGroup->push_back(srf);
}
}
}
//remove empty groups
for (size_t i = 0; i < groups.size(); ++i) {
if (groups[i].empty()) {
groups.erase(groups.begin() + i);
i--;
}
}
}
// merge compatible groups (we can generate continuous infill for them)
{
// cache flow widths and patterns used for all solid groups
// (we'll use them for comparing compatible groups)
std::vector<SurfaceGroupAttrib> group_attrib(groups.size());
for (size_t i = 0; i < groups.size(); ++ i) {
// we can only merge solid non-bridge non-overextruded surfaces, so discard
// non-solid surfaces
const Surface &surface = *groups[i].front();
if (surface.has_fill_solid() && (!surface.has_mod_bridge() || layerm.layer()->id() == 0) && !surface.has_mod_overBridge()) {
group_attrib[i].is_solid = true;
group_attrib[i].flow_width = (surface.has_pos_top()) ? top_solid_infill_flow.width : solid_infill_flow.width;
group_attrib[i].pattern = surface.has_pos_external() ?
(surface.has_pos_top() ? layerm.region()->config().top_fill_pattern.value : layerm.region()->config().bottom_fill_pattern.value) :
layerm.region()->config().solid_fill_pattern.value;
}
}
// Loop through solid groups, find compatible groups and append them to this one.
for (size_t i = 0; i < groups.size(); ++ i) {
if (! group_attrib[i].is_solid)
continue;
for (size_t j = i + 1; j < groups.size();) {
if (group_attrib[i] == group_attrib[j]) {
// groups are compatible, merge them
groups[i].insert(groups[i].end(), groups[j].begin(), groups[j].end());
groups.erase(groups.begin() + j);
group_attrib.erase(group_attrib.begin() + j);
} else
++ j;
}
}
}
// Give priority to bridges. Process the bridges in the first round, the rest of the surfaces in the 2nd round.
for (size_t round = 0; round < 2; ++ round) {
for (std::vector<SurfacesPtr>::iterator it_group = groups.begin(); it_group != groups.end(); ++it_group) {
const SurfacesPtr &group = *it_group;
bool is_bridge = group.front()->bridge_angle >= 0;
if (is_bridge != (round == 0))
continue;
// Make a union of polygons defining the infiill regions of a group, use a safety offset.
Polygons union_p = union_(to_polygons(*it_group), true);
// Subtract surfaces having a defined bridge_angle from any other, use a safety offset.
if (!polygons_bridged.empty() && !is_bridge)
union_p = diff(union_p, polygons_bridged, true);
// subtract any other surface already processed
//FIXME Vojtech: Because the bridge surfaces came first, they are subtracted twice!
// Using group.front() as a template.
surfaces_append(surfaces, diff_ex(union_p, to_polygons(surfaces), true), *group.front());
}
}
}
/* for (const Surface &surface : surfaces) {
std::cout << "$$$$$$$ TEST srf (area=" << surface.area() << "): "
<< ", type=" << surface.surface_type
<< ", angle=" << surface.bridge_angle
<< ", thickness=" << surface.thickness
<< "\n contour=";
for (const Point &p : surface.expolygon.contour.points) {
std::cout << ", " << (int)(100 * unscaled(p.x())) << ":" << (int)(100 * unscaled(p.y()));
}
std::cout << "\n";
for (const Polygon &hole : surface.expolygon.holes) {
std::cout << "hole=";
for (const Point &p : hole.points) {
std::cout << ", " << (int)(100 * unscaled(p.x())) << ":" << (int)(100 * unscaled(p.y()));
}
std::cout << "\n";
}
}*/
// we need to detect any narrow surfaces that might collapse
// when adding spacing below
// such narrow surfaces are often generated in sloping walls
// by bridge_over_infill() and combine_infill() as a result of the
// subtraction of the combinable area from the layer infill area,
// which leaves small areas near the perimeters
// we are going to grow such regions by overlapping them with the void (if any)
// TODO: detect and investigate whether there could be narrow regions without
// any void neighbors
/*{
coord_t distance_between_surfaces = std::max(
std::max(infill_flow.scaled_spacing(), solid_infill_flow.scaled_spacing()),
top_solid_infill_flow.scaled_spacing());
Polygons surfaces_polygons = to_polygons(surfaces);
Polygons collapsed = diff(
surfaces_polygons,
offset2(surfaces_polygons, -distance_between_surfaces/2, +distance_between_surfaces/2),
true);
Polygons to_subtract;
to_subtract.reserve(collapsed.size() + number_polygons(surfaces));
for (Surfaces::const_iterator it_surface = surfaces.begin(); it_surface != surfaces.end(); ++ it_surface)
if (it_surface->surface_type == (stPosInternal |stDensVoid) )
polygons_append(to_subtract, *it_surface);
polygons_append(to_subtract, collapsed);
surfaces_append(
surfaces,
intersection_ex(
offset(collapsed, distance_between_surfaces),
to_subtract,
true),
stPosInternal | stDensSolid);
}*/
if (0) {
// require "Slic3r/SVG.pm";
// Slic3r::SVG::output("fill_" . $layerm->print_z . ".svg",
// expolygons => [ map $_->expolygon, grep !$_->is_solid, @surfaces ],
// red_expolygons => [ map $_->expolygon, grep $_->is_solid, @surfaces ],
// );
}
for (const Surface &surface : surfaces) {
if (surface.surface_type == (stPosInternal | stDensVoid))
continue;
InfillPattern fill_pattern = layerm.region()->config().fill_pattern.value;
double density = fill_density;
FlowRole role = (surface.has_pos_top()) ? frTopSolidInfill :
(surface.has_fill_solid() ? frSolidInfill : frInfill);
bool is_bridge = layerm.layer()->id() > 0 && surface.has_mod_bridge();
bool is_denser = false;
if (surface.has_fill_solid()) {
density = 100.;
fill_pattern = ipRectilinear;
if (surface.has_pos_external() && !is_bridge)
fill_pattern = surface.has_pos_top() ? layerm.region()->config().top_fill_pattern.value : layerm.region()->config().bottom_fill_pattern.value;
else if (!is_bridge)
fill_pattern = layerm.region()->config().solid_fill_pattern.value;
} else {
if (layerm.region()->config().infill_dense.getBool()
&& layerm.region()->config().fill_density<40
&& surface.maxNbSolidLayersOnTop <= 1
&& surface.maxNbSolidLayersOnTop > 0) {
density = 42;
is_denser = true;
fill_pattern = ipRectiWithPerimeter;
}
if (density <= 0)
continue;
}
// get filler object
std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(fill_pattern));
f->set_bounding_box(layerm.layer()->object()->bounding_box());
// calculate the actual flow we'll be using for this infill
coordf_t h = (surface.thickness == -1) ? layerm.layer()->height : surface.thickness;
Flow flow = layerm.region()->flow(
role,
h,
is_bridge || f->use_bridge_flow(), // bridge flow?
layerm.layer()->id() == 0, // first layer?
-1, // auto width
*layerm.layer()->object()
);
// calculate flow spacing for infill pattern generation
bool using_internal_flow = false;
if (! surface.has_fill_solid() && ! is_bridge) {
// it's internal infill, so we can calculate a generic flow spacing
// for all layers, for avoiding the ugly effect of
// misaligned infill on first layer because of different extrusion width and
// layer height
Flow internal_flow = layerm.region()->flow(
frInfill,
layerm.layer()->object()->config().layer_height.value, // TODO: handle infill_every_layers?
false, // no bridge
false, // no first layer
-1, // auto width
*layerm.layer()->object()
);
f->spacing = internal_flow.spacing();
using_internal_flow = true;
} else {
f->spacing = flow.spacing();
}
double link_max_length = 0.;
if (! is_bridge) {
if (density > 80.) // 80%
link_max_length = 3 * f->spacing; // slic3r default : 3
}
f->layer_id = layerm.layer()->id();
f->z = layerm.layer()->print_z;
if (is_denser)f->angle = 0;
else f->angle = float(Geometry::deg2rad(layerm.region()->config().fill_angle.value));
// Maximum length of the perimeter segment linking two infill lines.
f->link_max_length = scale_(link_max_length);
// Used by the concentric infill pattern to clip the loops to create extrusion paths.
f->loop_clipping = scale_(flow.nozzle_diameter) * LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER;
//give the overlap size to let the infill do his overlap
//add overlap if at least one perimeter
if (layerm.region()->config().perimeters > 0) {
f->overlap = layerm.region()->config().get_abs_value("infill_overlap", (perimeter_spacing + (f->spacing)) / 2);
if (f->overlap!=0) {
f->no_overlap_expolygons = intersection_ex(layerm.fill_no_overlap_expolygons, ExPolygons() = { surface.expolygon });
} else {
f->no_overlap_expolygons.push_back(surface.expolygon);
}
} else {
f->overlap = 0;
f->no_overlap_expolygons.push_back(surface.expolygon);
}
// apply half spacing using this flow's own spacing and generate infill
FillParams params;
params.density = 0.01 * density;
params.dont_adjust = false;
params.fill_exactly = layerm.region()->config().enforce_full_fill_volume.getBool();
params.dont_connect = layerm.region()->config().infill_not_connected.getBool();
// calculate actual flow from spacing (which might have been adjusted by the infill
// pattern generator)
if (using_internal_flow) {
// if we used the internal flow we're not doing a solid infill
// so we can safely ignore the slight variation that might have
// been applied to $f->flow_spacing
} else {
flow = Flow::new_from_spacing(f->spacing, flow.nozzle_diameter, h, is_bridge || f->use_bridge_flow());
}
float flow_percent = 1;
if (surface.has_mod_overBridge()){
params.density = layerm.region()->config().over_bridge_flow_ratio;
//params.flow_mult = layerm.region()->config().over_bridge_flow_ratio;
}
params.flow = &flow;
f->fill_surface_extrusion(&surface, params, out.entities);
}
// add thin fill regions
// thin_fills are of C++ Slic3r::ExtrusionEntityCollection, perl type Slic3r::ExtrusionPath::Collection
// Unpacks the collection, creates multiple collections per path.
// The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection.
// Why the paths are unpacked?
for (const ExtrusionEntity *thin_fill : layerm.thin_fills.entities) {
ExtrusionEntityCollection &collection = *(new ExtrusionEntityCollection());
out.entities.push_back(&collection);
collection.entities.push_back(thin_fill->clone());
}
}
} // namespace Slic3r