Slic3r/xs/src/libslic3r/TransformationMatrix.cpp

421 lines
13 KiB
C++
Raw Blame History

#include "TransformationMatrix.hpp"
#include <cmath>
#include <math.h>
#ifdef SLIC3R_DEBUG
#include "SVG.hpp"
#endif
namespace Slic3r {
TransformationMatrix::TransformationMatrix()
: m11(1.0), m12(0.0), m13(0.0), m14(0.0),
m21(0.0), m22(1.0), m23(0.0), m24(0.0),
m31(0.0), m32(0.0), m33(1.0), m34(0.0)
{
}
TransformationMatrix::TransformationMatrix(
double _m11, double _m12, double _m13, double _m14,
double _m21, double _m22, double _m23, double _m24,
double _m31, double _m32, double _m33, double _m34)
: m11(_m11), m12(_m12), m13(_m13), m14(_m14),
m21(_m21), m22(_m22), m23(_m23), m24(_m24),
m31(_m31), m32(_m32), m33(_m33), m34(_m34)
{
}
TransformationMatrix::TransformationMatrix(const std::vector<double> &entries_row_maj)
{
if (entries_row_maj.size() != 12)
{
*this = TransformationMatrix();
CONFESS("Invalid number of entries when initalizing TransformationMatrix. Vector length must be 12.");
return;
}
m11 = entries_row_maj[0]; m12 = entries_row_maj[1]; m13 = entries_row_maj[2]; m14 = entries_row_maj[3];
m21 = entries_row_maj[4]; m22 = entries_row_maj[5]; m23 = entries_row_maj[6]; m24 = entries_row_maj[7];
m31 = entries_row_maj[8]; m32 = entries_row_maj[9]; m33 = entries_row_maj[10]; m34 = entries_row_maj[11];
}
TransformationMatrix::TransformationMatrix(const TransformationMatrix &other)
{
this->m11 = other.m11; this->m12 = other.m12; this->m13 = other.m13; this->m14 = other.m14;
this->m11 = other.m11; this->m22 = other.m22; this->m23 = other.m23; this->m24 = other.m24;
this->m31 = other.m31; this->m32 = other.m32; this->m33 = other.m33; this->m34 = other.m34;
}
TransformationMatrix& TransformationMatrix::operator= (TransformationMatrix other)
{
this->swap(other);
return *this;
}
void TransformationMatrix::swap(TransformationMatrix &other)
{
std::swap(this->m11, other.m11); std::swap(this->m12, other.m12);
std::swap(this->m13, other.m13); std::swap(this->m14, other.m14);
std::swap(this->m21, other.m21); std::swap(this->m22, other.m22);
std::swap(this->m23, other.m23); std::swap(this->m24, other.m24);
std::swap(this->m31, other.m31); std::swap(this->m32, other.m32);
std::swap(this->m33, other.m33); std::swap(this->m34, other.m34);
}
std::vector<float> TransformationMatrix::matrix3x4f() const
{
std::vector<float> out_arr(0);
out_arr.reserve(12);
out_arr.push_back(this->m11);
out_arr.push_back(this->m12);
out_arr.push_back(this->m13);
out_arr.push_back(this->m14);
out_arr.push_back(this->m21);
out_arr.push_back(this->m22);
out_arr.push_back(this->m23);
out_arr.push_back(this->m24);
out_arr.push_back(this->m31);
out_arr.push_back(this->m32);
out_arr.push_back(this->m33);
out_arr.push_back(this->m34);
return out_arr;
}
double TransformationMatrix::determinante() const
{
// translation elements don't influence the determinante
// because of the 0s on the other side of main diagonal
return m11*(m22*m33 - m23*m32) - m12*(m21*m33 - m23*m31) + m13*(m21*m32 - m31*m22);
}
bool TransformationMatrix::inverse(TransformationMatrix &inverse) const
{
// from http://mathworld.wolfram.com/MatrixInverse.html
// and https://math.stackexchange.com/questions/152462/inverse-of-transformation-matrix
double det = this->determinante();
if (abs(det) < 1e-9)
{
return false;
}
double fac = 1.0 / det;
inverse.m11 = fac * (this->m22 * this->m33 - this->m23 * this->m32);
inverse.m12 = fac * (this->m13 * this->m32 - this->m12 * this->m33);
inverse.m13 = fac * (this->m12 * this->m23 - this->m13 * this->m22);
inverse.m21 = fac * (this->m23 * this->m31 - this->m21 * this->m33);
inverse.m22 = fac * (this->m11 * this->m33 - this->m13 * this->m31);
inverse.m23 = fac * (this->m13 * this->m21 - this->m11 * this->m23);
inverse.m31 = fac * (this->m21 * this->m32 - this->m22 * this->m31);
inverse.m32 = fac * (this->m12 * this->m31 - this->m11 * this->m32);
inverse.m33 = fac * (this->m11 * this->m22 - this->m12 * this->m21);
inverse.m14 = -(inverse.m11 * this->m14 + inverse.m12 * this->m24 + inverse.m13 * this->m34);
inverse.m24 = -(inverse.m21 * this->m14 + inverse.m22 * this->m24 + inverse.m23 * this->m34);
inverse.m34 = -(inverse.m31 * this->m14 + inverse.m32 * this->m24 + inverse.m33 * this->m34);
return true;
}
void TransformationMatrix::translate(double x, double y, double z)
{
TransformationMatrix mat = mat_translation(x, y, z);
this->multiplyLeft(mat);
}
void TransformationMatrix::translateXY(Slic3r::Pointf position)
{
TransformationMatrix mat = mat_translation(position.x, position.y, 0.0);
this->multiplyLeft(mat);
}
void TransformationMatrix::setTranslation(double x, double y, double z)
{
this->m14 = x;
this->m24 = y;
this->m34 = z;
}
void TransformationMatrix::setXYtranslation(double x, double y)
{
this->m14 = x;
this->m24 = y;
}
void TransformationMatrix::setXYtranslation(Slic3r::Pointf position)
{
this->m14 = position.x;
this->m24 = position.y;
}
void TransformationMatrix::scale(double factor)
{
this->scale(factor, factor, factor);
}
void TransformationMatrix::scale(double x, double y, double z)
{
TransformationMatrix mat = mat_scale(x, y, z);
this->multiplyLeft(mat);
}
void TransformationMatrix::mirror(const Axis &axis)
{
TransformationMatrix mat = mat_mirror(axis);
this->multiplyLeft(mat);
}
void TransformationMatrix::mirror(const Pointf3 & normal)
{
TransformationMatrix mat = mat_mirror(normal);
this->multiplyLeft(mat);
}
void TransformationMatrix::rotate(double angle_rad, const Axis & axis)
{
TransformationMatrix mat = mat_rotation(angle_rad, axis);
this->multiplyLeft(mat);
}
void TransformationMatrix::rotate(double angle_rad, const Pointf3 & axis)
{
TransformationMatrix mat = mat_rotation(angle_rad, axis);
this->multiplyLeft(mat);
}
void TransformationMatrix::rotate(double q1, double q2, double q3, double q4)
{
TransformationMatrix mat = mat_rotation(q1, q2, q3, q4);
this->multiplyLeft(mat);
}
void TransformationMatrix::applyLeft(const TransformationMatrix &left)
{
*this = multiply(left, *this);
}
TransformationMatrix TransformationMatrix::multiplyLeft(const TransformationMatrix &left)
{
return multiply(left, *this);
}
void TransformationMatrix::applyRight(const TransformationMatrix &right)
{
*this = multiply(*this, right);
}
TransformationMatrix TransformationMatrix::multiplyRight(const TransformationMatrix &right)
{
return multiply(*this, right);
}
TransformationMatrix TransformationMatrix::multiply(const TransformationMatrix &left, const TransformationMatrix &right)
{
TransformationMatrix trafo;
trafo.m11 = left.m11*right.m11 + left.m12*right.m21 + left.m13 + right.m31;
trafo.m12 = left.m11*right.m12 + left.m12*right.m22 + left.m13 + right.m32;
trafo.m13 = left.m11*right.m13 + left.m12*right.m23 + left.m13 + right.m33;
trafo.m14 = left.m11*right.m14 + left.m12*right.m24 + left.m13 + right.m34 + left.m14;
trafo.m21 = left.m21*right.m11 + left.m22*right.m21 + left.m23 + right.m31;
trafo.m22 = left.m21*right.m12 + left.m22*right.m22 + left.m23 + right.m32;
trafo.m23 = left.m21*right.m13 + left.m22*right.m23 + left.m23 + right.m33;
trafo.m24 = left.m21*right.m14 + left.m22*right.m24 + left.m23 + right.m34 + left.m24;
trafo.m31 = left.m31*right.m11 + left.m32*right.m21 + left.m33 + right.m31;
trafo.m32 = left.m31*right.m12 + left.m32*right.m22 + left.m33 + right.m32;
trafo.m33 = left.m31*right.m13 + left.m32*right.m23 + left.m33 + right.m33;
trafo.m34 = left.m31*right.m14 + left.m32*right.m24 + left.m33 + right.m34 + left.m34;
return trafo;
}
TransformationMatrix TransformationMatrix::mat_eye()
{
return TransformationMatrix();
}
TransformationMatrix TransformationMatrix::mat_translation(double x, double y, double z)
{
return TransformationMatrix(
1.0, 0.0, 0.0, x,
0.0, 1.0, 0.0, y,
0.0, 0.0, 1.0, z);
}
TransformationMatrix TransformationMatrix::mat_scale(double x, double y, double z)
{
return TransformationMatrix(
x, 0.0, 0.0, 0.0,
0.0, y, 0.0, 0.0,
0.0, 0.0, z, 0.0);
}
TransformationMatrix TransformationMatrix::mat_scale(double scale)
{
return TransformationMatrix::mat_scale(scale, scale, scale);
}
TransformationMatrix TransformationMatrix::mat_rotation(double angle_rad, const Axis &axis)
{
double s = sin(angle_rad);
double c = cos(angle_rad);
TransformationMatrix mat; // For RVO
switch (axis)
{
case X:
mat = TransformationMatrix(
1.0, 0.0, 0.0, 0.0,
0.0, c, s, 0.0,
0.0, -s, c, 0.0);
break;
case Y:
mat = TransformationMatrix(
c, 0.0, -s, 0.0,
0.0, 1.0, 0.0, 0.0,
s, 0.0, c, 0.0);
break;
case Z:
mat = TransformationMatrix(
c, s, 0.0, 0.0,
-s, c, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0);
break;
default:
CONFESS("Invalid Axis supplied to TransformationMatrix::mat_rotation");
mat = TransformationMatrix();
break;
}
return mat;
}
TransformationMatrix TransformationMatrix::mat_rotation(double q1, double q2, double q3, double q4)
{
double factor = q1*q1 + q2*q2 + q3*q3 + q4*q4;
if (abs(factor - 1.0) > 1e-12)
{
factor = 1.0 / sqrt(factor);
q1 *= factor;
q2 *= factor;
q3 *= factor;
q4 *= factor;
}
// https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Quaternion-derived_rotation_matrix
return TransformationMatrix(
1.0 - 2.0 * (q2*q2 + q3*q3), 2.0 * (q1*q2 - q3*q4), 2.0 * (q1*q3 + q2*q4), 0.0,
2.0 * (q1*q2 + q3*q4), 1.0 - 2.0 * (q1*q1 + q3*q3), 2.0 * (q2*q3 - q1*q4), 0.0,
2.0 * (q1*q3 - q2*q4), 2.0 * (q2*q3 + q1*q4), 1.0 - 2.0 * (q1*q1 + q2*q2), 0.0);
}
TransformationMatrix TransformationMatrix::mat_rotation(double angle_rad, const Pointf3 &axis)
{
double s, factor, q1, q2, q3, q4;
s = sin(angle_rad);
factor = axis.x*axis.x + axis.y*axis.y + axis.z*axis.z;
factor = s / sqrt(factor);
q1 = factor*axis.x;
q2 = factor*axis.y;
q3 = factor*axis.z;
q4 = cos(angle_rad);
return mat_rotation(q1, q2, q3, q4);
}
TransformationMatrix TransformationMatrix::mat_rotation(Pointf3 origin, Pointf3 target)
{
TransformationMatrix mat;
double length_sq = origin.x*origin.x + origin.y*origin.y + origin.z*origin.z;
double rec_length;
if (length_sq < 1e-12)
{
CONFESS("0-length Vector supplied to TransformationMatrix::mat_rotation(origin,target)");
return mat;
}
rec_length = 1.0 / sqrt(length_sq);
origin.scale(rec_length);
length_sq = target.x*target.x + target.y*target.y + target.z*target.z;
if (length_sq < 1e-12)
{
CONFESS("0-length Vector supplied to TransformationMatrix::mat_rotation(origin,target)");
return mat;
}
rec_length = 1.0 / sqrt(length_sq);
target.scale(rec_length);
Pointf3 cross;
cross.x = origin.y*target.z - origin.z*target.y;
cross.y = origin.z*target.x - origin.x*target.z;
cross.z = origin.x*target.y - origin.y*target.x;
length_sq = cross.x*cross.x + cross.y*cross.y + cross.z*cross.z;
if (length_sq < 1e-12) {// colinear, but maybe opposite directions
double dot = origin.x*target.x + origin.y*target.y + origin.z*target.z;
if (dot > 0.0)
{
return mat; // same direction, nothing to do
}
else
{
Pointf3 help;
// make help garanteed not colinear
if (abs(abs(origin.x) - 1) < 0.02)
help.z = 1.0; // origin mainly in x direction
else
help.x = 1.0;
Pointf3 proj = Pointf3(origin);
// projection of axis onto unit vector origin
dot = origin.x*help.x + origin.y*help.y + origin.z*help.z;
proj.scale(dot);
// help - proj is normal to origin -> rotation axis
// axis is not unit length -> gets normalized in called function
Pointf3 axis = (Pointf3)proj.vector_to(help);
return mat_rotation(PI, axis);
}
}
else
{
}
return mat; // Shouldn't be reached
}
TransformationMatrix TransformationMatrix::mat_mirror(const Axis &axis)
{
TransformationMatrix mat; // For RVO
switch (axis)
{
case X:
mat.m11 = -1.0;
break;
case Y:
mat.m22 = -1.0;
break;
case Z:
mat.m33 = -1.0;
break;
default:
CONFESS("Invalid Axis supplied to TransformationMatrix::mat_mirror");
break;
}
return mat;
}
TransformationMatrix TransformationMatrix::mat_mirror(const Pointf3 &normal)
{
// Kov<6F>cs, E. Rotation about arbitrary axis and reflection through an arbitrary plane, Annales Mathematicae
// et Informaticae, Vol 40 (2012) pp 175-186
// http://ami.ektf.hu/uploads/papers/finalpdf/AMI_40_from175to186.pdf
double factor, c1, c2, c3;
factor = normal.x*normal.x + normal.y*normal.y + normal.z*normal.z;
factor = 1.0 / sqrt(factor);
c1 = factor*normal.x;
c2 = factor*normal.y;
c3 = factor*normal.z;
return TransformationMatrix(
1.0 - 2.0 * c1*c1, -2 * c2*c1, -2 * c3*c1, 0.0,
-2 * c2*c1, 1.0 - 2.0 * c2*c2, -2 * c2*c3, 0.0,
-2 * c1*c3, -2 * c2*c3, 1.0 - 2.0 * c3*c3, 0.0);
}
}