Slic3r/tests/superslicerlibslic3r/test_geometry.cpp
supermerill 1afaa6ef49 create little hierarchy of config to better use ratio_over
fixes on ratio_over
fix Flow::extrusion_width (bad computation of first_layer_height)
fix enum visibility
moving test classes to prusaslicer test directory (wip)
all that because i was trying to write a test class for a modification in min_object_distance (and i didn't even start)
2020-05-31 03:54:58 +02:00

380 lines
16 KiB
C++

#define CATCH_CONFIG_DISABLE
#include <catch2/catch.hpp>
#include <libslic3r/Point.hpp>
#include <libslic3r/BoundingBox.hpp>
#include <libslic3r/Polygon.hpp>
#include <libslic3r/Polyline.hpp>
#include <libslic3r/Line.hpp>
#include <libslic3r/Geometry.hpp>
#include <libslic3r/ClipperUtils.hpp>
using namespace Slic3r;
TEST_CASE("Polygon::contains works properly", ""){
// this test was failing on Windows (GH #1950)
Polygon polygon{ Points{
Point{207802834,-57084522},
Point{196528149,-37556190},
Point{173626821,-25420928},
Point{171285751,-21366123},
Point{118673592,-21366123},
Point{116332562,-25420928},
Point{93431208,-37556191},
Point{82156517,-57084523},
Point{129714478,-84542120},
Point{160244873,-84542120}
} };
Point point{ 95706562, -57294774 };
REQUIRE(polygon.contains(point));
}
SCENARIO("Intersections of line segments"){
GIVEN("Integer coordinates"){
Line line1{ Point{5,15},Point{30,15} };
Line line2{ Point{10,20}, Point{10,10} };
THEN("The intersection is valid"){
Point point;
line1.intersection(line2,&point);
REQUIRE(Point{ 10,15 } == point);
}
}
GIVEN("Scaled coordinates"){
Line line1{ Point{73.6310778185108 / 0.0000001, 371.74239268924 / 0.0000001}, Point{73.6310778185108 / 0.0000001, 501.74239268924 / 0.0000001} };
Line line2{ Point{75 / 0.0000001, 437.9853 / 0.0000001}, Point{62.7484 / 0.0000001, 440.4223 / 0.0000001} };
THEN("There is still an intersection"){
Point point;
REQUIRE(line1.intersection(line2,&point));
}
}
}
/*
Tests for unused methods still written in perl
{
my $polygon = Slic3r::Polygon->new(
[45919000, 515273900], [14726100, 461246400], [14726100, 348753500], [33988700, 315389800],
[43749700, 343843000], [45422300, 352251500], [52362100, 362637800], [62748400, 369577600],
[75000000, 372014700], [87251500, 369577600], [97637800, 362637800], [104577600, 352251500],
[107014700, 340000000], [104577600, 327748400], [97637800, 317362100], [87251500, 310422300],
[82789200, 309534700], [69846100, 294726100], [254081000, 294726100], [285273900, 348753500],
[285273900, 461246400], [254081000, 515273900],
);
# this points belongs to $polyline
# note: it's actually a vertex, while we should better check an intermediate point
my $point = Slic3r::Point->new(104577600, 327748400);
local $Slic3r::Geometry::epsilon = 1E-5;
is_deeply Slic3r::Geometry::polygon_segment_having_point($polygon, $point)->pp,
[ [107014700, 340000000], [104577600, 327748400] ],
'polygon_segment_having_point';
}
{
auto point = Point{736310778.185108, 5017423926.8924};
auto line = Line(Point{(long int} 627484000, (long int) 3695776000), Point{(long int} 750000000, (long int)3720147000));
//is Slic3r::Geometry::point_in_segment($point, $line), 0, 'point_in_segment';
}
// Possible to delete
{
//my $p1 = [10, 10];
//my $p2 = [10, 20];
//my $p3 = [10, 30];
//my $p4 = [20, 20];
//my $p5 = [0, 20];
THEN("Points in a line give the correct angles"){
//is Slic3r::Geometry::angle3points($p2, $p3, $p1), PI(), 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p3), PI(), 'angle3points';
}
THEN("Left turns give the correct angle"){
//is Slic3r::Geometry::angle3points($p2, $p4, $p3), PI()/2, 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p4), PI()/2, 'angle3points';
}
THEN("Right turns give the correct angle"){
//is Slic3r::Geometry::angle3points($p2, $p3, $p4), PI()/2*3, 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p5), PI()/2*3, 'angle3points';
}
//my $p1 = [30, 30];
//my $p2 = [20, 20];
//my $p3 = [10, 10];
//my $p4 = [30, 10];
//is Slic3r::Geometry::angle3points($p2, $p1, $p3), PI(), 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p4), PI()/2*3, 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p1), 2*PI(), 'angle3points';
}
SCENARIO("polygon_is_convex works"){
GIVEN("A square of dimension 10"){
//my $cw_square = [ [0,0], [0,10], [10,10], [10,0] ];
THEN("It is not convex clockwise"){
//is polygon_is_convex($cw_square), 0, 'cw square is not convex';
}
THEN("It is convex counter-clockwise"){
//is polygon_is_convex([ reverse @$cw_square ]), 1, 'ccw square is convex';
}
}
GIVEN("A concave polygon"){
//my $convex1 = [ [0,0], [10,0], [10,10], [0,10], [0,6], [4,6], [4,4], [0,4] ];
THEN("It is concave"){
//is polygon_is_convex($convex1), 0, 'concave polygon';
}
}
}*/
TEST_CASE("Creating a polyline generates the obvious lines"){
auto polyline = Polyline();
polyline.points = std::vector<Point>({Point{0, 0}, Point{10, 0}, Point{20, 0}});
REQUIRE(polyline.lines().at(0).a == Point{0,0});
REQUIRE(polyline.lines().at(0).b == Point{10,0});
REQUIRE(polyline.lines().at(1).a == Point{10,0});
REQUIRE(polyline.lines().at(1).b == Point{20,0});
}
TEST_CASE("Splitting a Polygon generates a polyline correctly"){
auto polygon = Polygon(std::vector<Point>({Point{0, 0}, Point{10, 0}, Point{5, 5}}));
auto split = polygon.split_at_index(1);
REQUIRE(split.points[0]==Point{10,0});
REQUIRE(split.points[1]==Point{5,5});
REQUIRE(split.points[2]==Point{0,0});
REQUIRE(split.points[3]==Point{10,0});
}
TEST_CASE("Bounding boxes are scaled appropriately"){
auto bb = BoundingBox(std::vector<Point>({Point{0, 1}, Point{10, 2}, Point{20, 2}}));
bb.scale(2);
REQUIRE(bb.min == Point{0,2});
REQUIRE(bb.max == Point{40,4});
}
TEST_CASE("Offseting a line generates a polygon correctly"){
Polyline tmp({ Point{10,10}, Point{20,10} });
Polygon area = offset(tmp,5).at(0);
REQUIRE(area.area() == Polygon(std::vector<Point>({Point{10,5},Point{20,5},Point{20,15},Point{10,15}})).area());
}
SCENARIO("Circle Fit, TaubinFit with Newton's method") {
GIVEN("A vector of Pointfs arranged in a half-circle with approximately the same distance R from some point") {
Vec2d expected_center(-6, 0);
Pointfs sample {Vec2d{6.0, 0}, Vec2d{5.1961524, 3}, Vec2d{3 ,5.1961524}, Vec2d{0, 6.0}, Vec2d{-3, 5.1961524}, Vec2d{-5.1961524, 3}, Vec2d{-6.0, 0}};
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});
WHEN("Circle fit is called on the entire array") {
Vec2d result_center(0,0);
result_center = Geometry::circle_taubin_newton(sample);
THEN("A center point of -6,0 is returned.") {
REQUIRE(result_center == expected_center);
}
}
WHEN("Circle fit is called on the first four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_taubin_newton(sample.cbegin(), sample.cbegin()+4);
THEN("A center point of -6,0 is returned.") {
REQUIRE(result_center == expected_center);
}
}
WHEN("Circle fit is called on the middle four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
THEN("A center point of -6,0 is returned.") {
REQUIRE(result_center == expected_center);
}
}
}
GIVEN("A vector of Pointfs arranged in a half-circle with approximately the same distance R from some point") {
Vec2d expected_center(-3, 9);
Pointfs sample {Vec2d{6.0, 0}, Vec2d{5.1961524, 3}, Vec2d{3 ,5.1961524},
Vec2d{0, 6.0},
Vec2d{3, 5.1961524}, Vec2d{-5.1961524, 3}, Vec2d{-6.0, 0}};
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});
WHEN("Circle fit is called on the entire array") {
Vec2d result_center(0,0);
result_center = Geometry::circle_taubin_newton(sample);
THEN("A center point of 3,9 is returned.") {
REQUIRE(result_center == expected_center);
}
}
WHEN("Circle fit is called on the first four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_taubin_newton(sample.cbegin(), sample.cbegin()+4);
THEN("A center point of 3,9 is returned.") {
REQUIRE(result_center == expected_center);
}
}
WHEN("Circle fit is called on the middle four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
THEN("A center point of 3,9 is returned.") {
REQUIRE(result_center == expected_center);
}
}
}
GIVEN("A vector of Points arranged in a half-circle with approximately the same distance R from some point") {
Point expected_center { Point::new_scale(-3, 9)};
Points sample {Point::new_scale(6.0, 0), Point::new_scale(5.1961524, 3), Point::new_scale(3 ,5.1961524),
Point::new_scale(0, 6.0),
Point::new_scale(3, 5.1961524), Point::new_scale(-5.1961524, 3), Point::new_scale(-6.0, 0)};
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Point& a) { return a + expected_center;});
WHEN("Circle fit is called on the entire array") {
Point result_center(0,0);
result_center = Geometry::circle_taubin_newton(sample);
THEN("A center point of scaled 3,9 is returned.") {
REQUIRE(result_center.coincides_with_epsilon(expected_center));
}
}
WHEN("Circle fit is called on the first four points") {
Point result_center(0,0);
result_center = Geometry::circle_taubin_newton(sample.cbegin(), sample.cbegin()+4);
THEN("A center point of scaled 3,9 is returned.") {
REQUIRE(result_center.coincides_with_epsilon(expected_center));
}
}
WHEN("Circle fit is called on the middle four points") {
Point result_center(0,0);
result_center = Geometry::circle_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
THEN("A center point of scaled 3,9 is returned.") {
REQUIRE(result_center.coincides_with_epsilon(expected_center));
}
}
}
}
// A PU
//TEST_CASE("Chained path working correctly"){
// // if chained_path() works correctly, these points should be joined with no diagonal paths
// // (thus 26 units long)
// std::vector<Point> points = {Point{26,26},Point{52,26},Point{0,26},Point{26,52},Point{26,0},Point{0,52},Point{52,52},Point{52,0}};
// std::vector<Points::size_type> indices;
// Geometry::chained_path(points,indices);
// for(Points::size_type i = 0; i < indices.size()-1;i++){
// double dist = points.at(indices.at(i)).distance_to(points.at(indices.at(i+1)));
// REQUIRE(abs(dist-26) <= EPSILON);
// }
//}
SCENARIO("Line distances"){
GIVEN("A line"){
Line line{ Point{0, 0}, Point{20, 0} };
THEN("Points on the line segment have 0 distance"){
REQUIRE(Point{0, 0}.distance_to(line) == 0);
REQUIRE(Point{20, 0}.distance_to(line) == 0);
REQUIRE(Point{10, 0}.distance_to(line) == 0);
}
THEN("Points off the line have the appropriate distance"){
REQUIRE(Point{10, 10}.distance_to(line) == 10);
REQUIRE(Point{50, 0}.distance_to(line) == 30);
}
}
}
SCENARIO("Polygon convex/concave detection"){
GIVEN(("A Square with dimension 100")){
Polygon square/*new_scale*/{ std::vector<Point>{
Point{100,100},
Point{200,100},
Point{200,200},
Point{100,200}}};
THEN("It has 4 convex points counterclockwise"){
REQUIRE(square.concave_points(PI*4/3).size() == 0);
REQUIRE(square.convex_points(PI*2/3).size() == 4);
}
THEN("It has 4 concave points clockwise"){
square.make_clockwise();
REQUIRE(square.concave_points(PI*4/3).size() == 4);
REQUIRE(square.convex_points(PI*2/3).size() == 0);
}
}
GIVEN("A Square with an extra colinearvertex"){
Polygon square /*new_scale*/{ std::vector<Point>{
Point{150,100},
Point{200,100},
Point{200,200},
Point{100,200},
Point{100,100}} };
THEN("It has 4 convex points counterclockwise"){
REQUIRE(square.concave_points(PI*4/3).size() == 0);
REQUIRE(square.convex_points(PI*2/3).size() == 4);
}
}
GIVEN("A Square with an extra collinear vertex in different order"){
Polygon square = Polygon /*new_scale*/{ std::vector<Point>{
Point{200,200},
Point{100,200},
Point{100,100},
Point{150,100},
Point{200,100}} };
THEN("It has 4 convex points counterclockwise"){
REQUIRE(square.concave_points(PI*4/3).size() == 0);
REQUIRE(square.convex_points(PI*2/3).size() == 4);
}
}
GIVEN("A triangle"){
Polygon triangle{ std::vector<Point>{
Point{16000170,26257364},
Point{714223,461012},
Point{31286371,461008}
} };
THEN("it has three convex vertices"){
REQUIRE(triangle.concave_points(PI*4/3).size() == 0);
REQUIRE(triangle.convex_points(PI*2/3).size() == 3);
}
}
GIVEN("A triangle with an extra collinear point"){
Polygon triangle{ std::vector<Point>{
Point{16000170,26257364},
Point{714223,461012},
Point{20000000,461012},
Point{31286371,461012}
} };
THEN("it has three convex vertices"){
REQUIRE(triangle.concave_points(PI*4/3).size() == 0);
REQUIRE(triangle.convex_points(PI*2/3).size() == 3);
}
}
GIVEN("A polygon with concave vertices with angles of specifically 4/3pi"){
// Two concave vertices of this polygon have angle = PI*4/3, so this test fails
// if epsilon is not used.
Polygon polygon{ std::vector<Point>{
Point{60246458,14802768},Point{64477191,12360001},
Point{63727343,11060995},Point{64086449,10853608},
Point{66393722,14850069},Point{66034704,15057334},
Point{65284646,13758387},Point{61053864,16200839},
Point{69200258,30310849},Point{62172547,42483120},
Point{61137680,41850279},Point{67799985,30310848},
Point{51399866,1905506},Point{38092663,1905506},
Point{38092663,692699},Point{52100125,692699}
} };
THEN("the correct number of points are detected"){
REQUIRE(polygon.concave_points(PI*4/3).size() == 6);
REQUIRE(polygon.convex_points(PI*2/3).size() == 10);
}
}
}
TEST_CASE("Triangle Simplification does not result in less than 3 points"){
Polygon triangle{ std::vector<Point>{
Point{16000170,26257364}, Point{714223,461012}, Point{31286371,461008}
} };
REQUIRE(triangle.simplify(250000).at(0).points.size() == 3);
}