Slic3r/src/libslic3r/SLA/SLAAutoSupports.cpp
2018-12-07 14:53:24 +01:00

155 lines
6.1 KiB
C++

#include "igl/random_points_on_mesh.h"
#include "igl/AABB.h"
#include "SLAAutoSupports.hpp"
#include "Model.hpp"
#include <iostream>
namespace Slic3r {
SLAAutoSupports::SLAAutoSupports(ModelObject& mo, const SLAAutoSupports::Config& c)
: m_model_object(mo), mesh(), m_config(c)
{}
float SLAAutoSupports::approximate_geodesic_distance(const Vec3f& p1, const Vec3f& p2, Vec3f& n1, Vec3f& n2)
{
n1.normalize();
n2.normalize();
Vec3f v = (p2-p1);
v.normalize();
float c1 = n1.dot(v);
float c2 = n2.dot(v);
float result = pow(p1(0)-p2(0), 2) + pow(p1(1)-p2(1), 2) + pow(p1(2)-p2(2), 2);
// Check for division by zero:
if(fabs(c1 - c2) > 0.0001)
result *= (asin(c1) - asin(c2)) / (c1 - c2);
return result;
}
void SLAAutoSupports::generate()
{
// Loads the ModelObject raw_mesh and transforms it by first instance's transformation matrix (disregarding translation).
// Instances only differ in z-rotation, so it does not matter which of them will be used for the calculation.
// The supports point will be calculated on this mesh (so scaling ang vertical direction is correctly accounted for).
// Results will be inverse-transformed to raw_mesh coordinates.
TriangleMesh mesh = m_model_object.raw_mesh();
Transform3d transformation_matrix = m_model_object.instances[0]->get_matrix(true/*dont_translate*/);
mesh.transform(transformation_matrix);
// Check that the object is thick enough to produce any support points
BoundingBoxf3 bb = mesh.bounding_box();
if (bb.size()(2) < m_config.minimal_z)
return;
// All points that we curretly have must be transformed too, so distance to them is correcly calculated.
for (Vec3f& point : m_model_object.sla_support_points)
point = transformation_matrix.cast<float>() * point;
const stl_file& stl = mesh.stl;
Eigen::MatrixXf V;
Eigen::MatrixXi F;
V.resize(3 * stl.stats.number_of_facets, 3);
F.resize(stl.stats.number_of_facets, 3);
for (unsigned int i=0; i<stl.stats.number_of_facets; ++i) {
const stl_facet* facet = stl.facet_start+i;
V(3*i+0, 0) = facet->vertex[0](0); V(3*i+0, 1) = facet->vertex[0](1); V(3*i+0, 2) = facet->vertex[0](2);
V(3*i+1, 0) = facet->vertex[1](0); V(3*i+1, 1) = facet->vertex[1](1); V(3*i+1, 2) = facet->vertex[1](2);
V(3*i+2, 0) = facet->vertex[2](0); V(3*i+2, 1) = facet->vertex[2](1); V(3*i+2, 2) = facet->vertex[2](2);
F(i, 0) = 3*i+0;
F(i, 1) = 3*i+1;
F(i, 2) = 3*i+2;
}
// In order to calculate distance to already placed points, we must keep know which facet the point lies on.
std::vector<Vec3f> facets_normals;
// The AABB hierarchy will be used to find normals of already placed points.
// The points added automatically will just push_back the new normal on the fly.
igl::AABB<Eigen::MatrixXf,3> aabb;
aabb.init(V, F);
for (unsigned int i=0; i<m_model_object.sla_support_points.size(); ++i) {
int facet_idx = 0;
Eigen::Matrix<float, 1, 3> dump;
Eigen::MatrixXf query_point = m_model_object.sla_support_points[i];
aabb.squared_distance(V, F, query_point, facet_idx, dump);
Vec3f a1 = V.row(F(facet_idx,1)) - V.row(F(facet_idx,0));
Vec3f a2 = V.row(F(facet_idx,2)) - V.row(F(facet_idx,0));
Vec3f normal = a1.cross(a2);
normal.normalize();
facets_normals.push_back(normal);
}
// New potential support point is randomly generated on the mesh and distance to all already placed points is calculated.
// In case it is never smaller than certain limit (depends on the new point's facet normal), the point is accepted.
// The process stops after certain number of points is refused in a row.
Vec3f point;
Vec3f normal;
int added_points = 0;
int refused_points = 0;
const int refused_limit = 30;
// Angle at which the density reaches zero:
const float threshold_angle = std::min(M_PI_2, M_PI_4 * acos(0.f/m_config.density_at_horizontal) / acos(m_config.density_at_45/m_config.density_at_horizontal));
srand(time(NULL)); // rand() is used by igl::random_point_on_mesh
while (refused_points < refused_limit) {
// Place a random point on the mesh and calculate corresponding facet's normal:
Eigen::VectorXi FI;
Eigen::MatrixXf B;
igl::random_points_on_mesh(1, V, F, B, FI);
point = B(0,0)*V.row(F(FI(0),0)) +
B(0,1)*V.row(F(FI(0),1)) +
B(0,2)*V.row(F(FI(0),2));
if (point(2) - bb.min(2) < m_config.minimal_z)
continue;
Vec3f a1 = V.row(F(FI(0),1)) - V.row(F(FI(0),0));
Vec3f a2 = V.row(F(FI(0),2)) - V.row(F(FI(0),0));
normal = a1.cross(a2);
normal.normalize();
// calculate angle between the normal and vertical:
float angle = angle_from_normal(normal);
if (angle > threshold_angle)
continue;
const float distance_limit = 1./(2.4*get_required_density(angle));
bool add_it = true;
for (unsigned int i=0; i<m_model_object.sla_support_points.size(); ++i) {
if (approximate_geodesic_distance(m_model_object.sla_support_points[i], point, facets_normals[i], normal) < distance_limit) {
add_it = false;
++refused_points;
break;
}
}
if (add_it) {
m_model_object.sla_support_points.push_back(point);
facets_normals.push_back(normal);
++added_points;
refused_points = 0;
}
}
// Now transform all support points to mesh coordinates:
for (Vec3f& point : m_model_object.sla_support_points)
point = transformation_matrix.inverse().cast<float>() * point;
}
float SLAAutoSupports::get_required_density(float angle) const
{
// calculation would be density_0 * cos(angle). To provide one more degree of freedom, we will scale the angle
// to get the user-set density for 45 deg. So it ends up as density_0 * cos(K * angle).
float K = 4.f * float(acos(m_config.density_at_45/m_config.density_at_horizontal) / M_PI);
return std::max(0.f, float(m_config.density_at_horizontal * cos(K*angle)));
}
} // namespace Slic3r