Slic3r/src/libslic3r/ExtrusionEntity.hpp
2019-07-08 14:51:00 +02:00

530 lines
28 KiB
C++
Raw Blame History

#ifndef slic3r_ExtrusionEntity_hpp_
#define slic3r_ExtrusionEntity_hpp_
#include "libslic3r.h"
#include "Polygon.hpp"
#include "Polyline.hpp"
namespace Slic3r {
class ExPolygonCollection;
class ExtrusionEntityCollection;
class Extruder;
/* Each ExtrusionRole value identifies a distinct set of { extruder, speed } */
enum ExtrusionRole {
erNone,
erPerimeter,
erExternalPerimeter,
erOverhangPerimeter,
erInternalInfill,
erSolidInfill,
erTopSolidInfill,
erBridgeInfill,
erGapFill,
erSkirt,
erSupportMaterial,
erSupportMaterialInterface,
erWipeTower,
erCustom,
// Extrusion role for a collection with multiple extrusion roles.
erMixed,
};
// perimeter / infill / support / skirt / gapfill / wipetower / custom / mixed
// side / internal / top / bottom
// bridge
inline bool is_perimeter(ExtrusionRole role)
{
return role == erPerimeter
|| role == erExternalPerimeter
|| role == erOverhangPerimeter;
}
inline bool is_infill(ExtrusionRole role)
{
return role == erBridgeInfill
|| role == erInternalInfill
|| role == erSolidInfill
|| role == erTopSolidInfill;
}
inline bool is_solid_infill(ExtrusionRole role)
{
return role == erBridgeInfill
|| role == erSolidInfill
|| role == erTopSolidInfill;
}
inline bool is_bridge(ExtrusionRole role) {
return role == erBridgeInfill
|| role == erOverhangPerimeter;
}
/* Special flags describing loop */
enum ExtrusionLoopRole {
elrDefault,
elrContourInternalPerimeter,
elrSkirt,
};
class ExtrusionEntity;
class ExtrusionPath;
class ExtrusionPath3D;
class ExtrusionMultiPath;
class ExtrusionMultiPath3D;
class ExtrusionLoop;
//
//class ExtrusionVisitor {
//public:
// virtual void default_use(ExtrusionEntity &entity) { assert(false); };
// virtual void use(ExtrusionPath &path) { ExtrusionEntity &entity = path; default_use(entity); };
// virtual void use(ExtrusionPath3D &path3D) { ExtrusionPath &path = path3D; use(path); };
// virtual void use(ExtrusionMultiPath &multipath) { ExtrusionEntity &entity = multipath; default_use(entity); };
// virtual void use(ExtrusionMultiPath3D &multipath3D) { ExtrusionEntity &entity = multipath3D; default_use(entity); };
// virtual void use(ExtrusionLoop &loop) { ExtrusionEntity &entity = loop; default_use(entity); };
// virtual void use(ExtrusionEntityCollection &collection) { ExtrusionEntity &entity = collection; default_use(entity); };
//};
//class ExtrusionVisitorConst {
//public:
// virtual void default_use(const ExtrusionEntity &entity) { assert(false); };
// virtual void use(const ExtrusionPath &path) { const ExtrusionEntity &entity = path; default_use(entity); };
// virtual void use(const ExtrusionPath3D &path3D) { const ExtrusionPath &path = path3D; use(path); };
// virtual void use(const ExtrusionMultiPath &multipath) { const ExtrusionEntity &entity = multipath; default_use(entity); };
// virtual void use(const ExtrusionMultiPath3D &multipath3D) { const ExtrusionEntity &entity = multipath3D; default_use(entity); };
// virtual void use(const ExtrusionLoop &loop) { const ExtrusionEntity &entity = loop; default_use(entity); };
// virtual void use(const ExtrusionEntityCollection &collection) { const ExtrusionEntity &entity = collection; default_use(entity); };
//};
class ExtrusionVisitor {
public:
virtual void default_use(ExtrusionEntity &entity) { assert(false); };
virtual void use(ExtrusionPath &path);
virtual void use(ExtrusionPath3D &path3D);
virtual void use(ExtrusionMultiPath &multipath);
virtual void use(ExtrusionMultiPath3D &multipath3D);
virtual void use(ExtrusionLoop &loop);
virtual void use(ExtrusionEntityCollection &collection);
};
class ExtrusionVisitorConst {
public:
virtual void default_use(const ExtrusionEntity &entity) { assert(false); };
virtual void use(const ExtrusionPath &path);
virtual void use(const ExtrusionPath3D &path3D);
virtual void use(const ExtrusionMultiPath &multipath);
virtual void use(const ExtrusionMultiPath3D &multipath3D);
virtual void use(const ExtrusionLoop &loop);
virtual void use(const ExtrusionEntityCollection &collection);
};
class ExtrusionEntity
{
public:
virtual ExtrusionRole role() const = 0;
virtual bool is_collection() const { return false; }
virtual bool is_loop() const { return false; }
virtual bool can_reverse() const { return true; }
virtual ExtrusionEntity* clone() const = 0;
virtual ~ExtrusionEntity() {};
virtual void reverse() = 0;
virtual Point first_point() const = 0;
virtual Point last_point() const = 0;
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
virtual void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const = 0;
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
virtual void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const = 0;
virtual Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
virtual Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
virtual double min_mm3_per_mm() const = 0;
virtual Polyline as_polyline() const = 0;
virtual void collect_polylines(Polylines &dst) const = 0;
virtual Polylines as_polylines() const { Polylines dst; this->collect_polylines(dst); return dst; }
virtual double length() const = 0;
virtual double total_volume() const = 0;
virtual void visit(ExtrusionVisitor &visitor) = 0;
virtual void visit(ExtrusionVisitorConst &visitor) const = 0;
};
typedef std::vector<ExtrusionEntity*> ExtrusionEntitiesPtr;
class ExtrusionPath : public ExtrusionEntity
{
public:
Polyline polyline;
// Volumetric velocity. mm^3 of plastic per mm of linear head motion. Used by the G-code generator.
double mm3_per_mm;
// Width of the extrusion, used for visualization purposes.
float width;
// Height of the extrusion, used for visualization purposed.
float height;
// Feedrate of the extrusion, used for visualization purposed.
float feedrate;
// Id of the extruder, used for visualization purposed.
unsigned int extruder_id;
// Id of the color, used for visualization purposed in the color printing case.
unsigned int cp_color_id;
ExtrusionPath(ExtrusionRole role) : mm3_per_mm(-1), width(-1), height(-1), feedrate(0.0f), extruder_id(0), cp_color_id(0), m_role(role) {};
ExtrusionPath(ExtrusionRole role, double mm3_per_mm, float width, float height) : mm3_per_mm(mm3_per_mm), width(width), height(height), feedrate(0.0f), extruder_id(0), cp_color_id(0), m_role(role) {};
ExtrusionPath(const ExtrusionPath &rhs) : polyline(rhs.polyline), mm3_per_mm(rhs.mm3_per_mm), width(rhs.width), height(rhs.height), feedrate(rhs.feedrate), extruder_id(rhs.extruder_id), cp_color_id(rhs.cp_color_id), m_role(rhs.m_role) {}
ExtrusionPath(ExtrusionPath &&rhs) : polyline(std::move(rhs.polyline)), mm3_per_mm(rhs.mm3_per_mm), width(rhs.width), height(rhs.height), feedrate(rhs.feedrate), extruder_id(rhs.extruder_id), cp_color_id(rhs.cp_color_id), m_role(rhs.m_role) {}
// ExtrusionPath(ExtrusionRole role, const Flow &flow) : m_role(role), mm3_per_mm(flow.mm3_per_mm()), width(flow.width), height(flow.height), feedrate(0.0f), extruder_id(0) {};
ExtrusionPath& operator=(const ExtrusionPath &rhs) { m_role = rhs.m_role; this->mm3_per_mm = rhs.mm3_per_mm; this->width = rhs.width; this->height = rhs.height; this->feedrate = rhs.feedrate, this->extruder_id = rhs.extruder_id, this->cp_color_id = rhs.cp_color_id, this->polyline = rhs.polyline; return *this; }
ExtrusionPath& operator=(ExtrusionPath &&rhs) { m_role = rhs.m_role; this->mm3_per_mm = rhs.mm3_per_mm; this->width = rhs.width; this->height = rhs.height; this->feedrate = rhs.feedrate, this->extruder_id = rhs.extruder_id, this->cp_color_id = rhs.cp_color_id, this->polyline = std::move(rhs.polyline); return *this; }
virtual ExtrusionPath* clone() const override { return new ExtrusionPath(*this); }
void reverse() override { this->polyline.reverse(); }
Point first_point() const override { return this->polyline.points.front(); }
Point last_point() const override { return this->polyline.points.back(); }
size_t size() const { return this->polyline.size(); }
bool empty() const { return this->polyline.empty(); }
bool is_closed() const { return ! this->empty() && this->polyline.points.front() == this->polyline.points.back(); }
// Produce a list of extrusion paths into retval by clipping this path by ExPolygonCollection.
// Currently not used.
void intersect_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const;
// Produce a list of extrusion paths into retval by removing parts of this path by ExPolygonCollection.
// Currently not used.
void subtract_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const;
void clip_end(double distance);
virtual void simplify(double tolerance);
double length() const override;
ExtrusionRole role() const override { return m_role; }
void set_role(ExtrusionRole new_role) { m_role = new_role; }
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override;
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const override;
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
double min_mm3_per_mm() const override { return this->mm3_per_mm; }
Polyline as_polyline() const override { return this->polyline; }
void collect_polylines(Polylines &dst) const override { if (! this->polyline.empty()) dst.emplace_back(this->polyline); }
double total_volume() const override { return mm3_per_mm * unscale<double>(length()); }
virtual void visit(ExtrusionVisitor &visitor) override { visitor.use(*this); };
virtual void visit(ExtrusionVisitorConst &visitor) const override { visitor.use(*this); };
protected:
void _inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const;
ExtrusionRole m_role;
};
typedef std::vector<ExtrusionPath> ExtrusionPaths;
class ExtrusionPath3D : public ExtrusionPath {
public:
std::vector<coord_t> z_offsets;
ExtrusionPath3D(ExtrusionRole role) : ExtrusionPath(role) { /*std::cout << "new path3D\n"; */};
ExtrusionPath3D(ExtrusionRole role, double mm3_per_mm, float width, float height) : ExtrusionPath(role, mm3_per_mm, width, height) { /*std::cout << "new path3D++\n";*/ };
ExtrusionPath3D(const ExtrusionPath &rhs) : ExtrusionPath(rhs) { /*std::cout << "new path3D from path "<<size()<<"?"<<z_offsets.size()<<"\n";*/ }
ExtrusionPath3D(ExtrusionPath &&rhs) : ExtrusionPath(rhs) { /*std::cout << "new path3D from path " << size() << "?" << z_offsets.size()<<"\n";*/ }
ExtrusionPath3D(const ExtrusionPath3D &rhs) : ExtrusionPath(rhs), z_offsets(rhs.z_offsets) { /*std::cout << "new path3D from path3D " << size() << "?" << z_offsets.size()<<"\n";*/ }
ExtrusionPath3D(ExtrusionPath3D &&rhs) : ExtrusionPath(rhs), z_offsets(std::move(rhs.z_offsets)) { /*std::cout << "new2 path3D from path3D " << size() << "?" << z_offsets.size()<<"\n";*/ }
// ExtrusionPath(ExtrusionRole role, const Flow &flow) : m_role(role), mm3_per_mm(flow.mm3_per_mm()), width(flow.width), height(flow.height), feedrate(0.0f), extruder_id(0) {};
ExtrusionPath3D& operator=(const ExtrusionPath3D &rhs) { m_role = rhs.m_role; this->mm3_per_mm = rhs.mm3_per_mm; this->width = rhs.width; this->height = rhs.height;
this->feedrate = rhs.feedrate, this->extruder_id = rhs.extruder_id, this->cp_color_id = rhs.cp_color_id, this->polyline = rhs.polyline; z_offsets = rhs.z_offsets; return *this;
}
ExtrusionPath3D& operator=(ExtrusionPath3D &&rhs) { m_role = rhs.m_role; this->mm3_per_mm = rhs.mm3_per_mm; this->width = rhs.width; this->height = rhs.height;
this->feedrate = rhs.feedrate, this->extruder_id = rhs.extruder_id, this->cp_color_id = rhs.cp_color_id, this->polyline = std::move(rhs.polyline); z_offsets = std::move(rhs.z_offsets); return *this;
}
ExtrusionPath3D* clone() const { return new ExtrusionPath3D(*this); }
virtual void visit(ExtrusionVisitor &visitor) override { visitor.use(*this); };
virtual void visit(ExtrusionVisitorConst &visitor) const override { visitor.use(*this); };
void push_back(Point p, coord_t z_offset) { polyline.points.push_back(p); z_offsets.push_back(z_offset); }
//TODO: simplify only for points that have the same z-offset
void simplify(double tolerance) override {}
};
typedef std::vector<ExtrusionPath3D> ExtrusionPaths3D;
// Single continuous extrusion path, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
template <typename THING = ExtrusionEntity>
class ExtrusionMultiEntity : public ExtrusionEntity {
public:
std::vector<THING> paths;
ExtrusionMultiEntity() {};
ExtrusionMultiEntity(const ExtrusionMultiEntity &rhs) : paths(rhs.paths) {}
ExtrusionMultiEntity(ExtrusionMultiEntity &&rhs) : paths(std::move(rhs.paths)) {}
ExtrusionMultiEntity(const std::vector<THING> &paths) : paths(paths) {};
ExtrusionMultiEntity(const THING &path) { this->paths.push_back(path); }
ExtrusionMultiEntity& operator=(const ExtrusionMultiEntity &rhs) { this->paths = rhs.paths; return *this; }
ExtrusionMultiEntity& operator=(ExtrusionMultiEntity &&rhs) { this->paths = std::move(rhs.paths); return *this; }
bool is_loop() const override { return false; }
ExtrusionRole role() const override { return this->paths.empty() ? erNone : this->paths.front().role(); }
virtual Point first_point() const override { return this->paths.back().as_polyline().points.back(); }
virtual Point last_point() const override { return this->paths.back().as_polyline().points.back(); }
virtual void reverse() override {
for (THING &entity : this->paths)
entity.reverse();
std::reverse(this->paths.begin(), this->paths.end());
}
double length() const override {
double len = 0;
for (const THING &entity : this->paths)
len += entity.length();
return len;
}
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const override {
for (const THING &entity : this->paths)
entity.polygons_covered_by_width(out, scaled_epsilon);
}
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const override {
for (const THING &entity : this->paths)
entity.polygons_covered_by_spacing(out, scaled_epsilon);
}
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
double min_mm3_per_mm() const override {
double min_mm3_per_mm = std::numeric_limits<double>::max();
for (const THING &entity : this->paths)
min_mm3_per_mm = std::min(min_mm3_per_mm, entity.min_mm3_per_mm());
return min_mm3_per_mm;
}
Polyline as_polyline() const override {
Polyline out;
if (!paths.empty()) {
size_t len = 0;
for (size_t i_path = 0; i_path < paths.size(); ++i_path) {
assert(!paths[i_path].as_polyline().points.empty());
assert(i_path == 0 || paths[i_path - 1].polyline.points.back() == paths[i_path].as_polyline().points.front());
len += paths[i_path].as_polyline().points.size();
}
// The connecting points between the segments are equal.
len -= paths.size() - 1;
assert(len > 0);
out.points.reserve(len);
out.points.push_back(paths.front().as_polyline().points.front());
for (size_t i_path = 0; i_path < paths.size(); ++i_path) {
Polyline poly_i = paths[i_path].as_polyline();
if (poly_i.size() > 1)
out.points.insert(out.points.end(), poly_i.points.begin() + 1, poly_i.points.end());
}
}
return out;
}
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const override{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const override { Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
void collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (!pl.empty()) dst.emplace_back(std::move(pl)); }
double total_volume() const override { double volume = 0.; for (const auto& path : paths) volume += path.total_volume(); return volume; }
};
// Single continuous extrusion path, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
class ExtrusionMultiPath : public ExtrusionMultiEntity<ExtrusionPath> {
public:
ExtrusionMultiPath() {};
ExtrusionMultiPath(const ExtrusionMultiPath &rhs) : ExtrusionMultiEntity(rhs) {}
ExtrusionMultiPath(ExtrusionMultiPath &&rhs) : ExtrusionMultiEntity(rhs) {}
ExtrusionMultiPath(const ExtrusionPaths &paths) : ExtrusionMultiEntity(paths) {};
ExtrusionMultiPath(const ExtrusionPath &path) :ExtrusionMultiEntity(path) {}
virtual ExtrusionMultiPath* clone() const override { return new ExtrusionMultiPath(*this); }
virtual void visit(ExtrusionVisitor &visitor) override { visitor.use(*this); };
virtual void visit(ExtrusionVisitorConst &visitor) const override { visitor.use(*this); };
};
// Single continuous extrusion path, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
class ExtrusionMultiPath3D : public ExtrusionMultiEntity<ExtrusionPath3D> {
public:
ExtrusionMultiPath3D() {};
ExtrusionMultiPath3D(const ExtrusionMultiPath3D &rhs) : ExtrusionMultiEntity(rhs) {}
ExtrusionMultiPath3D(ExtrusionMultiPath3D &&rhs) : ExtrusionMultiEntity(rhs) {}
ExtrusionMultiPath3D(const ExtrusionPaths3D &paths) : ExtrusionMultiEntity(paths) {};
ExtrusionMultiPath3D(const ExtrusionPath3D &path) :ExtrusionMultiEntity(path) {}
virtual ExtrusionMultiPath3D* clone() const override { return new ExtrusionMultiPath3D(*this); }
virtual void visit(ExtrusionVisitor &visitor) override { visitor.use(*this); };
virtual void visit(ExtrusionVisitorConst &visitor) const override { visitor.use(*this); };
virtual bool can_reverse() const override { return false; }
virtual void reverse() override {
std::cout << "I SAID NO REVERSE<53><45><EFBFBD>FFFS\n";
}
};
// Single continuous extrusion loop, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
class ExtrusionLoop : public ExtrusionEntity
{
public:
ExtrusionPaths paths;
ExtrusionLoop(ExtrusionLoopRole role = elrDefault) : m_loop_role(role) {};
ExtrusionLoop(const ExtrusionPaths &paths, ExtrusionLoopRole role = elrDefault) : paths(paths), m_loop_role(role) {};
ExtrusionLoop(ExtrusionPaths &&paths, ExtrusionLoopRole role = elrDefault) : paths(std::move(paths)), m_loop_role(role) {};
ExtrusionLoop(const ExtrusionPath &path, ExtrusionLoopRole role = elrDefault) : m_loop_role(role)
{ this->paths.push_back(path); };
ExtrusionLoop(const ExtrusionPath &&path, ExtrusionLoopRole role = elrDefault) : m_loop_role(role)
{ this->paths.emplace_back(std::move(path)); };
bool is_loop() const { return true; }
bool can_reverse() const { return false; }
ExtrusionLoop* clone() const { return new ExtrusionLoop (*this); }
bool make_clockwise();
bool make_counter_clockwise();
void reverse();
Point first_point() const override { return this->paths.front().polyline.points.front(); }
Point last_point() const override { assert(first_point() == this->paths.back().polyline.points.back()); return first_point(); }
Polygon polygon() const;
double length() const override;
bool split_at_vertex(const Point &point);
void split_at(const Point &point, bool prefer_non_overhang);
void clip_end(double distance, ExtrusionPaths* paths) const;
// Test, whether the point is extruded by a bridging flow.
// This used to be used to avoid placing seams on overhangs, but now the EdgeGrid is used instead.
bool has_overhang_point(const Point &point) const;
ExtrusionRole role() const override { return this->paths.empty() ? erNone : this->paths.front().role(); }
ExtrusionLoopRole loop_role() const { return m_loop_role; }
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const;
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const;
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
double min_mm3_per_mm() const;
Polyline as_polyline() const { return this->polygon().split_at_first_point(); }
void collect_polylines(Polylines &dst) const override { Polyline pl = this->as_polyline(); if (! pl.empty()) dst.emplace_back(std::move(pl)); }
double total_volume() const override { double volume = 0.; for (const auto& path : paths) volume += path.total_volume(); return volume; }
virtual void visit(ExtrusionVisitor &visitor) override { visitor.use(*this); };
virtual void visit(ExtrusionVisitorConst &visitor) const override { visitor.use(*this); };
private:
ExtrusionLoopRole m_loop_role;
};
inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + polylines.size());
for (Polyline &polyline : polylines)
if (polyline.is_valid()) {
dst.push_back(ExtrusionPath(role, mm3_per_mm, width, height));
dst.back().polyline = polyline;
}
}
inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + polylines.size());
for (Polyline &polyline : polylines)
if (polyline.is_valid()) {
dst.push_back(ExtrusionPath(role, mm3_per_mm, width, height));
dst.back().polyline = std::move(polyline);
}
polylines.clear();
}
inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + polylines.size());
for (Polyline &polyline : polylines)
if (polyline.is_valid()) {
if (polyline.points.back() == polyline.points.front()) {
ExtrusionPath path(role, mm3_per_mm, width, height);
path.polyline.points = polyline.points;
dst.emplace_back(new ExtrusionLoop(std::move(path)));
} else {
ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height);
dst.push_back(extrusion_path);
extrusion_path->polyline = polyline;
}
}
}
inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + polylines.size());
for (Polyline &polyline : polylines)
if (polyline.is_valid()) {
if (polyline.points.back() == polyline.points.front()) {
ExtrusionPath path(role, mm3_per_mm, width, height);
path.polyline.points = polyline.points;
dst.emplace_back(new ExtrusionLoop(std::move(path)));
} else {
ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height);
dst.push_back(extrusion_path);
extrusion_path->polyline = std::move(polyline);
}
}
polylines.clear();
}
inline void extrusion_entities_append_loops(ExtrusionEntitiesPtr &dst, Polygons &loops, ExtrusionRole role, double mm3_per_mm, float width, float height) {
dst.reserve(dst.size() + loops.size());
for (Polygon &poly : loops) {
if (poly.is_valid()) {
ExtrusionPath path(role, mm3_per_mm, width, height);
path.polyline.points = poly.points;
path.polyline.points.push_back(path.polyline.points.front());
dst.emplace_back(new ExtrusionLoop(std::move(path)));
}
}
}
inline void extrusion_entities_append_loops(ExtrusionEntitiesPtr &dst, Polygons &&loops, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + loops.size());
for (Polygon &poly : loops) {
if (poly.is_valid()) {
ExtrusionPath path(role, mm3_per_mm, width, height);
path.polyline.points = std::move(poly.points);
path.polyline.points.push_back(path.polyline.points.front());
ExtrusionLoop *loop = new ExtrusionLoop(std::move(path));
//default to ccw
loop->make_counter_clockwise();
dst.emplace_back(loop);
}
}
loops.clear();
}
class ExtrusionPrinter : public ExtrusionVisitorConst {
std::stringstream ss;
public:
virtual void use(const ExtrusionPath &path);
virtual void use(const ExtrusionPath3D &path3D);
virtual void use(const ExtrusionMultiPath &multipath);
virtual void use(const ExtrusionMultiPath3D &multipath);
virtual void use(const ExtrusionLoop &loop);
virtual void use(const ExtrusionEntityCollection &collection);
std::string str() { return ss.str(); }
std::string print(const ExtrusionEntity &entity) && {
entity.visit(*this);
return ss.str();
}
};
}
#endif