Madhu Rajanna 5a66991bb3 rebase: update kubernetes to latest
updating the kubernetes release to the
latest in main go.mod

Signed-off-by: Madhu Rajanna <madhupr007@gmail.com>
2024-08-20 08:17:01 +00:00

703 lines
27 KiB
Go

// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
import (
"fmt"
"reflect"
"strconv"
"strings"
)
type ErrorStrategy interface {
reset(Parser)
RecoverInline(Parser) Token
Recover(Parser, RecognitionException)
Sync(Parser)
InErrorRecoveryMode(Parser) bool
ReportError(Parser, RecognitionException)
ReportMatch(Parser)
}
// DefaultErrorStrategy is the default implementation of ANTLRErrorStrategy used for
// error reporting and recovery in ANTLR parsers.
type DefaultErrorStrategy struct {
errorRecoveryMode bool
lastErrorIndex int
lastErrorStates *IntervalSet
}
var _ ErrorStrategy = &DefaultErrorStrategy{}
func NewDefaultErrorStrategy() *DefaultErrorStrategy {
d := new(DefaultErrorStrategy)
// Indicates whether the error strategy is currently "recovering from an
// error". This is used to suppress Reporting multiple error messages while
// attempting to recover from a detected syntax error.
//
// @see //InErrorRecoveryMode
//
d.errorRecoveryMode = false
// The index into the input stream where the last error occurred.
// This is used to prevent infinite loops where an error is found
// but no token is consumed during recovery...another error is found,
// ad nauseam. This is a failsafe mechanism to guarantee that at least
// one token/tree node is consumed for two errors.
//
d.lastErrorIndex = -1
d.lastErrorStates = nil
return d
}
// <p>The default implementation simply calls {@link //endErrorCondition} to
// ensure that the handler is not in error recovery mode.</p>
func (d *DefaultErrorStrategy) reset(recognizer Parser) {
d.endErrorCondition(recognizer)
}
// This method is called to enter error recovery mode when a recognition
// exception is Reported.
func (d *DefaultErrorStrategy) beginErrorCondition(_ Parser) {
d.errorRecoveryMode = true
}
func (d *DefaultErrorStrategy) InErrorRecoveryMode(_ Parser) bool {
return d.errorRecoveryMode
}
// This method is called to leave error recovery mode after recovering from
// a recognition exception.
func (d *DefaultErrorStrategy) endErrorCondition(_ Parser) {
d.errorRecoveryMode = false
d.lastErrorStates = nil
d.lastErrorIndex = -1
}
// ReportMatch is the default implementation of error matching and simply calls endErrorCondition.
func (d *DefaultErrorStrategy) ReportMatch(recognizer Parser) {
d.endErrorCondition(recognizer)
}
// ReportError is the default implementation of error reporting.
// It returns immediately if the handler is already
// in error recovery mode. Otherwise, it calls [beginErrorCondition]
// and dispatches the Reporting task based on the runtime type of e
// according to the following table.
//
// [NoViableAltException] : Dispatches the call to [ReportNoViableAlternative]
// [InputMisMatchException] : Dispatches the call to [ReportInputMisMatch]
// [FailedPredicateException] : Dispatches the call to [ReportFailedPredicate]
// All other types : Calls [NotifyErrorListeners] to Report the exception
func (d *DefaultErrorStrategy) ReportError(recognizer Parser, e RecognitionException) {
// if we've already Reported an error and have not Matched a token
// yet successfully, don't Report any errors.
if d.InErrorRecoveryMode(recognizer) {
return // don't Report spurious errors
}
d.beginErrorCondition(recognizer)
switch t := e.(type) {
default:
fmt.Println("unknown recognition error type: " + reflect.TypeOf(e).Name())
// fmt.Println(e.stack)
recognizer.NotifyErrorListeners(e.GetMessage(), e.GetOffendingToken(), e)
case *NoViableAltException:
d.ReportNoViableAlternative(recognizer, t)
case *InputMisMatchException:
d.ReportInputMisMatch(recognizer, t)
case *FailedPredicateException:
d.ReportFailedPredicate(recognizer, t)
}
}
// Recover is the default recovery implementation.
// It reSynchronizes the parser by consuming tokens until we find one in the reSynchronization set -
// loosely the set of tokens that can follow the current rule.
func (d *DefaultErrorStrategy) Recover(recognizer Parser, _ RecognitionException) {
if d.lastErrorIndex == recognizer.GetInputStream().Index() &&
d.lastErrorStates != nil && d.lastErrorStates.contains(recognizer.GetState()) {
// uh oh, another error at same token index and previously-Visited
// state in ATN must be a case where LT(1) is in the recovery
// token set so nothing got consumed. Consume a single token
// at least to prevent an infinite loop d is a failsafe.
recognizer.Consume()
}
d.lastErrorIndex = recognizer.GetInputStream().Index()
if d.lastErrorStates == nil {
d.lastErrorStates = NewIntervalSet()
}
d.lastErrorStates.addOne(recognizer.GetState())
followSet := d.GetErrorRecoverySet(recognizer)
d.consumeUntil(recognizer, followSet)
}
// Sync is the default implementation of error strategy synchronization.
//
// This Sync makes sure that the current lookahead symbol is consistent with what were expecting
// at this point in the [ATN]. You can call this anytime but ANTLR only
// generates code to check before sub-rules/loops and each iteration.
//
// Implements [Jim Idle]'s magic Sync mechanism in closures and optional
// sub-rules. E.g.:
//
// a : Sync ( stuff Sync )*
// Sync : {consume to what can follow Sync}
//
// At the start of a sub-rule upon error, Sync performs single
// token deletion, if possible. If it can't do that, it bails on the current
// rule and uses the default error recovery, which consumes until the
// reSynchronization set of the current rule.
//
// If the sub-rule is optional
//
// ({@code (...)?}, {@code (...)*},
//
// or a block with an empty alternative), then the expected set includes what follows
// the sub-rule.
//
// During loop iteration, it consumes until it sees a token that can start a
// sub-rule or what follows loop. Yes, that is pretty aggressive. We opt to
// stay in the loop as long as possible.
//
// # Origins
//
// Previous versions of ANTLR did a poor job of their recovery within loops.
// A single mismatch token or missing token would force the parser to bail
// out of the entire rules surrounding the loop. So, for rule:
//
// classfunc : 'class' ID '{' member* '}'
//
// input with an extra token between members would force the parser to
// consume until it found the next class definition rather than the next
// member definition of the current class.
//
// This functionality cost a bit of effort because the parser has to
// compare the token set at the start of the loop and at each iteration. If for
// some reason speed is suffering for you, you can turn off this
// functionality by simply overriding this method as empty:
//
// { }
//
// [Jim Idle]: https://github.com/jimidle
func (d *DefaultErrorStrategy) Sync(recognizer Parser) {
// If already recovering, don't try to Sync
if d.InErrorRecoveryMode(recognizer) {
return
}
s := recognizer.GetInterpreter().atn.states[recognizer.GetState()]
la := recognizer.GetTokenStream().LA(1)
// try cheaper subset first might get lucky. seems to shave a wee bit off
nextTokens := recognizer.GetATN().NextTokens(s, nil)
if nextTokens.contains(TokenEpsilon) || nextTokens.contains(la) {
return
}
switch s.GetStateType() {
case ATNStateBlockStart, ATNStateStarBlockStart, ATNStatePlusBlockStart, ATNStateStarLoopEntry:
// Report error and recover if possible
if d.SingleTokenDeletion(recognizer) != nil {
return
}
recognizer.SetError(NewInputMisMatchException(recognizer))
case ATNStatePlusLoopBack, ATNStateStarLoopBack:
d.ReportUnwantedToken(recognizer)
expecting := NewIntervalSet()
expecting.addSet(recognizer.GetExpectedTokens())
whatFollowsLoopIterationOrRule := expecting.addSet(d.GetErrorRecoverySet(recognizer))
d.consumeUntil(recognizer, whatFollowsLoopIterationOrRule)
default:
// do nothing if we can't identify the exact kind of ATN state
}
}
// ReportNoViableAlternative is called by [ReportError] when the exception is a [NoViableAltException].
//
// See also [ReportError]
func (d *DefaultErrorStrategy) ReportNoViableAlternative(recognizer Parser, e *NoViableAltException) {
tokens := recognizer.GetTokenStream()
var input string
if tokens != nil {
if e.startToken.GetTokenType() == TokenEOF {
input = "<EOF>"
} else {
input = tokens.GetTextFromTokens(e.startToken, e.offendingToken)
}
} else {
input = "<unknown input>"
}
msg := "no viable alternative at input " + d.escapeWSAndQuote(input)
recognizer.NotifyErrorListeners(msg, e.offendingToken, e)
}
// ReportInputMisMatch is called by [ReportError] when the exception is an [InputMisMatchException]
//
// See also: [ReportError]
func (d *DefaultErrorStrategy) ReportInputMisMatch(recognizer Parser, e *InputMisMatchException) {
msg := "mismatched input " + d.GetTokenErrorDisplay(e.offendingToken) +
" expecting " + e.getExpectedTokens().StringVerbose(recognizer.GetLiteralNames(), recognizer.GetSymbolicNames(), false)
recognizer.NotifyErrorListeners(msg, e.offendingToken, e)
}
// ReportFailedPredicate is called by [ReportError] when the exception is a [FailedPredicateException].
//
// See also: [ReportError]
func (d *DefaultErrorStrategy) ReportFailedPredicate(recognizer Parser, e *FailedPredicateException) {
ruleName := recognizer.GetRuleNames()[recognizer.GetParserRuleContext().GetRuleIndex()]
msg := "rule " + ruleName + " " + e.message
recognizer.NotifyErrorListeners(msg, e.offendingToken, e)
}
// ReportUnwantedToken is called to report a syntax error that requires the removal
// of a token from the input stream. At the time d method is called, the
// erroneous symbol is the current LT(1) symbol and has not yet been
// removed from the input stream. When this method returns,
// recognizer is in error recovery mode.
//
// This method is called when singleTokenDeletion identifies
// single-token deletion as a viable recovery strategy for a mismatched
// input error.
//
// The default implementation simply returns if the handler is already in
// error recovery mode. Otherwise, it calls beginErrorCondition to
// enter error recovery mode, followed by calling
// [NotifyErrorListeners]
func (d *DefaultErrorStrategy) ReportUnwantedToken(recognizer Parser) {
if d.InErrorRecoveryMode(recognizer) {
return
}
d.beginErrorCondition(recognizer)
t := recognizer.GetCurrentToken()
tokenName := d.GetTokenErrorDisplay(t)
expecting := d.GetExpectedTokens(recognizer)
msg := "extraneous input " + tokenName + " expecting " +
expecting.StringVerbose(recognizer.GetLiteralNames(), recognizer.GetSymbolicNames(), false)
recognizer.NotifyErrorListeners(msg, t, nil)
}
// ReportMissingToken is called to report a syntax error which requires the
// insertion of a missing token into the input stream. At the time this
// method is called, the missing token has not yet been inserted. When this
// method returns, recognizer is in error recovery mode.
//
// This method is called when singleTokenInsertion identifies
// single-token insertion as a viable recovery strategy for a mismatched
// input error.
//
// The default implementation simply returns if the handler is already in
// error recovery mode. Otherwise, it calls beginErrorCondition to
// enter error recovery mode, followed by calling [NotifyErrorListeners]
func (d *DefaultErrorStrategy) ReportMissingToken(recognizer Parser) {
if d.InErrorRecoveryMode(recognizer) {
return
}
d.beginErrorCondition(recognizer)
t := recognizer.GetCurrentToken()
expecting := d.GetExpectedTokens(recognizer)
msg := "missing " + expecting.StringVerbose(recognizer.GetLiteralNames(), recognizer.GetSymbolicNames(), false) +
" at " + d.GetTokenErrorDisplay(t)
recognizer.NotifyErrorListeners(msg, t, nil)
}
// The RecoverInline default implementation attempts to recover from the mismatched input
// by using single token insertion and deletion as described below. If the
// recovery attempt fails, this method panics with [InputMisMatchException}.
// TODO: Not sure that panic() is the right thing to do here - JI
//
// # EXTRA TOKEN (single token deletion)
//
// LA(1) is not what we are looking for. If LA(2) has the
// right token, however, then assume LA(1) is some extra spurious
// token and delete it. Then consume and return the next token (which was
// the LA(2) token) as the successful result of the Match operation.
//
// # This recovery strategy is implemented by singleTokenDeletion
//
// # MISSING TOKEN (single token insertion)
//
// If current token -at LA(1) - is consistent with what could come
// after the expected LA(1) token, then assume the token is missing
// and use the parser's [TokenFactory] to create it on the fly. The
// “insertion” is performed by returning the created token as the successful
// result of the Match operation.
//
// This recovery strategy is implemented by [SingleTokenInsertion].
//
// # Example
//
// For example, Input i=(3 is clearly missing the ')'. When
// the parser returns from the nested call to expr, it will have
// call the chain:
//
// stat → expr → atom
//
// and it will be trying to Match the ')' at this point in the
// derivation:
//
// : ID '=' '(' INT ')' ('+' atom)* ';'
// ^
//
// The attempt to [Match] ')' will fail when it sees ';' and
// call [RecoverInline]. To recover, it sees that LA(1)==';'
// is in the set of tokens that can follow the ')' token reference
// in rule atom. It can assume that you forgot the ')'.
func (d *DefaultErrorStrategy) RecoverInline(recognizer Parser) Token {
// SINGLE TOKEN DELETION
MatchedSymbol := d.SingleTokenDeletion(recognizer)
if MatchedSymbol != nil {
// we have deleted the extra token.
// now, move past ttype token as if all were ok
recognizer.Consume()
return MatchedSymbol
}
// SINGLE TOKEN INSERTION
if d.SingleTokenInsertion(recognizer) {
return d.GetMissingSymbol(recognizer)
}
// even that didn't work must panic the exception
recognizer.SetError(NewInputMisMatchException(recognizer))
return nil
}
// SingleTokenInsertion implements the single-token insertion inline error recovery
// strategy. It is called by [RecoverInline] if the single-token
// deletion strategy fails to recover from the mismatched input. If this
// method returns {@code true}, {@code recognizer} will be in error recovery
// mode.
//
// This method determines whether single-token insertion is viable by
// checking if the LA(1) input symbol could be successfully Matched
// if it were instead the LA(2) symbol. If this method returns
// {@code true}, the caller is responsible for creating and inserting a
// token with the correct type to produce this behavior.</p>
//
// This func returns true if single-token insertion is a viable recovery
// strategy for the current mismatched input.
func (d *DefaultErrorStrategy) SingleTokenInsertion(recognizer Parser) bool {
currentSymbolType := recognizer.GetTokenStream().LA(1)
// if current token is consistent with what could come after current
// ATN state, then we know we're missing a token error recovery
// is free to conjure up and insert the missing token
atn := recognizer.GetInterpreter().atn
currentState := atn.states[recognizer.GetState()]
next := currentState.GetTransitions()[0].getTarget()
expectingAtLL2 := atn.NextTokens(next, recognizer.GetParserRuleContext())
if expectingAtLL2.contains(currentSymbolType) {
d.ReportMissingToken(recognizer)
return true
}
return false
}
// SingleTokenDeletion implements the single-token deletion inline error recovery
// strategy. It is called by [RecoverInline] to attempt to recover
// from mismatched input. If this method returns nil, the parser and error
// handler state will not have changed. If this method returns non-nil,
// recognizer will not be in error recovery mode since the
// returned token was a successful Match.
//
// If the single-token deletion is successful, this method calls
// [ReportUnwantedToken] to Report the error, followed by
// [Consume] to actually “delete” the extraneous token. Then,
// before returning, [ReportMatch] is called to signal a successful
// Match.
//
// The func returns the successfully Matched [Token] instance if single-token
// deletion successfully recovers from the mismatched input, otherwise nil.
func (d *DefaultErrorStrategy) SingleTokenDeletion(recognizer Parser) Token {
NextTokenType := recognizer.GetTokenStream().LA(2)
expecting := d.GetExpectedTokens(recognizer)
if expecting.contains(NextTokenType) {
d.ReportUnwantedToken(recognizer)
// print("recoverFromMisMatchedToken deleting " \
// + str(recognizer.GetTokenStream().LT(1)) \
// + " since " + str(recognizer.GetTokenStream().LT(2)) \
// + " is what we want", file=sys.stderr)
recognizer.Consume() // simply delete extra token
// we want to return the token we're actually Matching
MatchedSymbol := recognizer.GetCurrentToken()
d.ReportMatch(recognizer) // we know current token is correct
return MatchedSymbol
}
return nil
}
// GetMissingSymbol conjures up a missing token during error recovery.
//
// The recognizer attempts to recover from single missing
// symbols. But, actions might refer to that missing symbol.
// For example:
//
// x=ID {f($x)}.
//
// The action clearly assumes
// that there has been an identifier Matched previously and that
// $x points at that token. If that token is missing, but
// the next token in the stream is what we want we assume that
// this token is missing, and we keep going. Because we
// have to return some token to replace the missing token,
// we have to conjure one up. This method gives the user control
// over the tokens returned for missing tokens. Mostly,
// you will want to create something special for identifier
// tokens. For literals such as '{' and ',', the default
// action in the parser or tree parser works. It simply creates
// a [CommonToken] of the appropriate type. The text will be the token name.
// If you need to change which tokens must be created by the lexer,
// override this method to create the appropriate tokens.
func (d *DefaultErrorStrategy) GetMissingSymbol(recognizer Parser) Token {
currentSymbol := recognizer.GetCurrentToken()
expecting := d.GetExpectedTokens(recognizer)
expectedTokenType := expecting.first()
var tokenText string
if expectedTokenType == TokenEOF {
tokenText = "<missing EOF>"
} else {
ln := recognizer.GetLiteralNames()
if expectedTokenType > 0 && expectedTokenType < len(ln) {
tokenText = "<missing " + recognizer.GetLiteralNames()[expectedTokenType] + ">"
} else {
tokenText = "<missing undefined>" // TODO: matches the JS impl
}
}
current := currentSymbol
lookback := recognizer.GetTokenStream().LT(-1)
if current.GetTokenType() == TokenEOF && lookback != nil {
current = lookback
}
tf := recognizer.GetTokenFactory()
return tf.Create(current.GetSource(), expectedTokenType, tokenText, TokenDefaultChannel, -1, -1, current.GetLine(), current.GetColumn())
}
func (d *DefaultErrorStrategy) GetExpectedTokens(recognizer Parser) *IntervalSet {
return recognizer.GetExpectedTokens()
}
// GetTokenErrorDisplay determines how a token should be displayed in an error message.
// The default is to display just the text, but during development you might
// want to have a lot of information spit out. Override this func in that case
// to use t.String() (which, for [CommonToken], dumps everything about
// the token). This is better than forcing you to override a method in
// your token objects because you don't have to go modify your lexer
// so that it creates a new type.
func (d *DefaultErrorStrategy) GetTokenErrorDisplay(t Token) string {
if t == nil {
return "<no token>"
}
s := t.GetText()
if s == "" {
if t.GetTokenType() == TokenEOF {
s = "<EOF>"
} else {
s = "<" + strconv.Itoa(t.GetTokenType()) + ">"
}
}
return d.escapeWSAndQuote(s)
}
func (d *DefaultErrorStrategy) escapeWSAndQuote(s string) string {
s = strings.Replace(s, "\t", "\\t", -1)
s = strings.Replace(s, "\n", "\\n", -1)
s = strings.Replace(s, "\r", "\\r", -1)
return "'" + s + "'"
}
// GetErrorRecoverySet computes the error recovery set for the current rule. During
// rule invocation, the parser pushes the set of tokens that can
// follow that rule reference on the stack. This amounts to
// computing FIRST of what follows the rule reference in the
// enclosing rule. See LinearApproximator.FIRST().
//
// This local follow set only includes tokens
// from within the rule i.e., the FIRST computation done by
// ANTLR stops at the end of a rule.
//
// # Example
//
// When you find a "no viable alt exception", the input is not
// consistent with any of the alternatives for rule r. The best
// thing to do is to consume tokens until you see something that
// can legally follow a call to r or any rule that called r.
// You don't want the exact set of viable next tokens because the
// input might just be missing a token--you might consume the
// rest of the input looking for one of the missing tokens.
//
// Consider the grammar:
//
// a : '[' b ']'
// | '(' b ')'
// ;
//
// b : c '^' INT
// ;
//
// c : ID
// | INT
// ;
//
// At each rule invocation, the set of tokens that could follow
// that rule is pushed on a stack. Here are the various
// context-sensitive follow sets:
//
// FOLLOW(b1_in_a) = FIRST(']') = ']'
// FOLLOW(b2_in_a) = FIRST(')') = ')'
// FOLLOW(c_in_b) = FIRST('^') = '^'
//
// Upon erroneous input “[]”, the call chain is
//
// a → b → c
//
// and, hence, the follow context stack is:
//
// Depth Follow set Start of rule execution
// 0 <EOF> a (from main())
// 1 ']' b
// 2 '^' c
//
// Notice that ')' is not included, because b would have to have
// been called from a different context in rule a for ')' to be
// included.
//
// For error recovery, we cannot consider FOLLOW(c)
// (context-sensitive or otherwise). We need the combined set of
// all context-sensitive FOLLOW sets - the set of all tokens that
// could follow any reference in the call chain. We need to
// reSync to one of those tokens. Note that FOLLOW(c)='^' and if
// we reSync'd to that token, we'd consume until EOF. We need to
// Sync to context-sensitive FOLLOWs for a, b, and c:
//
// {']','^'}
//
// In this case, for input "[]", LA(1) is ']' and in the set, so we would
// not consume anything. After printing an error, rule c would
// return normally. Rule b would not find the required '^' though.
// At this point, it gets a mismatched token error and panics an
// exception (since LA(1) is not in the viable following token
// set). The rule exception handler tries to recover, but finds
// the same recovery set and doesn't consume anything. Rule b
// exits normally returning to rule a. Now it finds the ']' (and
// with the successful Match exits errorRecovery mode).
//
// So, you can see that the parser walks up the call chain looking
// for the token that was a member of the recovery set.
//
// Errors are not generated in errorRecovery mode.
//
// ANTLR's error recovery mechanism is based upon original ideas:
//
// [Algorithms + Data Structures = Programs] by Niklaus Wirth and
// [A note on error recovery in recursive descent parsers].
//
// Later, Josef Grosch had some good ideas in [Efficient and Comfortable Error Recovery in Recursive Descent
// Parsers]
//
// Like Grosch I implement context-sensitive FOLLOW sets that are combined at run-time upon error to avoid overhead
// during parsing. Later, the runtime Sync was improved for loops/sub-rules see [Sync] docs
//
// [A note on error recovery in recursive descent parsers]: http://portal.acm.org/citation.cfm?id=947902.947905
// [Algorithms + Data Structures = Programs]: https://t.ly/5QzgE
// [Efficient and Comfortable Error Recovery in Recursive Descent Parsers]: ftp://www.cocolab.com/products/cocktail/doca4.ps/ell.ps.zip
func (d *DefaultErrorStrategy) GetErrorRecoverySet(recognizer Parser) *IntervalSet {
atn := recognizer.GetInterpreter().atn
ctx := recognizer.GetParserRuleContext()
recoverSet := NewIntervalSet()
for ctx != nil && ctx.GetInvokingState() >= 0 {
// compute what follows who invoked us
invokingState := atn.states[ctx.GetInvokingState()]
rt := invokingState.GetTransitions()[0]
follow := atn.NextTokens(rt.(*RuleTransition).followState, nil)
recoverSet.addSet(follow)
ctx = ctx.GetParent().(ParserRuleContext)
}
recoverSet.removeOne(TokenEpsilon)
return recoverSet
}
// Consume tokens until one Matches the given token set.//
func (d *DefaultErrorStrategy) consumeUntil(recognizer Parser, set *IntervalSet) {
ttype := recognizer.GetTokenStream().LA(1)
for ttype != TokenEOF && !set.contains(ttype) {
recognizer.Consume()
ttype = recognizer.GetTokenStream().LA(1)
}
}
// The BailErrorStrategy implementation of ANTLRErrorStrategy responds to syntax errors
// by immediately canceling the parse operation with a
// [ParseCancellationException]. The implementation ensures that the
// [ParserRuleContext//exception] field is set for all parse tree nodes
// that were not completed prior to encountering the error.
//
// This error strategy is useful in the following scenarios.
//
// - Two-stage parsing: This error strategy allows the first
// stage of two-stage parsing to immediately terminate if an error is
// encountered, and immediately fall back to the second stage. In addition to
// avoiding wasted work by attempting to recover from errors here, the empty
// implementation of [BailErrorStrategy.Sync] improves the performance of
// the first stage.
//
// - Silent validation: When syntax errors are not being
// Reported or logged, and the parse result is simply ignored if errors occur,
// the [BailErrorStrategy] avoids wasting work on recovering from errors
// when the result will be ignored either way.
//
// myparser.SetErrorHandler(NewBailErrorStrategy())
//
// See also: [Parser.SetErrorHandler(ANTLRErrorStrategy)]
type BailErrorStrategy struct {
*DefaultErrorStrategy
}
var _ ErrorStrategy = &BailErrorStrategy{}
//goland:noinspection GoUnusedExportedFunction
func NewBailErrorStrategy() *BailErrorStrategy {
b := new(BailErrorStrategy)
b.DefaultErrorStrategy = NewDefaultErrorStrategy()
return b
}
// Recover Instead of recovering from exception e, re-panic it wrapped
// in a [ParseCancellationException] so it is not caught by the
// rule func catches. Use Exception.GetCause() to get the
// original [RecognitionException].
func (b *BailErrorStrategy) Recover(recognizer Parser, e RecognitionException) {
context := recognizer.GetParserRuleContext()
for context != nil {
context.SetException(e)
if parent, ok := context.GetParent().(ParserRuleContext); ok {
context = parent
} else {
context = nil
}
}
recognizer.SetError(NewParseCancellationException()) // TODO: we don't emit e properly
}
// RecoverInline makes sure we don't attempt to recover inline if the parser
// successfully recovers, it won't panic an exception.
func (b *BailErrorStrategy) RecoverInline(recognizer Parser) Token {
b.Recover(recognizer, NewInputMisMatchException(recognizer))
return nil
}
// Sync makes sure we don't attempt to recover from problems in sub-rules.
func (b *BailErrorStrategy) Sync(_ Parser) {
}