Added Portuguese pt-br Readme File Version (#127)

This commit is contained in:
Ernâni de Britto Murtinho 2025-05-16 10:10:17 -03:00 committed by GitHub
parent e27c43f005
commit 96fb5d653b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

545
README_pt.md Normal file
View File

@ -0,0 +1,545 @@
# 🦌 DeerFlow
[![Python 3.12+](https://img.shields.io/badge/python-3.12+-blue.svg)](https://www.python.org/downloads/)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![DeepWiki](https://img.shields.io/badge/DeepWiki-bytedance%2Fdeer--flow-blue.svg?logo=)](https://deepwiki.com/bytedance/deer-flow)
<!-- DeepWiki badge generated by https://deepwiki.ryoppippi.com/ -->
[English](./README.md) | [简体中文](./README_zh.md) | [日本語](./README_ja.md) | [Deutsch](./README_de.md) | [Portuguese](./README_pt.md)
> Originado do Open Source, de volta ao Open Source
**DeerFlow** (**D**eep **E**xploration and **E**fficient **R**esearch **Flow**) é um framework de Pesquisa Profunda orientado-a-comunidade que baseia-se em um íncrivel trabalho da comunidade open source. Nosso objetivo é combinar modelos de linguagem com ferramentas especializadas para tarefas como busca na web, crawling, e execução de código Python, enquanto retribui com a comunidade que o tornou possível.
Por favor, visite [Nosso Site Oficial](https://deerflow.tech/) para maiores detalhes.
## Demo
### Video
https://github.com/user-attachments/assets/f3786598-1f2a-4d07-919e-8b99dfa1de3e
Nesse demo, nós demonstramos como usar o DeerFlow para:
In this demo, we showcase how to use DeerFlow to:
- Integração fácil com serviços MCP
- Conduzir o processo de Pesquisa Profunda e produzir um relatório abrangente com imagens
- Criar um áudio podcast baseado no relatório gerado
### Replays
- [Quão alta é a Torre Eiffel comparada ao prédio mais alto?](https://deerflow.tech/chat?replay=eiffel-tower-vs-tallest-building)
- [Quais são os top repositórios tendência no GitHub?](https://deerflow.tech/chat?replay=github-top-trending-repo)
- [Escreva um artigo sobre os pratos tradicionais de Nanjing's](https://deerflow.tech/chat?replay=nanjing-traditional-dishes)
- [Como decorar um apartamento alugado?](https://deerflow.tech/chat?replay=rental-apartment-decoration)
- [Visite nosso site oficial para explorar mais replays.](https://deerflow.tech/#case-studies)
---
## 📑 Tabela de Conteúdos
- [🚀 Início Rápido](#Início-Rápido)
- [🌟 Funcionalidades](#funcionalidades)
- [🏗️ Arquitetura](#arquitetura)
- [🛠️ Desenvolvimento](#desenvolvimento)
- [🐳 Docker](#docker)
- [🗣️ Texto-para-fala Integração](#texto-para-fala-integração)
- [📚 Exemplos](#exemplos)
- [❓ FAQ](#faq)
- [📜 Licença](#licença)
- [💖 Agradecimentos](#agradecimentos)
- [🏆 Contribuidores-Chave](#contribuidores-chave)
- [⭐ Histórico de Estrelas](#Histórico-Estrelas)
## Início-Rápido
DeerFlow é desenvolvido em Python, e vem com uma IU web escrita em Node.js. Para garantir um processo de configuração fácil, nós recomendamos o uso das seguintes ferramentas:
### Ferramentas Recomendadas
- **[`uv`](https://docs.astral.sh/uv/getting-started/installation/):**
Simplifica o gerenciamento de dependência de ambientes Python. `uv` automaticamente cria um ambiente virtual no diretório raiz e instala todos os pacotes necessários para não haver a necessidade de instalar ambientes Python manualmente
- **[`nvm`](https://github.com/nvm-sh/nvm):**
Gerencia múltiplas versões do ambiente de execução do Node.js sem esforço.
- **[`pnpm`](https://pnpm.io/installation):**
Instala e gerencia dependências do projeto Node.js.
### Requisitos de Ambiente
Certifique-se de que seu sistema atenda os seguintes requisitos mínimos:
- **[Python](https://www.python.org/downloads/):** Versão `3.12+`
- **[Node.js](https://nodejs.org/en/download/):** Versão `22+`
### Instalação
```bash
# Clone o repositório
git clone https://github.com/bytedance/deer-flow.git
cd deer-flow
# Instale as dependências, uv irá lidar com o interpretador do python e a criação do venv, e instalar os pacotes necessários
uv sync
# Configure .env com suas chaves de API
# Tavily: https://app.tavily.com/home
# Brave_SEARCH: https://brave.com/search/api/
# volcengine TTS: Adicione sua credencial TTS caso você a possua
cp .env.example .env
# Veja as seções abaixo 'Supported Search Engines' and 'Texto-para-Fala Integração' para todas as opções disponíveis
# Configure o conf.yaml para o seu modelo LLM e chaves API
# Por favor, consulte 'docs/configuration_guide.md' para maiores detalhes
cp conf.yaml.example conf.yaml
# Instale marp para geração de ppt
# https://github.com/marp-team/marp-cli?tab=readme-ov-file#use-package-manager
brew install marp-cli
```
Opcionalmente, instale as dependências IU web via [pnpm](https://pnpm.io/installation):
```bash
cd deer-flow/web
pnpm install
```
### Configurações
Por favor, consulte o [Guia de Configuração](docs/configuration_guide.md) para maiores detalhes.
> [!NOTA]
> Antes de iniciar o projeto, leia o guia detalhadamente, e atualize as configurações para baterem com os seus requisitos e configurações específicas.
### Console IU
A maneira mais rápida de rodar o projeto é usar o console IU.
```bash
# Execute o projeto em um shell tipo-bash
uv run main.py
```
### Web IU
Esse projeto também inclui uma IU Web, trazendo uma experiência mais interativa, dinâmica e engajadora.
> [!NOTA]
> Você precisa instalar as dependências do IU web primeiro.
```bash
# Execute ambos os servidores de backend e frontend em modo desenvolvimento
# No macOS/Linux
./bootstrap.sh -d
# No Windows
bootstrap.bat -d
```
Abra seu navegador e visite [`http://localhost:3000`](http://localhost:3000) para explorar a IU web.
Explore mais detalhes no diretório [`web`](./web/) .
## Mecanismos de Busca Suportados
DeerFlow suporta múltiplos mecanismos de busca que podem ser configurados no seu arquivo `.env` usando a variável `SEARCH_API`:
- **Tavily** (padrão): Uma API de busca especializada para aplicações de IA
- Requer `TAVILY_API_KEY` no seu arquivo `.env`
- Inscreva-se em: https://app.tavily.com/home
- **DuckDuckGo**: Mecanismo de busca focado em privacidade
- Não requer chave API
- **Brave Search**: Mecanismo de busca focado em privacidade com funcionalidades avançadas
- Requer `BRAVE_SEARCH_API_KEY` no seu arquivo `.env`
- Inscreva-se em: https://brave.com/search/api/
- **Arxiv**: Busca de artigos científicos para pesquisa acadêmica
- Não requer chave API
- Especializado em artigos científicos e acadêmicos
Para configurar o seu mecanismo preferido, defina a variável `SEARCH_API` no seu arquivo:
```bash
# Escolha uma: tavily, duckduckgo, brave_search, arxiv
SEARCH_API=tavily
```
## Funcionalidades
### Principais Funcionalidades
- 🤖 **Integração LLM**
- Suporta a integração da maioria dos modelos através de [litellm](https://docs.litellm.ai/docs/providers).
- Suporte a modelos open source como Qwen
- Interface API compatível com a OpenAI
- Sistema LLM multicamadas para diferentes complexidades de tarefa
### Ferramentas e Integrações MCP
- 🔍 **Busca e Recuperação**
- Busca web com Tavily, Brave Search e mais
- Crawling com Jina
- Extração de Conteúdo avançada
- 🔗 **Integração MCP perfeita**
- Expansão de capacidades de acesso para acesso a domínios privados, grafo de conhecimento, navegação web e mais
- Integração facilitdade de diversas ferramentas de pesquisa e metodologias
### Colaboração Humana
- 🧠 **Humano-no-processo**
- Suporta modificação interativa de planos de pesquisa usando linguagem natural
- Suporta auto-aceite de planos de pesquisa
- 📝 **Relatório Pós-Edição**
- Suporta edição de edição de blocos estilo Notion
- Permite refinamentos de IA, incluindo polimento de IA assistida, encurtamento de frase, e expansão
- Distribuído por [tiptap](https://tiptap.dev/)
### Criação de Conteúdo
- 🎙️ **Geração de Podcast e apresentação**
- Script de geração de podcast e síntese de áudio movido por IA
- Criação automatizada de apresentações PowerPoint simples
- Templates customizáveis para conteúdo personalizado
## Arquitetura
DeerFlow implementa uma arquitetura de sistema multi-agente modular designada para pesquisa e análise de código automatizada. O sistema é construído em LangGraph, possibilitando um fluxo de trabalho flexível baseado-em-estado onde os componentes se comunicam através de um sistema de transmissão de mensagens bem-definido.
![Diagrama de Arquitetura](./assets/architecture.png)
> Veja ao vivo em [deerflow.tech](https://deerflow.tech/#multi-agent-architecture)
O sistema emprega um fluxo de trabalho simplificado com os seguintes componentes:
1. **Coordenador**: O ponto de entrada que gerencia o ciclo de vida do fluxo de trabalho
- Inicia o processo de pesquisa baseado na entrada do usuário
- Delega tarefas so planejador quando apropriado
- Atua como a interface primária entre o usuário e o sistema
2. **Planejador**: Componente estratégico para a decomposição e planejamento
- Analisa objetivos de pesquisa e cria planos de execução estruturados
- Determina se há contexto suficiente disponível ou se mais pesquisa é necessária
- Gerencia o fluxo de pesquisa e decide quando gerar o relatório final
3. **Time de Pesquisa**: Uma coleção de agentes especializados que executam o plano:
- **Pesquisador**: Conduz buscas web e coleta informações utilizando ferramentas como mecanismos de busca web, crawling e mesmo serviços MCP.
- **Programador**: Lida com a análise de código, execução e tarefas técnicas como usar a ferramenta Python REPL.
Cada agente tem acesso à ferramentas específicas otimizadas para seu papel e opera dentro do fluxo de trabalho LangGraph.
4. **Repórter**: Estágio final do processador de estágio para saídas de pesquisa
- Resultados agregados do time de pesquisa
- Processa e estrutura as informações coletadas
- Gera relatórios abrangentes de pesquisas
## Texto-para-Fala Integração
DeerFlow agora inclui uma funcionalidade Texto-para-Fala (TTS) que permite que você converta relatórios de busca para voz. Essa funcionalidade usa o mecanismo de voz da API TTS para gerar áudio de alta qualidade a partir do texto. Funcionalidades como velocidade, volume e tom também são customizáveis.
### Usando a API TTS
Você pode acessar a funcionalidade TTS através do endpoint `/api/tts`:
```bash
# Exemplo de chamada da API usando curl
curl --location 'http://localhost:8000/api/tts' \
--header 'Content-Type: application/json' \
--data '{
"text": "This is a test of the text-to-speech functionality.",
"speed_ratio": 1.0,
"volume_ratio": 1.0,
"pitch_ratio": 1.0
}' \
--output speech.mp3
```
## Desenvolvimento
### Testando
Rode o conjunto de testes:
```bash
# Roda todos os testes
make test
# Roda um arquivo de teste específico
pytest tests/integration/test_workflow.py
# Roda com coverage
make coverage
```
### Qualidade de Código
```bash
# Roda o linting
make lint
# Formata de código
make format
```
### Debugando com o LangGraph Studio
DeerFlow usa LangGraph para sua arquitetura de fluxo de trabalho. Nós podemos usar o LangGraph Studio para debugar e visualizar o fluxo de trabalho em tempo real.
#### Rodando o LangGraph Studio Localmente
DeerFlow inclui um arquivo de configuração `langgraph.json` que define a estrutura do grafo e dependências para o LangGraph Studio. Esse arquivo aponta para o grafo do fluxo de trabalho definido no projeto e automaticamente carrega as variáveis de ambiente do arquivo `.env`.
##### Mac
```bash
# Instala o gerenciador de pacote uv caso você não o possua
curl -LsSf https://astral.sh/uv/install.sh | sh
# Instala as dependências e inicia o servidor LangGraph
uvx --refresh --from "langgraph-cli[inmem]" --with-editable . --python 3.12 langgraph dev --allow-blocking
```
##### Windows / Linux
```bash
# Instala as dependências
pip install -e .
pip install -U "langgraph-cli[inmem]"
# Inicia o servidor LangGraph
langgraph dev
```
Após iniciar o servidor LangGraph, você verá diversas URLs no seu terminal:
- API: http://127.0.0.1:2024
- Studio UI: https://smith.langchain.com/studio/?baseUrl=http://127.0.0.1:2024
- API Docs: http://127.0.0.1:2024/docs
Abra o link do Studio UI no seu navegador para acessar a interface de depuração.
#### Usando o LangGraph Studio
No Studio UI, você pode:
1. Visualizar o grafo do fluxo de trabalho e como seus componentes se conectam
2. Rastrear a execução em tempo-real e ver como os dados fluem através do sistema
3. Inspecionar o estado de cada passo do fluxo de trabalho
4. Depurar problemas ao examinar entradas e saídas de cada componente
5. Coletar feedback durante a fase de planejamento para refinar os planos de pesquisa
Quando você envia um tópico de pesquisa ao Studio UI, você será capaz de ver toda a execução do fluxo de trabalho, incluindo:
- A fase de planejamento onde o plano de pesquisa foi criado
- O processo de feedback onde você pode modificar o plano
- As fases de pesquisa e escrita de cada seção
- A geração do relatório final
## Docker
Você também pode executar esse projeto via Docker.
Primeiro, voce deve ler a [configuração](#configuration) below. Make sure `.env`, `.conf.yaml` files are ready.
Segundo, para fazer o build de sua imagem docker em seu próprio servidor:
```bash
docker build -t deer-flow-api .
```
E por fim, inicie um container docker rodando o servidor web:
```bash
# substitua deer-flow-api-app com seu nome de container preferido
docker run -d -t -p 8000:8000 --env-file .env --name deer-flow-api-app deer-flow-api
# pare o servidor
docker stop deer-flow-api-app
```
### Docker Compose (inclui ambos backend e frontend)
DeerFlow fornece uma estrutura docker-compose para facilmente executar ambos o backend e frontend juntos:
```bash
# building docker image
docker compose build
# start the server
docker compose up
```
## Exemplos:
Os seguintes exemplos demonstram as capacidades do DeerFlow:
### Relatórios de Pesquisa
1. **Relatório OpenAI Sora** - Análise da ferramenta Sora da OpenAI
- Discute funcionalidades, acesso, engenharia de prompt, limitações e considerações éticas
- [Veja o relatório completo](examples/openai_sora_report.md)
2. **Relatório Protocolo Agent-to-Agent do Google** - Visão geral do protocolo Agent-to-Agent (A2A) do Google
- Discute o seu papel na comunicação de Agente de IA e seu relacionamento com o Protocolo de Contexto de Modelo ( MCP ) da Anthropic
- [Veja o relatório completo](examples/what_is_agent_to_agent_protocol.md)
3. **O que é MCP?** - Uma análise abrangente to termo "MCP" através de múltiplos contextos
- Explora o Protocolo de Contexto de Modelo em IA, Fosfato Monocálcio em Química, e placa de microcanal em eletrônica
- [Veja o relatório completo](examples/what_is_mcp.md)
4. **Bitcoin Price Fluctuations** - Análise das recentes movimentações de preço do Bitcoin
- Examina tendências de mercado, influências regulatórias, e indicadores técnicos
- Fornece recomendações baseadas nos dados históricos
- [Veja o relatório completo](examples/bitcoin_price_fluctuation.md)
5. **O que é LLM?** - Uma exploração em profundidade de Large Language Models
- Discute arquitetura, treinamento, aplicações, e considerações éticas
- [Veja o relatório completo](examples/what_is_llm.md)
6. **Como usar Claude para Pesquisa Aprofundada?** - Melhores práticas e fluxos de trabalho para usar Claude em pesquisa aprofundada
- Cobre engenharia de prompt, análise de dados, e integração com outras ferramentas
- [Veja o relatório completo](examples/how_to_use_claude_deep_research.md)
7. **Adoção de IA na Área da Saúde: Fatores de Influência** - Análise dos fatores que levam à adoção de IA na área da saúde
- Discute tecnologias de IA, qualidade de dados, considerações éticas, avaliações econômicas, prontidão organizacional, e infraestrutura digital
- [Veja o relatório completo](examples/AI_adoption_in_healthcare.md)
8. **Impacto da Computação Quântica em Criptografia** - Análise dos impactos da computação quântica em criptografia
- Discture vulnerabilidades da criptografia clássica, criptografia pós-quântica, e soluções criptográficas de resistência-quântica
- [Veja o relatório completo](examples/Quantum_Computing_Impact_on_Cryptography.md)
9. **Destaques da Performance do Cristiano Ronaldo** - Análise dos destaques da performance do Cristiano Ronaldo
- Discute as suas conquistas de carreira, objetivos internacionais, e performance em diversas partidas
- [Veja o relatório completo](examples/Cristiano_Ronaldo's_Performance_Highlights.md)
Para executar esses exemplos ou criar seus próprios relatórios de pesquisa, você deve utilizar os seguintes comandos:
```bash
# Executa com uma consulta específica
uv run main.py "Quais fatores estão influenciando a adoção de IA na área da saúde?"
# Executa com parâmetros de planejamento customizados
uv run main.py --max_plan_iterations 3 "Como a computação quântica impacta na criptografia?"
# Executa em modo interativo com questões embutidas
uv run main.py --interactive
# Ou executa com um prompt interativo básico
uv run main.py
# Vê todas as opções disponíveis
uv run main.py --help
```
### Modo Interativo
A aplicação agora suporta um modo interativo com questões embutidas tanto em Inglês quanto Chinês:
1. Inicie o modo interativo:
```bash
uv run main.py --interactive
```
2. Selecione sua linguagem de preferência (English or 中文)
3. Escolha uma das questões embutidas da lista ou selecione a opção para perguntar sua própria questão
4. O sistema irá processar sua questão e gerar um relatório abrangente de pesquisa
### Humano no processo
DeerFlow inclue um mecanismo de humano no processo que permite a você revisar, editar e aprovar planos de pesquisa antes que estes sejam executados:
1. **Revisão de Plano**: Quando o humano no processo está habilitado, o sistema irá apresentar o plano de pesquisa gerado para sua revisão antes da execução
2. **Fornecimento de Feedback**: Você pode:
- Aceitar o plano respondendo com `[ACCEPTED]`
- Edite o plano fornecendo feedback (e.g., `[EDIT PLAN] Adicione mais passos sobre a implementação técnica`)
- O sistema irá incorporar seu feedback e gerar um plano revisado
3. **Auto-aceite**: Você pode habilitar o auto-aceite ou pular o processo de revisão:
- Via API: Defina `auto_accepted_plan: true` na sua requisição
4. **Integração de API**: Quanto usar a API, você pode fornecer um feedback através do parâmetro `feedback`:
```json
{
"messages": [{ "role": "user", "content": "O que é computação quântica?" }],
"thread_id": "my_thread_id",
"auto_accepted_plan": false,
"feedback": "[EDIT PLAN] Inclua mais sobre algoritmos quânticos"
}
```
### Argumentos via Linha de Comando
A aplicação suporta diversos argumentos via linha de comando para customizar o seu comportamento:
- **consulta**: A consulta de pesquisa a ser processada (podem ser múltiplas palavras)
- **--interativo**: Roda no modo interativo com questões embutidas
- **--max_plan_iterations**: Número máximo de ciclos de planejamento (padrão: 1)
- **--max_step_num**: Número máximo de passos em um plano de pesquisa (padrão: 3)
- **--debug**: Habilita Enable um log de depuração detalhado
## FAQ
Por favor consulte a [FAQ.md](docs/FAQ.md) para maiores detalhes.
## Licença
Esse projeto é open source e disponível sob a [MIT License](./LICENSE).
## Agradecimentos
DeerFlow é construído através do incrível trabalho da comunidade open-source. Nós somos profundamente gratos a todos os projetos e contribuidores cujos esforços tornaram o DeerFlow possível. Realmente, nós estamos apoiados nos ombros de gigantes.
Nós gostaríamos de extender nossos sinceros agradecimentos aos seguintes projetos por suas invaloráveis contribuições:
- **[LangChain](https://github.com/langchain-ai/langchain)**: O framework excepcional deles empodera nossas interações via LLM e correntes, permitindo uma integração perfeita e funcional.
- **[LangGraph](https://github.com/langchain-ai/langgraph)**: A abordagem inovativa para orquestração multi-agente deles tem sido foi fundamental em permitir o acesso dos fluxos de trabalho sofisticados do DeerFlow.
Esses projetos exemplificam o poder transformador da colaboração open-source, e nós temos orgulho de construir baseado em suas fundações.
### Contribuidores-Chave
Um sincero muito obrigado vai para os principais autores do `DeerFlow`, cuja visão, paixão, e dedicação trouxe esse projeto à vida:
- **[Daniel Walnut](https://github.com/hetaoBackend/)**
- **[Henry Li](https://github.com/magiccube/)**
O seu compromisso inabalável e experiência tem sido a força por trás do sucesso do DeerFlow. Nós estamos honrados em tê-los no comando dessa trajetória.
## Histórico-Estrelas
[![Gráfico do Histórico de Estrelas](https://api.star-history.com/svg?repos=bytedance/deer-flow&type=Date)](https://star-history.com/#bytedance/deer-flow&Date)